Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Studying protein structure and function by native separation-mass spectrometry

Fri, 28/04/2023 - 12:00
Nat Rev Chem. 2022 Mar;6(3):215-231. doi: 10.1038/s41570-021-00353-7. Epub 2022 Jan 20.ABSTRACTAlterations in protein structure may have profound effects on biological function. Analytical techniques that permit characterization of proteins while maintaining their conformational and functional state are crucial for studying changes in the higher order structure of proteins and for establishing structure-function relationships. Coupling of native protein separations with mass spectrometry is emerging rapidly as a powerful approach to study these aspects in a reliable, fast and straightforward way. This Review presents the available native separation modes for proteins, covers practical considerations on the hyphenation of these separations with mass spectrometry and highlights the involvement of affinity-based separations to simultaneously obtain structural and functional information of proteins. The impact of these approaches is emphasized by selected applications addressing biomedical and biopharmaceutical research questions.PMID:37117432 | DOI:10.1038/s41570-021-00353-7

Comparison of betalain compounds in two Beta vulgaris var. cicla and BvCYP76AD27 function identification in betalain biosynthesis

Fri, 28/04/2023 - 12:00
Plant Physiol Biochem. 2023 Apr 15;199:107711. doi: 10.1016/j.plaphy.2023.107711. Online ahead of print.ABSTRACTBeta vulgaris var. cicla is an edible, ornamental and horticultural plant. However, the difference of components and contents of betalain in beets with different leaf color are not well understood. Here, the stress resistance and metabolites of two B. vulgaris var. cicla cultivars were determined. The differences in stress resistance between red leaf-colored chard (RC) and yellow leaf-colored chard (YC) were positively related to betacyanins (BC) and betaxathins (BX) content in the leaves. Furthermore, a total of 3615 distinct metabolites were identified by UPLC-QTOF-MS in two cultivars, including 70 alkaloids and their derivatives, 249 flavonoids, and 264 terpenoids. There were 17 metabolites attributed to betalain biosynthesis pathway, seven of nine BC were up-regulated, and eight BX showed no significant difference in RC compared with YC. The contents of celosianin II and betanin were the highest BC in RC, at approximately 84.38 and 19.97 times that of YC, respectively. The content of portulacaxanthin II was the highest BX in two beets. Additionally, the BvCYP450 genes were identified based on genome, and the members that might be involved in betalain biosynthesis were screened. BvCYP76AD27, a member of the BvCYP76AD subfamily, had a higher expression level in RC than YC under freezing, drought and shading stress. In yeast Saccharomyces cerevisiae, BvCYP76AD5 and BvCYP76AD27 only hydroxylated tyrosine to L-DOPA, which was transformed into portulacaxanthin II by 4,5-DOPA extradiol dioxygenase. The results contribute to illustrating the molecular mechanism of betalain biosynthesis and provide useful information for further investigation of beet chemistry and sufficient utilization of this species.PMID:37116227 | DOI:10.1016/j.plaphy.2023.107711

Sex-specific effects of CD248 on metabolism and the adipose tissue lipidome

Fri, 28/04/2023 - 12:00
PLoS One. 2023 Apr 28;18(4):e0284012. doi: 10.1371/journal.pone.0284012. eCollection 2023.ABSTRACTCd248 has recently been associated with adipose tissue physiology, demonstrated by reduced weight gain in high fat diet-fed mice with genetic deletion of Cd248 relative to controls. Here we set out to determine the metabolic consequences of loss of Cd248. Strikingly, we find these to be sex specific; By subjecting Cd248-/- and Cd248+/+ mice to a high fat diet and indirect calorimetry study, we identified that only male Cd248-/- mice show reduced weight gain compared to littermate control wildtype mice. In addition, male (but not female) mice showed a lower respiratory exchange ratio on both chow and high fat diets, indicating a predisposition to metabolise lipid. Lipidomic studies on specific fat depots found reduced triglyceride and diglyceride deposition in male Cd248-/- mice, and this was supported by reduced expression of lipogenic and adipogenic genes. Finally, metabolomic analysis of isolated, differentiated preadipocytes found alterations in metabolic pathways associated with lipid deposition in cells isolated from male, but not female, Cd248-/- mice. Overall, our results highlight the importance of sex controls in animal studies and point to a role for Cd248 in sex- and depot-specific regulation of lipid metabolism.PMID:37115796 | DOI:10.1371/journal.pone.0284012

Pressure overload induces ISG15 to facilitate adverse ventricular remodeling and promote heart failure

Fri, 28/04/2023 - 12:00
J Clin Invest. 2023 May 1;133(9):e161453. doi: 10.1172/JCI161453.ABSTRACTInflammation promotes adverse ventricular remodeling, a common antecedent of heart failure. Here, we set out to determine how inflammatory cells affect cardiomyocytes in the remodeling heart. Pathogenic cardiac macrophages induced an IFN response in cardiomyocytes, characterized by upregulation of the ubiquitin-like protein IFN-stimulated gene 15 (ISG15), which posttranslationally modifies its targets through a process termed ISGylation. Cardiac ISG15 is controlled by type I IFN signaling, and ISG15 or ISGylation is upregulated in mice with transverse aortic constriction or infused with angiotensin II; rats with uninephrectomy and DOCA-salt, or pulmonary artery banding; cardiomyocytes exposed to IFNs or CD4+ T cell-conditioned medium; and ventricular tissue of humans with nonischemic cardiomyopathy. By nanoscale liquid chromatography-tandem mass spectrometry, we identified the myofibrillar protein filamin-C as an ISGylation target. ISG15 deficiency preserved cardiac function in mice with transverse aortic constriction and led to improved recovery of mouse hearts ex vivo. Metabolomics revealed that ISG15 regulates cardiac amino acid metabolism, whereas ISG15 deficiency prevented misfolded filamin-C accumulation and induced cardiomyocyte autophagy. In sum, ISG15 upregulation is a feature of pathological ventricular remodeling, and protein ISGylation is an inflammation-induced posttranslational modification that may contribute to heart failure development by altering cardiomyocyte protein turnover.PMID:37115698 | DOI:10.1172/JCI161453

iPSC-derived retinal pigmented epithelial cells from patients with macular telangiectasia show decreased mitochondrial function

Fri, 28/04/2023 - 12:00
J Clin Invest. 2023 May 1;133(9):e163771. doi: 10.1172/JCI163771.ABSTRACTPatient-derived induced pluripotent stem cells (iPSCs) provide a powerful tool for identifying cellular and molecular mechanisms of disease. Macular telangiectasia type 2 (MacTel) is a rare, late-onset degenerative retinal disease with an extremely heterogeneous genetic architecture, lending itself to the use of iPSCs. Whole-exome sequencing screens and pedigree analyses have identified rare causative mutations that account for less than 5% of cases. Metabolomic surveys of patient populations and GWAS have linked MacTel to decreased circulating levels of serine and elevated levels of neurotoxic 1-deoxysphingolipids (1-dSLs). However, retina-specific, disease-contributing factors have yet to be identified. Here, we used iPSC-differentiated retinal pigmented epithelial (iRPE) cells derived from donors with or without MacTel to screen for novel cell-intrinsic pathological mechanisms. We show that MacTel iRPE cells mimicked the low serine levels observed in serum from patients with MacTel. Through RNA-Seq and gene set enrichment pathway analysis, we determined that MacTel iRPE cells are enriched in cellular stress pathways and dysregulation of central carbon metabolism. Using respirometry and mitochondrial stress testing, we functionally validated that MacTel iRPE cells had a reduction in mitochondrial function that was independent of defects in serine biosynthesis and 1-dSL accumulation. Thus, we identified phenotypes that may constitute alternative disease mechanisms beyond the known serine/sphingolipid pathway.PMID:37115691 | DOI:10.1172/JCI163771

Concordance-Based Batch Effect Correction for Large-Scale Metabolomics

Fri, 28/04/2023 - 12:00
Anal Chem. 2023 Apr 28. doi: 10.1021/acs.analchem.2c05748. Online ahead of print.ABSTRACTFor a large-scale metabolomics study, sample collection, preparation, and analysis may last several days, months, or even (intermittently) over years. This may lead to apparent batch effects in the acquired metabolomics data due to variability in instrument status, environmental conditions, or experimental operators. Batch effects may confound the true biological relationships among metabolites and thus obscure real metabolic changes. At present, most of the commonly used batch effect correction (BEC) methods are based on quality control (QC) samples, which require sufficient and stable QC samples. However, the quality of the QC samples may deteriorate if the experiment lasts for a long time. Alternatively, isotope-labeled internal standards have been used, but they generally do not provide good coverage of the metabolome. On the other hand, BEC can also be conducted through a data-driven method, in which no QC sample is needed. Here, we propose a novel data-driven BEC method, namely, CordBat, to achieve concordance between each batch of samples. In the proposed CordBat method, a reference batch is first selected from all batches of data, and the remaining batches are referred to as "other batches." The reference batch serves as the baseline for the batch adjustment by providing a coordinate of correlation between metabolites. Next, a Gaussian graphical model is built on the combined dataset of reference and other batches, and finally, BEC is achieved by optimizing the correction coefficients in the other batches so that the correlation between metabolites of each batch and their combinations are in concordance with that of the reference batch. Three real-world metabolomics datasets are used to evaluate the performance of CordBat by comparing it with five commonly used BEC methods. The present experimental results showed the effectiveness of CordBat in batch effect removal and the concordance of correlation between metabolites after BEC. CordBat was found to be comparable to the QC-based methods and achieved better performance in the preservation of biological effects. The proposed CordBat method may serve as an alternative BEC method for large-scale metabolomics that lack proper QC samples.PMID:37115661 | DOI:10.1021/acs.analchem.2c05748

Quantifying Cell Heterogeneity and Subpopulations Using Single Cell Metabolomics

Fri, 28/04/2023 - 12:00
Anal Chem. 2023 Apr 28. doi: 10.1021/acs.analchem.2c05245. Online ahead of print.ABSTRACTMass spectrometry (MS) has become an indispensable tool for metabolomics studies. However, due to the lack of applicable experimental platforms, suitable algorithm, software, and quantitative analyses of cell heterogeneity and subpopulations, investigating global metabolomics profiling at the single cell level remains challenging. We combined the Single-probe single cell MS (SCMS) experimental technique with a bioinformatics software package, SinCHet-MS (Single Cell Heterogeneity for Mass Spectrometry), to characterize changes of tumor heterogeneity, quantify cell subpopulations, and prioritize the metabolite biomarkers of each subpopulation. As proof of principle studies, two melanoma cancer cell lines, the primary (WM115; with a lower drug resistance) and the metastatic (WM266-4; with a higher drug resistance), were used as models. Our results indicate that after the treatment of the anticancer drug vemurafenib, a new subpopulation emerged in WM115 cells, while the proportion of the existing subpopulations was changed in the WM266-4 cells. In addition, metabolites for each subpopulation can be prioritized. Combining the SCMS experimental technique with a bioinformatics tool, our label-free approach can be applied to quantitatively study cell heterogeneity, prioritize markers for further investigation, and improve the understanding of cell metabolism in human diseases and response to therapy.PMID:37115510 | DOI:10.1021/acs.analchem.2c05245

Integrative analysis of metabolomic, genomic, and imaging-based phenotypes identify very-low-density lipoprotein as a potential risk factor for lumbar Modic changes

Fri, 28/04/2023 - 12:00
Eur Spine J. 2023 Apr 28. doi: 10.1007/s00586-023-07704-6. Online ahead of print.NO ABSTRACTPMID:37115279 | DOI:10.1007/s00586-023-07704-6

Evolution-guided multiomics provide insights into the strengthening of bioactive flavone biosynthesis in medicinal pummelo

Fri, 28/04/2023 - 12:00
Plant Biotechnol J. 2023 Apr 28. doi: 10.1111/pbi.14058. Online ahead of print.ABSTRACTPummelo (Citrus maxima or Citrus grandis) is a basic species and an important type for breeding in Citrus. Pummelo is used not only for fresh consumption but also for medicinal purposes. However, the molecular basis of medicinal traits is unclear. Here, compared with wild citrus species/Citrus-related genera, the content of 43 bioactive metabolites and their derivatives increased in the pummelo. Furthermore, we assembled the genome sequence of a variety for medicinal purposes with a long history, Citrus maxima 'Huazhouyou-tomentosa' (HZY-T), at the chromosome level with a genome size of 349.07 Mb. Comparative genomics showed that the expanded gene family in the pummelo genome was enriched in flavonoids-, terpenoid-, and phenylpropanoid biosynthesis. Using the metabolome and transcriptome of six developmental stages of HZY-T and Citrus maxima 'Huazhouyou-smooth' (HZY-S) fruit peel, we generated the regulatory networks of bioactive metabolites and their derivatives. We identified a novel MYB transcription factor, CmtMYB108, as an important regulator of flavone pathways. Both mutations and expression of CmtMYB108, which targets the genes PAL (phenylalanine ammonia-lyase) and FNS (flavone synthase), displayed differential expression between Citrus-related genera, wild citrus species and pummelo species. This study provides insights into the evolution-associated changes in bioactive metabolism during the origin process of pummelo.PMID:37115171 | DOI:10.1111/pbi.14058

The effects of pectin on the gut microbiota and serum metabolites in mice fed with a high fat diet and exposed to low-dose antibiotics

Fri, 28/04/2023 - 12:00
Food Funct. 2023 Apr 28. doi: 10.1039/d2fo03966d. Online ahead of print.ABSTRACTA sedentary lifestyle, unhealthy diet, and antibiotic use among other environmental factors have been associated with an increased incidence of metabolic disorders and inflammation, as well as gut dysbiosis. Pectin is an edible polysaccharide that exists widely in the cell wall of plants. Our previous study has shown that pectin with various degrees of esterification displayed different effects on preventing acute colitis and regulating the gut microbiome and serum metabolome. This study aimed to further explore the differential effects of pectin with various degrees of esterification on mice simultaneously treated with a high-fat diet and low-dose antibiotics. The results showed that low-esterified pectin L102 improved the biomarkers of metabolic disorders including blood glucose and body weight. The high-esterified pectin H121 and the low-esterified pectin L13 ameliorated inflammatory markers such as superoxide dismutase (SOD). The enrichment of probiotic bacteria such as Lactobacillus by pectin L102, reduction of conditional pathogens such as Klebsiella by pectin L13, and changes in circulating metabolites like L-tryptophan and 3-indoleacrylate by all three types of pectins were detected. These data provide evidence for a differential effect of different types of pectin on the gut microbiota and metabolic health.PMID:37114890 | DOI:10.1039/d2fo03966d

Alterations of Fecal Metabolome Associated with BBIBP-CorV Vaccines against the SARS-CoV-2 Virus

Fri, 28/04/2023 - 12:00
Front Biosci (Landmark Ed). 2023 Apr 6;28(4):65. doi: 10.31083/j.fbl2804065.ABSTRACTBACKGROUND: The SARS-CoV-2 vaccine has been implemented in response to the 2019 Coronavirus Disease (COVID-19) pandemic worldwide. Dysregulation of gut metabolite is associated with COVID-19 patients. However, the effect of vaccination on the gut metabolite remains unknown, and it is critical to investigate the shifts in metabolic profiles following vaccine treatment.METHODS: In the present study, we conducted a case-control study to assess the fecal metabolic profiles between individuals who received two doses of intramuscular injection of an inactivated SARS-CoV-2 vaccine candidate (BBIBP-CorV) (n = 20), and matched unvaccinated controls (n = 20) using untargeted gas chromatography and time-of-flight mass spectrometry (GC-TOF/MS).RESULTS: Significant different metabolic profiles were observed between subjects receiving SARS-CoV-2 virus vaccines and the unvaccinated. Among a total of 243 metabolites from 27 ontology classes identified in the study cohort, 64 metabolic markers and 15 ontology classes were dramatically distinct between vaccinated and unvaccinated individuals. There were 52 enhanced (such as Desaminotyrosine, Phenylalanine) and 12 deficient metabolites (such as Octadecanol, 1-Hexadecanol) in vaccinated individuals. Along with altered metabolic compositions, multiple functional pathways in Small MoleculePathway Database (SMPDB) and Kyoto Encyclopedia of Genes and Genomes (KEGG) varied between groups. Our results indicated that urea cycle; alanine, aspartate, and glutamate metabolism; arginine and proline metabolism; phenylalanine metabolism and tryptophan metabolism were abundant after vaccination. Additionally, correlation analysis showed that intestinal microbiome was related to alteration in metabolite composition and functions.CONCLUSIONS: The present study indicated the alterations in the gut metabolome after COVID-19 vaccination and the findings provide a valuable resource for in-depth exploration of mechanisms between gut metabolite and SARS-CoV-2 virus vaccines.PMID:37114533 | DOI:10.31083/j.fbl2804065

Novel roles for HMGA2 isoforms in regulating oxidative stress and sensitizing to RSL3-Induced ferroptosis in prostate cancer cells

Fri, 28/04/2023 - 12:00
Heliyon. 2023 Apr 7;9(4):e14810. doi: 10.1016/j.heliyon.2023.e14810. eCollection 2023 Apr.ABSTRACTOxidative stress is increased in several cancers including prostate cancer, and is currently being exploited in cancer therapy to induce ferroptosis, a novel nonapoptotic form of cell death. High mobility group A2 (HMGA2), a non-histone protein up-regulated in several cancers, can be truncated due to chromosomal rearrangement or alternative splicing of HMGA2 gene. The purpose of this study is to investigate the role of wild-type vs. truncated HMGA2 in prostate cancer (PCa). We analyzed the expression of wild-type vs. truncated HMGA2 and showed that prostate cancer patient tissue and some cell lines expressed increasing amounts of both wild-type and truncated HMGA2 with increasing tumor grade, compared to normal epithelial cells. RNA-Seq analysis of LNCaP prostate cancer cells stably overexpressing wild-type HMGA2 (HMGA2-WT), truncated HMGA2 (HMGA2-TR) or empty vector (Neo) control revealed that HMGA2-TR cells exhibited higher oxidative stress compared to HMGA2-WT or Neo control cells, which was also confirmed by analysis of basal reactive oxygen species (ROS) levels using 2', 7'-dichlorofluorescin diacetate (DCFDA) dye, the ratio of reduced glutathione/oxidized glutathione (GSH/GSSG) and NADP/NADPH using metabolomics. This was associated with increased sensitivity to RAS-selective lethal 3 (RSL3)-induced ferroptosis that could be antagonized by ferrostatin-1. Additionally, proteomic and immunoprecipitation analyses showed that cytoplasmic HMGA2 protein interacted with Ras GTPase-activating protein-binding protein 1 (G3BP1), a cytoplasmic stress granule protein that responds to oxidative stress, and that G3BP1 transient knockdown increased sensitivity to ferroptosis even further. Endogenous knockdown of HMGA2 or G3BP1 in PC3 cells reduced proliferation which was reversed by ferrostatin-1. In conclusion, we show a novel role for HMGA2 in oxidative stress, particularly the truncated HMGA2, which may be a therapeutic target for ferroptosis-mediated prostate cancer therapy.PMID:37113783 | PMC:PMC10126861 | DOI:10.1016/j.heliyon.2023.e14810

Altered serum metabolome associated with vascular calcification developed from CKD and the critical pathways

Fri, 28/04/2023 - 12:00
Front Cardiovasc Med. 2023 Apr 11;10:1114528. doi: 10.3389/fcvm.2023.1114528. eCollection 2023.ABSTRACTINTRODUCTION: Vascular calcification (VC) is more likely to be detected in the chronic kidney disease (CKD) population. The mechanism of VC development from CKD is different from that for simple VC and has always been a major research area. The aim of this study was to detect alterations in the metabolome during development of VC in CKD and to identify the critical metabolic pathways and metabolites involved in its pathogenesis.METHODS: Rats in the model group were given an adenine gavage combined with a high-phosphorus diet to imitate VC in CKD. The aorta calcium content was measured and used to divide the model group into a VC group and non-vascular calcification group (non-VC group). The control group was fed a normal rat diet and given a saline gavage. Ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) was used to determine the altered serum metabolome in the control, VC, and non-VC groups. The identified metabolites were mapped into the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (https://www.genome.jp/kegg/) for pathway and network analyses.RESULT: There were 14 metabolites that changed significantly in the VC group, with three metabolic pathways playing critical roles in the pathogenesis of VC in CKD: steroid hormone biosynthesis; valine, leucine and isoleucine biosynthesis; and pantothenate and CoA biosynthesis.CONCLUSION: Our results indicated changes in the expression of steroid sulfatase and estrogen sulfotransferase, and down-regulation of the in situ synthesis of estrogens in the VC group. In conclusion, the serum metabolome alters significantly during the pathogenesis of VC in CKD. The key pathways, metabolites, and enzymes we identified are worth further study and may become a promising therapeutic target for the treatment of VC in CKD.PMID:37113701 | PMC:PMC10126378 | DOI:10.3389/fcvm.2023.1114528

Biomarkers of post-match recovery in semi-professional and professional football (soccer)

Fri, 28/04/2023 - 12:00
Front Physiol. 2023 Apr 11;14:1167449. doi: 10.3389/fphys.2023.1167449. eCollection 2023.ABSTRACTHigh-level football (soccer) players face intense physical demands that result in acute and residual fatigue, impairing their physical performance in subsequent matches. Further, top-class players are frequently exposed to match-congested periods where sufficient recovery times are not achievable. To evaluate training and recovery strategies, the monitoring of players' recovery profiles is crucial. Along with performance and neuro-mechanical impairments, match-induced fatigue causes metabolic disturbances denoted by changes in chemical analytes that can be quantified in different body fluids such as blood, saliva, and urine, thus acting as biomarkers. The monitoring of these molecules might supplement performance, neuromuscular and cognitive measurements to guide coaches and trainers during the recovery period. The present narrative review aims to comprehensively review the scientific literature on biomarkers of post-match recovery in semi-professional and professional football players as well as provide an outlook on the role that metabolomic studies might play in this field of research. Overall, no single gold-standard biomarker of match-induced fatigue exists, and a range of metabolites are available to assess different aspects of post-match recovery. The use of biomarker panels might be suitable to simultaneously monitoring these broad physiological processes, yet further research on fluctuations of different analytes throughout post-match recovery is warranted. Although important efforts have been made to address the high interindividual heterogeneity of available markers, limitations inherent to these markers might compromise the information they provide to guide recovery protocols. Further research on metabolomics might benefit from evaluating the long-term recovery period from a high-level football match to shed light upon new biomarkers of post-match recovery.PMID:37113691 | PMC:PMC10126523 | DOI:10.3389/fphys.2023.1167449

Agarose/crystalline nanocellulose (CNC) composites promote bone marrow-derived mast cell integrity, degranulation and receptor expression but inhibit production of <em>de novo</em> synthesized mediators

Fri, 28/04/2023 - 12:00
Front Bioeng Biotechnol. 2023 Apr 11;11:1160460. doi: 10.3389/fbioe.2023.1160460. eCollection 2023.ABSTRACTIntroduction: Mast cells are highly granulated tissue-resident leukocytes that require a three-dimensional matrix to differentiate and mediate immune responses. However, almost all cultured mast cells rely on two-dimensional suspension or adherent cell culture systems, which do not adequately reflect the complex structure that these cells require for optimal function. Methods: Crystalline nanocellulose (CNC), consisting of rod-like crystals 4-15 nm in diameter and 0.2-1 µm in length, were dispersed in an agarose matrix (12.5% w/v), and bone marrow derived mouse mast cells (BMMC) were cultured on the agarose/CNC composite. BMMC were activated with the calcium ionophore A23187 or immunoglobulin E (IgE) and antigen (Ag) to crosslink high affinity IgE receptors (FcεRI). Results: BMMC cultured on a CNC/agarose matrix remained viable and metabolically active as measured by reduction of sodium 3'-[1-[(phenylamino)-carbony]-3,4-tetrazolium]-bis(4-methoxy-6-nitro) benzene-sulfonic acid hydrate (XTT), and the cells maintained their membrane integrity as analyzed by measuring the release of lactate dehydrogenase (LDH) and propidium iodide exclusion by flow cytometry. Culture on CNC/agarose matrix had no effect on BMMC degranulation in response to IgE/Ag or A23187. However, culture of BMMC on a CNC/agarose matrix inhibited A23187-and IgE/Ag-activated production of tumor necrosis factor (TNF) and other mediators such as IL-1β, IL-4, IL-6, IL-13, MCP-1/CCL2, MMP-9 and RANTES by as much as 95%. RNAseq analysis indicated that BMMC expressed a unique and balanced transcriptome when cultured on CNC/agarose. Discussion: These data demonstrate that culture of BMMCs on a CNC/agarose matrix promotes cell integrity, maintains expression of surface biomarkers such as FcεRI and KIT and preserves the ability of BMMC to release pre-stored mediators in response to IgE/Ag and A23187. However, culture of BMMC on CNC/agarose matrix inhibits BMMC production of de novo synthesized mediators, suggesting that CNC may be altering specific phenotypic characteristics of these cells that are associated with late phase inflammatory responses.PMID:37113661 | PMC:PMC10126518 | DOI:10.3389/fbioe.2023.1160460

Joint Application of Multiple Inflammatory Cytokines in Diagnosis of Gout Flare

Fri, 28/04/2023 - 12:00
J Inflamm Res. 2023 Apr 21;16:1771-1782. doi: 10.2147/JIR.S408929. eCollection 2023.ABSTRACTPURPOSE: This study aimed to explore the accuracy for joint application of inflammatory cytokines in diagnosis of gout flare by comparison with peripheral blood cells.METHODS: We collected the clinical data of 96 acute gout patients and 144 remission gout patients, and compared the levels of peripheral blood cells, inflammatory cytokines and blood biochemistry indexes between acute and remission gout. We respectively assessed the area under curves (AUCs) for single and multiple inflammatory cytokines including C-reactive protein (CRP), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and single and multiple peripheral blood cells including platelet (PLT), white blood cell (WBC), percentages of neutrophils (N%), lymphocytes (L%), eosinophils (E%), basophils (B%) in diagnosis of acute gout by receiver operating characteristic (ROC) curve analysis.RESULTS: By contrast with remission gout, the levels of PLT, WBC, N%, CRP, IL-1β, IL-6 and TNF-α increased, and the levels of L%, E% and B% decreased in acute gout. The AUCs of PLT, WBC, N%, L%, E% and B% in diagnosis of acute gout were respectively 0.591, 0.601, 0.581, 0.567, 0.608 and 0.635, while the AUC for joint application of these peripheral blood cells was 0.674. Moreover, the AUCs of CRP, IL-1β, IL-6 and TNF-α in diagnosis of acute gout were respectively 0.814, 0.683, 0.622 and 0.746, while the AUC for joint application of these inflammatory cytokines was 0.883, reflecting significantly higher levels than peripheral blood cells.CONCLUSION: The joint application of multiple inflammatory cytokines can better distinguish acute gout from remission gout compared with peripheral blood cells.PMID:37113627 | PMC:PMC10128086 | DOI:10.2147/JIR.S408929

Preliminary evidence for developing safe and efficient fecal microbiota transplantation as potential treatment for aged related cognitive impairments

Fri, 28/04/2023 - 12:00
Front Cell Infect Microbiol. 2023 Apr 11;13:1103189. doi: 10.3389/fcimb.2023.1103189. eCollection 2023.ABSTRACTBACKGROUND: Recent studies have reported that gut microbiota is closely associated with cognitive fuction. Fecal microbiota transplantation (FMT) may be a potential treatment for cognitive impairment, but its efficacy in patients with cognitive impairment is unknown.OBJECTIVES: This study aimed to investigate the safety and efficacy of FMT for cognitive impairment treatment.METHODS: Five patients aged 54-80 years (three women) were enrolled in this single-arm clinical trial from July 2021 to May 2022. The Montreal Cognitive Assessment-B (MoCA-B), Activities of Daily Living (ADL), and the cognitive section of the Alzheimer's Disease Assessment Scale (ADAS-Cog) were assessed at days 0, 30, 60, 90, and 180. Additionally, stool and serum samples were obtained twice before FMT was administered and six months after the treatment. The structure of fecal microbiota was analyzed by 16S RNA gene sequencing. Serum samples were analyzed for metabolomics and lipopolysaccharide (LPS)-binding proteins by liquid chromatography-mass spectrometry and enzyme-linked immunosorbent assay, respectively. Safety was assessed based on adverse events, vital signs, and laboratory parameters during FMT and the follow-up period.RESULTS: The MoCA, ADL, and ADAS-Cog scores of patients with mild cognitive impairment (patients C and E) after FMT were improved or maintained compared with those before transplantation. However, patients with severe cognitive impairment (patients A, B, and D) had no worsening of cognitive scores. Fecal microbiota analysis showed that FMT changed the structure of gut microbiota. The results of serum metabolomics analysis suggested that there were significant changes in the serum metabolomics of patients after FMT, with 7 up-regulated and 28 down-regulated metabolites. 3b,12a-dihydroxy-5a-cholanoic acid, 25-acetylvulgaroside, deoxycholic acid, 2(R)-hydroxydocosanoic acid, and P-anisic acid increased, while bilirubin and other metabolites decreased. KEFF pathway analysis indicated that the main metabolic pathways were bile secretion and choline metabolism in cancer. No adverse effects were reported throughout the study.CONCLUSIONS: In this pilot study, FMT could maintain and improve cognitive function in mild cognitive impairment by changing gut microbiota structure and affecting serum metabolomics. Fecal bacteria capsules were safe. However, further studies are needed to evaluate the safety and efficacy of fecal microbiota transplantation. ClinicalTrials.gov Identifier: CHiCTR2100043548.PMID:37113132 | PMC:PMC10127103 | DOI:10.3389/fcimb.2023.1103189

Early-Phase Drive to the Precursor Pool: Chloroviruses Dive into the Deep End of Nucleotide Metabolism

Fri, 28/04/2023 - 12:00
Viruses. 2023 Mar 31;15(4):911. doi: 10.3390/v15040911.ABSTRACTViruses face many challenges on their road to successful replication, and they meet those challenges by reprogramming the intracellular environment. Two major issues challenging Paramecium bursaria chlorella virus 1 (PBCV-1, genus Chlorovirus, family Phycodnaviridae) at the level of DNA replication are (i) the host cell has a DNA G+C content of 66%, while the virus is 40%; and (ii) the initial quantity of DNA in the haploid host cell is approximately 50 fg, yet the virus will make approximately 350 fg of DNA within hours of infection to produce approximately 1000 virions per cell. Thus, the quality and quantity of DNA (and RNA) would seem to restrict replication efficiency, with the looming problem of viral DNA synthesis beginning in only 60-90 min. Our analysis includes (i) genomics and functional annotation to determine gene augmentation and complementation of the nucleotide biosynthesis pathway by the virus, (ii) transcriptional profiling of these genes, and (iii) metabolomics of nucleotide intermediates. The studies indicate that PBCV-1 reprograms the pyrimidine biosynthesis pathway to rebalance the intracellular nucleotide pools both qualitatively and quantitatively, prior to viral DNA amplification, and reflects the genomes of the progeny virus, providing a successful road to virus infection.PMID:37112891 | DOI:10.3390/v15040911

Acute and Transgenerational Effects of Non-Steroidal Anti-Inflammatory Drugs on <em>Daphnia magna</em>

Fri, 28/04/2023 - 12:00
Toxics. 2023 Mar 29;11(4):320. doi: 10.3390/toxics11040320.ABSTRACTPharmaceuticals pose a great threat to organisms inhabiting the aquatic environment. Non-steroidal anti-inflammatory drugs (NSAIDs) are major pharmaceutical pollutants with a significant presence in freshwater ecosystems. In this study, the impact of indomethacin and ibuprofen, two of the most commonly prescribed NSAIDs, was assessed on Daphnia magna. Toxicity was assessed as the immobilization of animals and used to determine non-lethal exposure concentrations. Feeding was assessed as a phenotypic endpoint and key enzymes were used as molecular endpoints of physiology. Feeding was decreased in mixture exposures for five-day-old daphnids and neonates. Furthermore, animals were exposed to NSAIDs and their mixture in chronic and transgenerational scenarios revealing changes in key enzyme activities. Alkaline and acid phosphatases, lipase, peptidase, β-galactosidase, and glutathione-S-transferase were shown to have significant changes in the first generation at the first and third week of exposure, and these were enhanced in the second generation. On the other hand, the third recovery generation did not exhibit these changes, and animals were able to recover from the induced changes and revert back to the control levels. Overall, our study points towards transgenerational exposures as more impactful laboratory studies to understand pharmaceutical stressors with a combination of molecular and phenotypic markers of physiology.PMID:37112547 | DOI:10.3390/toxics11040320

Transcriptomics and Metabolomics Analysis Provides Insight into Leaf Color and Photosynthesis Variation of the Yellow-Green Leaf Mutant of Hami Melon (<em>Cucumis melo</em> L.)

Fri, 28/04/2023 - 12:00
Plants (Basel). 2023 Apr 12;12(8):1623. doi: 10.3390/plants12081623.ABSTRACTLeaf color mutants are ideal materials for studying the regulatory mechanism of chloroplast development and photosynthesis. We isolated a cucumis melo spontaneous mutant (MT), which showed yellow-green leaf phenotype in the whole growing period and could be inherited stably. We compared its leaves with the wild type (WT) in terms of cytology, physiology, transcriptome and metabolism. The results showed that the thylakoid grana lamellae of MT were loosely arranged and fewer in number than WT. Physiological experiments also showed that MT had less chlorophyll content and more accumulation of reactive oxygen species (ROS) than WT. Furthermore, the activity of several key enzymes in C4 photosynthetic carbon assimilation pathway was more enhanced in MT than WT. Transcriptomic and metabolomic analyses showed that differential expression genes and differentially accumulated metabolites in MT were mainly co-enriched in the pathways related to photosystem-antenna proteins, central carbon metabolism, glutathione metabolism, phenylpropanoid biosynthesis and flavonoid metabolism. We also analyzed several key proteins in photosynthesis and chloroplast transport by Western blot. In summary, the results may provide a new insight into the understanding of how plants respond to the impaired photosynthesis by regulating chloroplast development and photosynthetic carbon assimilation pathways.PMID:37111847 | DOI:10.3390/plants12081623

Pages