Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Integrated physiological and metabolomic analysis reveals new insights into toxicity pathways of paraquat to Microcystis aeruginosa

Sat, 15/04/2023 - 12:00
Aquat Toxicol. 2023 Apr 5:106521. doi: 10.1016/j.aquatox.2023.106521. Online ahead of print.ABSTRACTChemical pollutants, such as herbicides, released into the aquatic environment adversely affect the phytoplankton community structure. While majority of herbicides are specifically designed to target photosynthetic processes, they also can be toxic to phytoplankton; however, despite the photosynthetic toxicity, some herbicides can target multiple physiological processes. Therefore, a full picture of toxicity pathway of herbicide to phytoplankton is necessary. In the present study, the cyanobacterium Microcystis aeruginosa was exposed to two levels (17 μg L-1 (EC10) and 65 μg L-1 (EC50)) of paraquat for 72 h. The physiological and metabolic responses were analyzed to elucidate the toxicity pathway and establish the adverse outcome pathway of paraquat to M. aeruginosa. The results revealed that enhanced glycolysis (upregulation of pyruvic acid level) and tricarboxylic acid cycle (upregulation of the levels of malic acid, isocitric acid and citric acid) exposed to EC10 level of paraquat, which probably acted as a temporary strategy to maintain a healthy energy status in M. aeruginosa cells. Meanwhile, the expressions of glutathione and benzoic acid were enhanced to scavenge the excessive reactive oxygen species (ROS). Additionally, the accumulation of pigments (chlorophyll a and carotenoid) might play a supplementary role in the acclimation to EC10 level paraquat treatment. In cells exposed to paraquat by EC50 level, the levels of SOD, CAT, glutathione and benzoic acid increased significantly; however, the ROS exceeded the tolerance level of antioxidant system in M. aeruginosa. The adverse effects were revealed by inhibition of chlorophyll a fluorescence, the decreases in several carbohydrates (e.g., glucose 1-phosphate, fructose and galactose) and total protein content. Consequently, paraquat-induced oxidative stress caused the growth inhibition of M. aeruginosa. These findings provide new insights into the mode of action of paraquat in M. aeruginosa.PMID:37061422 | DOI:10.1016/j.aquatox.2023.106521

Combined transcriptomics and metabolomics analysis reveals lipid metabolic disruption in swamp eel (Monopterus albus) under chronic waterborne copper exposure

Sat, 15/04/2023 - 12:00
Aquat Toxicol. 2023 Apr 13:106520. doi: 10.1016/j.aquatox.2023.106520. Online ahead of print.ABSTRACTExcessive copper can induce many adverse effects although it's an essential trace element in organisms. The effects of copper on the lipid metabolism have aroused increasing attention. This study investigated the liver lipid metabolism in swamp eel (Monopterus albus, M. albus) chronically exposed to 0, 10, 50, and 100 μg/L Cu2+ for 56 days. The results showed that copper increased the contents of triglyceride (TG), total cholesterol (T-CHO), non-esterified fatty acids (NEFA), and lipid droplets. Transcriptomic analysis found 1901 differentially expressed genes (DEGs) and 140 differential alternative splicing (DAS) genes in the 50 μg/L Cu2+ group, and 1787 DEGs and 184 DAS genes in the 100 μg/L Cu2+ group, respectively, which were enriched in peroxisome proliferator-activated receptor (PPAR), adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), and other signaling pathways. The expression levels of key genes related to PPAR and AMPK signaling pathways were significantly down-regulated after chronic exposure to Cu2+. Meanwhile, metabolomics analysis showed that 52 and 110 differentially expressed metabolites (DEMs) were identified, which were mainly enriched in glycerophospholipids metabolism and steroid synthesis. Moreover, combined analysis of transcriptome and metabolome showed that glycerophospholipid metabolism co-enriched 19 down-regulated DEGs and 4 down-regulated DEMs. Taken together, our results suggested that chronic waterborne copper exposure promoted lipid synthesis, disrupted the metabolic homeostasis of glycerophospholipid, and led to excessive hepatic lipid deposition in M. albus. The combined omics approach enhanced our understanding of copper pollution to lipid metabolism.PMID:37061419 | DOI:10.1016/j.aquatox.2023.106520

HILPDA promotes NASH-driven HCC development by restraining intracellular fatty acid flux in hypoxia

Sat, 15/04/2023 - 12:00
J Hepatol. 2023 Apr 13:S0168-8278(23)00217-9. doi: 10.1016/j.jhep.2023.03.041. Online ahead of print.ABSTRACTBACKGROUND & AIMS: Nonalcoholic steatohepatitis (NASH)-driven hepatocellular carcinoma (HCC) is rapidly rising and lacks effective therapies, yet the underlying mechanisms remain unclear. This study aims to determine the role of hypoxia-inducible lipid droplet associated protein (HILPDA), a selective inhibitor of intracellular lipolysis, in NASH-HCC.METHODS: Clinical significance of HILPDA was assessed in human NASH-HCC specimens by immunohistochemistry and transcriptomics analyses. The oncogenic effect of HILPDA was assessed in human HCC cells and in 3D epithelial spheroids upon exposure to free fatty acids and either normoxia or hypoxia. Lipidomics profiling of WT and HILPDA knockout HCC cells was assessed via shotgun and targeted approaches. WT (HILPDAfl/fl) and HILPDA hepatocyte-specific knockout (HILPDAΔHep) mice were fed a western diet and high sugar in drinking water while receiving carbon tetrachloride to induce NASH-driven HCC.RESULTS: In patients with NASH-driven HCC, upregulated HILPDA expression is strongly associated with poor survival. In oxygen-deprived and lipid-loaded culture conditions, HILPDA promotes viability of human hepatoma cells and growth of 3D epithelial spheroids. Lack of HILPDA triggered flux of polyunsaturated fatty acids to membrane phospholipids and of saturated fatty acids to ceramide synthesis, exacerbating lipid peroxidation and apoptosis in hypoxia. The apoptosis induced by HILPDA deficiency was reversed by pharmacological inhibition of ceramide synthesis. In our experimental mouse model of NASH-driven HCC, HILPDAΔHep reduced hepatic steatosis and tumorigenesis while increasing oxidative stress in the liver. Single cell analysis supports a dual role of hepatic HILPDA in protecting HCC cells and facilitating the establishment of a pro-tumorigenic immune microenvironment in NASH.CONCLUSIONS: Hepatic HILPDA is a pivotal oncometabolic factor in the NASH liver microenvironment and represents a novel potential therapeutic target.IMPACT AND IMPLICATIONS: Nonalcoholic steatohepatitis (NASH, chronic metabolic liver disease caused by buildup of fat, inflammation and damage in the liver) is emerging as the leading risk factor and the fastest growing cause of hepatocellular carcinoma (HCC), the most common form of liver cancer. While curative therapeutic options exist for HCC, it frequently presents at a late stage when such options are no longer effective and only systemic therapies are available. However, systemic therapies are still associated with poor efficacy and some side effects. In addition, no approved drugs are available for NASH. Therefore, understaing the underlying metabolic alterations occurring during NASH-HCC is key to identify new cancer treatments that target the unique metabolic needs of cancer cells.PMID:37061197 | DOI:10.1016/j.jhep.2023.03.041

Natural products in digestive tract tumors metabolism: Functional and application prospects

Sat, 15/04/2023 - 12:00
Pharmacol Res. 2023 Apr 13:106766. doi: 10.1016/j.phrs.2023.106766. Online ahead of print.ABSTRACTDigestive tract diseases are presently the hotspot of clinical diagnosis and treatment, and the incidence of digestive tract tumor is increasing annually. Surgery remains the main therapeutic schedule for digestive tract tumor. Though benefits were brought by neoadjuvant chemotherapy, a part of patients lose the chance of surgery because of late detection or inappropriate intervention. Therefore, the treatment of inoperable patients has become an urgent need. At the same time, tumor metabolism is an extremely complex and diverse process. Natural products are confirmed effective to inhibit the development of tumors in vitro and in vitro. There are many kinds of natural products and their functions remain not clear. However, some natural products such as polyphenols have been proven to have definite anti-cancer effects, and some terpenoids have definite anti-inflammatory, anti-ulcer, anti-tumor, and other effects. Therefore, the anti-tumor characteristics of natural products should arouse our high attention. Although there are many obstacles to study the activities of natural products in tumor, including the difficulty in detection or distinguishing each component due to their low levels in tumor tissue, etc., the emergence of highly sensitive and locatable spatial metabolomics make the research and application of natural products a big step forward. In this review, natural products such as phenols, terpenoids and biotinoids were summarized to further discuss the development and therapeutic properties of natural metabolites on digestive tract tumors.PMID:37061144 | DOI:10.1016/j.phrs.2023.106766

Metabolic reprogramming and reliance in human skin wound healing

Sat, 15/04/2023 - 12:00
J Invest Dermatol. 2023 Apr 13:S0022-202X(23)01975-9. doi: 10.1016/j.jid.2023.02.039. Online ahead of print.ABSTRACTImpaired skin wound healing is a significant global health issue, especially among the elderly. Wound healing is a well-orchestrated process involving the sequential phases of inflammation, proliferation and tissue remodeling. Whilst wound healing is a highly dynamic and energy-requiring process, the role of metabolism remains largely unexplored. By combined transcriptomics and metabolomics of human skin biopsy samples, we mapped the core bioenergetic metabolic changes in normal acute as well as chronic wounds in elderly subjects. We found upregulation of glycolysis, tricarboxylic acid (TCA) cycle, glutaminolysis, and β-oxidation in later stages of acute wound healing and in chronic wounds. To ascertain the role of these metabolic pathways on wound healing, we targeted each pathway in a wound healing assay as well as in a human skin explant model using metabolic inhibitors and stimulants. Enhancement or inhibition of glycolysis and to a lesser extent glutaminolysis had a far greater impact on wound healing than similar manipulations of oxidative phosphorylation (OXPHOS) and fatty acid β-oxidation. These findings increase the understanding of wound metabolism and identifies glycolysis and glutaminolysis as potential targets for therapeutic intervention.PMID:37061123 | DOI:10.1016/j.jid.2023.02.039

Brain-gut microbiome profile of neuroticism predicts food addiction in obesity: A transdiagnostic approach

Sat, 15/04/2023 - 12:00
Prog Neuropsychopharmacol Biol Psychiatry. 2023 Apr 13:110768. doi: 10.1016/j.pnpbp.2023.110768. Online ahead of print.ABSTRACTNeuroticism is one of the most robust risk factors for addictive behaviors including food addiction (a key contributor to obesity), although the associated mechanisms are not well understood. A transdiagnostic approach was used to identify the neuroticism-related neuropsychological and gut metabolomic patterns associated with food addiction. Predictive modeling of neuroticism was implemented using multimodal features (23 clinical, 13,531 resting-state functional connectivity (rsFC), 336 gut metabolites) in 114 high body mass index (BMI ≥25 kg/m2) (cross-sectional) participants. Gradient boosting machine and logistic regression models were used to evaluate classification performance for food addiction. Neuroticism was significantly associated with food addiction (P < 0.001). Neuroticism-related features predicted food addiction with high performance (89% accuracy). Multimodal models performed better than single-modal models in predicting food addiction. Transdiagnostic alterations corresponded to rsFC involved in the emotion regulation, reward, and cognitive control and self-monitoring networks, and the metabolite 3-(4-hydroxyphenyl) propionate, as well as anxiety symptoms. Neuroticism moderated the relationship between BMI and food addiction. Neuroticism drives neuropsychological and gut microbial signatures implicated in dopamine synthesis and inflammation, anxiety, and food addiction. Such transdiagnostic models are essential in identifying mechanisms underlying food addiction in obesity, as it can help develop multiprong interventions to improve symptoms.PMID:37061021 | DOI:10.1016/j.pnpbp.2023.110768

Fatty acid elongases 1-3 have distinct roles in mitochondrial function, growth, and lipid homeostasis in Trypanosoma cruzi

Sat, 15/04/2023 - 12:00
J Biol Chem. 2023 Apr 13:104715. doi: 10.1016/j.jbc.2023.104715. Online ahead of print.ABSTRACTTrypanosomatids are a diverse group of uniflagellate protozoan parasites that include globally relevant pathogens such asTrypanosoma cruzi, the causative agent of Chagas disease. Trypanosomes lack the fatty acid synthase (FAS)-I system typically used for de novo fatty acid (FA) synthesis in other eukaryotes. Instead, these microbes have evolved a modular fatty acid elongase (ELO) system comprised of individual ELO enzymes (ELO1-4) that can operate processively to generate long chain- and very long chain-fatty acids. The importance of ELO's for maintaining lipid homeostasis in trypanosomatids is currently unclear, given their ability to take up and utilize exogenous fatty acids for lipid synthesis. To assess ELO function in T. cruzi, we generated individual knockout lines, Δelo1, Δelo2 and Δelo3, in which the genes encoding ELO1-3 were functionally disrupted in the parasite insect stage (epimastigote). Using unbiased lipidomic and metabolomic analyses, in combination with metabolic tracing and biochemical approaches, we demonstrate that ELO2 and ELO3 are required for global lipid homeostasis, whereas ELO1 is dispensable for this function. Instead, ELO1 activity is needed to sustain mitochondrial activity and normal growth in T. cruziepimastigotes. The cross-talk between microsomal ELO1 and the mitochondrion is a novel finding that, we propose, merits further examination of the trypanosomatid ELO pathway as critical for central metabolism.PMID:37061002 | DOI:10.1016/j.jbc.2023.104715

Graphene oxide exposure alters gut microbial community composition and metabolism in an in vitro human model

Sat, 15/04/2023 - 12:00
NanoImpact. 2023 Apr 13:100463. doi: 10.1016/j.impact.2023.100463. Online ahead of print.ABSTRACTGraphene oxide (GO) nanomaterials have unique physicochemical properties that make them highly promising for biomedical, environmental, and agricultural applications. There is growing interest in the use of GO and extensive in vitro and in vivo studies have been conducted to assess its nanotoxicity. Although it is known that GO can alter the composition of the gut microbiota in mice and zebrafish, studies on the potential impacts of GO on the human gut microbiome are largely lacking. This study addresses an important knowledge gap by investigating the impact of GO exposure- at low (25 mg/L) and high (250 mg/L) doses under both fed (nutrient rich) and fasted (nutrient deplete) conditions- on the gut microbial communitys' structure and function, using an in vitro model. This model includes simulated oral, gastric, small intestinal phase digestion of GO followed by incubation in a colon bioreactor. 16S rRNA amplicon sequencing revealed that GO exposure resulted in a restructuring of community composition. 25 mg/L GO induced a marked decrease in the Bacteroidota phylum and increased the ratio of Firmicutes to Bacteroidota (F/B). Untargeted metabolomics on the supernatants indicated that 25 mg/L GO impaired microbial utilization and metabolism of substrates (amino acids, carbohydrate metabolites) and reduced production of beneficial microbial metabolites such as 5-hydroxyindole-3-acetic acid and GABA. Exposure to 250 mg/L GO resulted in community composition and metabolome profiles that were very similar to the controls that lacked both GO and digestive enzymes. Differential abundance analyses revealed that 3 genera from the phylum Bacteroidota (Bacteroides, Dysgonomonas, and Parabacteroides) were more abundant after 250 mg/L GO exposure, irrespective of feed state. Integrative correlation network analysis indicated that the phylum Bacteroidota showed strong positive correlations to multiple microbial metabolites including GABA and 3-indoleacetic acid, are much larger number of correlations compared to other phyla. These results show that GO exposure has a significant impact on gut microbial community composition and metabolism at both low and high GO concentrations.PMID:37060994 | DOI:10.1016/j.impact.2023.100463

Targeting autophagy and lipid metabolism in cancer stem cells

Sat, 15/04/2023 - 12:00
Biochem Pharmacol. 2023 Apr 13:115550. doi: 10.1016/j.bcp.2023.115550. Online ahead of print.ABSTRACTCancer stem cells (CSCs) are a subset of cancer cells with self-renewal ability and tumor initiating properties. Unlike the other non-stem cancer cells, CSCs resist traditional therapy and remain a major cause of disease relapse. With the recent advances in metabolomics, various studies have demonstrated that CSCs have distinct metabolic properties. Metabolic reprogramming in CSCs contributes to self-renewal and maintenance of stemness. Accumulating evidence suggests that rewiring of energy metabolism is a key player that enables to meet energy demands, maintains stemness, and sustains cancer growth and invasion. CSCs use various mechanisms such as increased glycolysis, redox signaling and autophagy modulation to overcome nutritional deficiency and sustain cell survival. The alterations in lipid metabolism acquired by the CSCs support biomass production through increased dependence on fatty acid synthesis and β-oxidation and contribute to oncogenic signaling pathways. This review summarizes our current understanding of lipid metabolism in CSCs and how pharmacological regulation of autophagy and lipid metabolism influences CSC phenotype. Increased dependence on lipid metabolism appears as an attractive strategy to eliminate CSCs using therapeutic agents that specifically target CSCs based on their modulation of lipid metabolism.PMID:37060962 | DOI:10.1016/j.bcp.2023.115550

Serum steroid metabolome on the day of oocyte retrieval in women with polycystic ovarian syndrome and its association with pregnancy outcome of in vitro fertilization

Sat, 15/04/2023 - 12:00
J Steroid Biochem Mol Biol. 2023 Apr 13:106311. doi: 10.1016/j.jsbmb.2023.106311. Online ahead of print.ABSTRACTSteroid hormone level is a crucial factor affecting the outcomes of in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI). The purpose of this study was to evaluate serum steroid metabolome on the day of oocyte retrieval in women with polycystic ovarian syndrome (PCOS) and explore whether specific steroids can be potential indicators to improve the prediction of pregnancy outcomes in PCOS patients undergoing IVF/ICSI. In this study, the serum levels of 21 steroids in 89 women with PCOS and 73 control women without PCOS on the day of oocyte retrieval of the first IVF/ICSI treatment cycle were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). All patients subsequently received good-quality embryo transfer, and the correlation between their steroid profiles and pregnancy outcomes of the first embryo transfer (ET) was retrospectively analyzed. We found PCOS patients had aberrant levels of 11 out of 21 steroid hormones compared to control individuals, with androgen steroid hormones being considerably enhanced. Enzyme activity evaluation indicated that PCOS women might have abnormal activity of CYP17A1, CYP21A2, CYP11B2, CYP19A1, HSD3B, HSD11B, and HSD17B. Additionally, the level of 18-hydroxycorticosterone (p = 0.014), corticosterone (p = 0.035), and 17-hydroxypregnenolone (p = 0.005) were markedly higher in live birth group than in non- live birth group for PCOS women following frozen embryo transfer (FET). Multiple logistic regressions indicated that 18-hydrocorticosterone and 17-hydroxypregnenolone were independently associated with live birth outcomes of PCOS women following FET. Receiver operating characteristic (ROC) curve analysis revealed that 0.595ng/mL for 18-hydrocorticosterone level (AUC: 0.6936, p = 0.014).and 2.829ng/mL for 17-hydroxypregnenolone level (AUC: 0.7215, p = 0.005) were the best cutoff values to predict live birth outcomes of PCOS. In conclusion, the blood steroid metabolome was closely related to the IVF/ICSI outcomes of PCOS patients. 18-hydroxycorticosterone and 17-hydroxypregnenolone might be potential indicators to predict pregnancy outcomes of PCOS undergoing IVF/ICSI treatment. AVAILABILITY OF DATA AND MATERIALS: The data used in the current study are available from the database of Women's Hospital, School of Medicine, Zhejiang University on reasonable request.PMID:37060931 | DOI:10.1016/j.jsbmb.2023.106311

Ambiguous changes in photosynthetic parameters of Lemna minor L. after short-term exposure to naproxen and paracetamol: Can the risk be ignored?

Sat, 15/04/2023 - 12:00
Aquat Toxicol. 2023 Apr 8;259:106537. doi: 10.1016/j.aquatox.2023.106537. Online ahead of print.ABSTRACTNon-steroidal anti-inflammatory drugs (NSAID) are recently monitored in the aquatic environment. Naproxen (NPX), paracetamol (PCT) and their transformation products can influence the biochemical and physiological processes at the sub-cellular and cellular levels taking part in the growth and development of plants. This study aimed to compare the effects of NPX and PCT, drugs with different physico-chemical properties, on the growth and photosynthetic processes in Lemna minor during a short-term (7 days) exposure. Although duckweed took up more than five times higher amount of PCT as compared to NPX (275.88 µg/g dry weight to 43.22 µg/g when treated with 10 mg/L), only NPX limited the number of new plants by 9% and 26% under 1 and 10 mg/L, respectively, and increased their dry weight (by 18% under 10 mg/L) and leaf area per plant. A considerable (by 30%) drop in the content of photosynthetic pigments under 10 mg/L treatment by both drugs did not significantly affect the efficiency of the primary processes of photosynthesis. Values of induced chlorophyll fluorescence parameters (F0, FV/FM, ΦII, and NPQ) showed just a mild stimulation by PCT and a negative effect by NPX (by up to 10%), especially on the function of photosystem II and electron transport in both intact duckweed plants and isolated chloroplasts. Lowered efficiency of Hill reaction activity (by more than 10% under 0.1 - 10 mg/L treatments) in isolated chloroplasts suspension proved the only inhibition effect of PCT to primary photosynthetic processes. In intact plants, higher treatments (0.5 - 10 mg/L) by both NPX and PCT induced an increase in RuBisCO content. The results prove that the potential effect of various drugs on plants is hard to generalise.PMID:37060818 | DOI:10.1016/j.aquatox.2023.106537

Structural elucidation of 3-nitrophenylhydrazine derivatives of tricarboxylic acid cycle acids and optimization of their fragmentation to boost sensitivity in liquid chromatography-mass spectrometry

Sat, 15/04/2023 - 12:00
J Chromatogr B Analyt Technol Biomed Life Sci. 2023 Apr 11;1222:123719. doi: 10.1016/j.jchromb.2023.123719. Online ahead of print.ABSTRACTCarboxylic acids participate in many metabolic pathways including tricarboxylic acid (TCA) cycle. Therefore, there have been ongoing attempts to develop sensitive liquid chromatography-mass spectrometry methods over the last decades. Derivatization of the carboxylic acids with 3-nitrophenylhydrazine presents a well-established methodology, and yet the derivatized species of polycarboxylic acids and their fragmentation in collision-induced dissociation have not been fully studied before. In our study, we elucidated how annotation of most abundant 3-nitrophenylhydrazine derivatives and optimization of their fragmentation in multiple reaction monitoring can boost the sensitivity, especially for polycarboxylic acids. Finally, the optimized liquid chromatography-tandem mass spectrometry method allowed for low detection limits ranging from 10 pM for 2-oxoglutaric acid to 800 pM for pyruvic acid. All TCA carboxylates were quantified in 20 µL of human plasma and the targeted method was validated in the same matrix. The same methodology with a modified gradient elution was also applied to untargeted screening of fatty acids by using high-resolution mass spectrometry enabling identification of 29 medium- to long-chain fatty acids in human plasma. The TCA carboxylates were also quantified in 105 of C2C12 mouse myuotube cells grown under different treatments to proof applicability of the methodology to biological studies in a wider sense. However, unfortunately all the TCA carboxylates were also found in the derivatized blanks in substantial amounts, which prevents from using the methodology for quantification of the carboxylates in less than 105 cells.PMID:37060816 | DOI:10.1016/j.jchromb.2023.123719

Cadmium tolerance in Elodea canadensis Michx: Subcellular distribution and metabolomic analysis

Sat, 15/04/2023 - 12:00
Ecotoxicol Environ Saf. 2023 Apr 13;256:114905. doi: 10.1016/j.ecoenv.2023.114905. Online ahead of print.ABSTRACTThe aquatic plant Elodea canadensis is considered a good candidate for ecotoxicological investigations. Cadmium (Cd) is a widespread contaminant in aquatic systems. In this study, to better elucidate the underlying tolerance mechanism and molecular impact of environmentally relevant Cd concentration in aquatic plants, subcellular distribution, chemical forms, and gas chromatography-mass spectrometry-based non-targeted metabolomics profiles were comprehensively analyzed in E. canadensis subjected to 0 and 10 µM Cd treatment for 5 d. Subcellular fractionation analysis of Cd-containing leaves showed that 67% of Cd was compartmentalized in cell wall followed by the soluble fraction (24 %) and organelles (9 %). The majority of Cd (90 %) was found in the extraction using 1 M NaCl. Metabolomic analysis using unsupervised principal component analyses and a supervised partial least squares discriminant analysis revealed clear differences in metabolic profiles between the two groups, demonstrating the metabolic effects of Cd. The 155 identified compounds altered by Cd were mainly from primary metabolism, including sugars, amino acids, organic acids, and their derivatives. Secondary metabolites such as polyphenols and phenolamides were also detected. The massive up-regulation of metabolites, including trehalose, proline, sarcosine, nicotianamine, putrescine, α-ketoglutaric acid, citric acid, and phytol might represent a detoxification mechanism. These findings highlighted the mechanistic strategies that E. canadensis employs to defend against Cd toxicity.PMID:37060802 | DOI:10.1016/j.ecoenv.2023.114905

The impact of metallic nanoparticles on gut fermentation processes: An integrated metabolomics and metagenomics approach following an in vitro digestion and fecal fermentation model

Sat, 15/04/2023 - 12:00
J Hazard Mater. 2023 Mar 30;453:131331. doi: 10.1016/j.jhazmat.2023.131331. Online ahead of print.ABSTRACTMetallic nanoparticles (MNPs) are becoming widespread environmental contaminants. They are currently added to several food preparations and cause a fast-growing concern for human health. The present work aims to assess the impact of zinc oxide (ZnO), titanium dioxide (TiO2), and silver (Ag) nanoparticles (NPs) on the human gut metabolome and microbiome. Water samples spiked with two different concentrations of each MNPs were subjected to in-vitro gastrointestinal digestion and in-vitro large intestine fermentation. The effects of the treatments were determined through 16 S amplicon sequencing and untargeted metabolomics. Multi-omics data integration was then applied to correlate the two datasets. MNPs treatments modulated the microbial genera Bifidobacterium, Sutterella, Escherichia and Bacteroides. The treatments, especially the lower concentrations of Ag and ZnO, caused modulation of indole derivatives, peptides, and metabolites related to protein metabolism in the large intestine. Notably, these metabolites are implicated in ulcerative colitis and inflammatory bowel disease. TiO2 NPs treatment in all concentrations increased E.coli relative abundance and decreased the abundance of B. longum. Moreover, for TiO2, an enrichment in proinflammatory lipid mediators of arachidonic acid metabolites, such as prostaglandin E2 and leukotrienes B4, was detected. For all metals except TiO2, low NP concentrations promoted differentiated profiles, thus suggesting that MNPs aggregation can limit adverse effects on living cells.PMID:37060751 | DOI:10.1016/j.jhazmat.2023.131331

Mechanisms of Xuefu Zhuyu Decoction in the treatment of coronary heart disease based on integrated metabolomics and network pharmacology approach

Sat, 15/04/2023 - 12:00
J Chromatogr B Analyt Technol Biomed Life Sci. 2023 Apr 8;1223:123712. doi: 10.1016/j.jchromb.2023.123712. Online ahead of print.ABSTRACTCoronary heart disease (CHD) has become the leading cause of mortality, morbidity, and disability worldwide. Though the therapeutic effect of Xuefu Zhuyu Decoction (XFZY) on CHD has been demonstrated in China, the active ingredients and molecular mechanisms of XFZY have not been elucidated. The purpose of the current study is to explore the molecular mechanisms of XFZY in the treatment of CHD via network pharmacology, metabolomics, and experimental validation. First, we established a CHD rat model by permanently ligating the left anterior descending coronary artery (LAD), and evaluated the therapeutic effect of XFZY by hemorheology and histopathology. Second, network pharmacology was employed to screen the active ingredients and potential targets of XFZY for the treatment of CHD. Metabolomic was applied to identify the molecules present in the serum after XFZY treatment. Third, the results of network pharmacology and metabolomics were further analyzed by Cytoscape to elucidate the core ingredients and pathways. Finally, the obtained key pathways were verified by transmission electron microscopy and immunofluorescence assay. The results showed that XFZY was effective in the treatment of CHD in the rat model, and the highest dose exerted the best effect. Network pharmacology analysis revealed 215 active ingredients and 129 key targets associated with XFZY treatment of CHD. These targets were enriched in pathways of cancer, lipid and atherosclerosis, fluid shear stress and atherosclerosis, proteoglycans in cancer, chemical carcinogenesis - receptor activation, HIF-1 signaling, et al. Serum metabolomic identified 1081 metabolites involved in the therapeutic effect of XFZY on CHD. These metabolites were enriched in taurine and hypotaurine metabolism, histidine metabolism, retrograde endocannabinoid signaling pathways, et al. Cytoscape analysis combining the data from serum metabolomic and network pharmacology revealed that energy metabolism as the core pathway for XFZY treatment of CHD. Electron microscope observation identified changes in the level of autophagy in the mitochondrial structure of cardiomyocytes. Immunofluorescence assay showed that the expression levels of autophagy-related proteins LC3-B and P62/SQSTM1 were consistent with the levels of autophagy observed in mitochondria. In conclusion, our findings suggest that the possible mechanisms of XFZY in the treatment of CHD are reducing the level of autophagy, improving energy metabolism, and maintaining mitochondrial homeostasis in cardiomyocytes. Our study also shows that the combined strategies of network pharmacology, metabolomics, and experimental validation may provide a powerful approach for TCM pharmacology study.PMID:37060624 | DOI:10.1016/j.jchromb.2023.123712

Long term culture promotes changes to growth, gene expression, and metabolism in CHO cells that are independent of production stability

Sat, 15/04/2023 - 12:00
Biotechnol Bioeng. 2023 Apr 15. doi: 10.1002/bit.28399. Online ahead of print.ABSTRACTPhenotypic stability of Chinese hamster ovary (CHO) cells over long term culture (LTC) presents one of the most pressing challenges in the development of therapeutic protein manufacturing processess. However, our current understanding of the consequences of LTC on recombinant (r-) CHO cell lines is still limited, particularly as clonally-derived cell lines present distinct production stability phenotypes. This study evaluated changes of culture performance, global gene expression, and cell metabolism of two clonally-derived CHO cell lines with a stable or unstable phenotype during the LTC (early [EP] vs. late [LP] culture passages). Our findings indicated that LTC altered the behavior of CHO cells in culture, in terms of growth, overall gene expression, and cell metabolism. Regardless whether cells were categorized as stable or unstable in terms of r-protein production, CHO cells at LP presented an earlier decline in cell viability and loss of any observable stationary phase. These changes were parallelled by the upregulation of genes involved in cell proliferation and survival pathways (i.e., MAPK/ERK, PI3K-Akt). Stable and unstable CHO cell lines both showed increased consumption of glucose and amino acids at LP, with a parallel accumulation of greater amounts of lactate and TCA cycle intermediates. In terms of production stability, we found that decreased r-protein production in the unstable cell line directly correlated to the loss in r-gene copy number and r-mRNA expression. Our data revealed that LTC produced ubiquitious effects on CHO cell phenotypes, changes that were rooted in alterations in cell transcriptome and metabolome. Overall, we found that CHO cells adapted their cellular function to proliferation and survival during the LTC, some of these changes may well have limited effects on overall yield or specific productivity of the desired r-product, but they may be critical toward the capacity of cells to handle r-proteins with specific molecular features.PMID:37060548 | DOI:10.1002/bit.28399

Fetal effects of mild maternal COVID-19 infection: metabolomic profiling of cord blood

Sat, 15/04/2023 - 12:00
Metabolomics. 2023 Apr 15;19(4):41. doi: 10.1007/s11306-023-01988-x.ABSTRACTINTRODUCTION: The impact of maternal coronavirus disease 2019 (COVID-19) infection on fetal health remains to be precisely characterized.OBJECTIVES: Using metabolomic profiling of newborn umbilical cord blood, we aimed to investigate the potential fetal biological consequences of maternal COVID-19 infection.METHODS: Cord blood plasma samples from 23 mild COVID-19 cases (mother infected/newborn negative) and 23 gestational age-matched controls were analyzed using nuclear magnetic spectroscopy and liquid chromatography coupled with mass spectrometry. Metabolite set enrichment analysis (MSEA) was used to evaluate altered biochemical pathways due to COVID-19 intrauterine exposure. Logistic regression models were developed using metabolites to predict intrauterine exposure.RESULTS: Significant concentration differences between groups (p-value < 0.05) were observed in 19 metabolites. Elevated levels of glucocorticoids, pyruvate, lactate, purine metabolites, phenylalanine, and branched-chain amino acids of valine and isoleucine were discovered in cases while ceramide subclasses were decreased. The top metabolite model including cortisol and ceramide (d18:1/23:0) achieved an Area under the Receiver Operating Characteristics curve (95% CI) = 0.841 (0.725-0.957) for detecting fetal exposure to maternal COVID-19 infection. MSEA highlighted steroidogenesis, pyruvate metabolism, gluconeogenesis, and the Warburg effect as the major perturbed metabolic pathways (p-value < 0.05). These changes indicate fetal increased oxidative metabolism, hyperinsulinemia, and inflammatory response.CONCLUSION: We present fetal biochemical changes related to intrauterine inflammation and altered energy metabolism in cases of mild maternal COVID-19 infection despite the absence of viral infection. Elucidation of the long-term consequences of these findings is imperative considering the large number of exposures in the population.PMID:37060499 | DOI:10.1007/s11306-023-01988-x

Exploring the potential application of alternative nuclei in NMR based metabolomics

Sat, 15/04/2023 - 12:00
Metabolomics. 2023 Apr 15;19(4):42. doi: 10.1007/s11306-023-02003-z.ABSTRACTINTRODUCTION: Nuclear magnetic resonance (NMR) is widely used in metabolomics but it focusses on 1H over other NMR-active nuclei.OBJECTIVES: To evaluate the potential of alternative NMR-sensitive nuclei to generate useful metabolomic data.METHOD: Proton, carbon, phosphorus, and nitrogen-based NMR metabolomics was undertaken on extracts from mint and European honey bee tissue.RESULTS: Carbon NMR provided useful information but required larger sample sizes. Phosphorus produced overlapping peaks in one dimensional (1D) analysis but showed potential in 2D experiments. 15N NMR was found to not be sensitive enough for general metabolomic work.CONCLUSIONS: Alternative NMR active nuclei are useful for metabolomics.PMID:37060493 | DOI:10.1007/s11306-023-02003-z

Distinct metabolic signatures in blood plasma of bisphenol A-exposed women with polycystic ovarian syndrome

Sat, 15/04/2023 - 12:00
Environ Sci Pollut Res Int. 2023 Apr 15. doi: 10.1007/s11356-023-26820-w. Online ahead of print.ABSTRACTPolycystic ovarian syndrome (PCOS) is a complicated endocrinopathy with an unclear etiology that afflicts fertility status in women. Although the underlying causes and pathophysiology of PCOS are not completely understood, it is suspected to be driven by environmental factors as well as genetic and epigenetic factors. Bisphenol A (BPA) is a weak estrogenic endocrine disruptor known to cause adverse reproductive outcomes in women. A growing relevance supports the notion that BPA may contribute to PCOS pathogenesis. Due to the indeterminate molecular mechanisms of BPA in PCOS endocrinopathy, we sought liquid chromatography with tandem mass spectrometry (LC-MS/MS), a metabolomics strategy that could generate a metabolic signature based on urinary BPA levels of PCOS and healthy individuals. Towards this, we examined urinary BPA levels in PCOS and healthy women by ELISA and performed univariate and chemometric analysis to distinguish metabolic patterns among high and low BPA in PCOS and healthy females, followed by pathway and biomarker analysis employing MetaboAnalyst 5.0. Our findings indicated aberrant levels of certain steroids, sphingolipids, and others, implying considerable disturbances in steroid hormone biosynthesis, linoleic, linolenic, sphingolipid metabolism, and various other pathways across target groups in comparison to healthy women with low BPA levels. Collectively, our findings provide insight into metabolic signatures of BPA-exposed PCOS women, which can potentially improve management strategies and precision medicine.PMID:37060405 | DOI:10.1007/s11356-023-26820-w

Metabolomics of Osteoporosis in Humans: A Systematic Review

Sat, 15/04/2023 - 12:00
Curr Osteoporos Rep. 2023 Apr 15. doi: 10.1007/s11914-023-00785-8. Online ahead of print.ABSTRACTPURPOSE OF REVIEW: To systematically review recent studies investigating the association between metabolites and bone mineral density (BMD) in humans.METHODS: Using predefined keywords, we searched literature published from Jan 1, 2019 to Feb 20, 2022 in PubMed, Web of Science, Embase, and Scopus. Studies that met the predefined exclusion criteria were excluded. Among the included studies, we identified metabolites that were reported to be associated with BMD by at least three independent studies.RECENT FINDINGS: A total of 170 studies were retrieved from the databases. After excluding studies that did not meet our predefined inclusion criteria, 16 articles were used in this review. More than 400 unique metabolites in blood were shown to be significantly associated with BMD. Of these, three metabolites were reported by ≥ 3 studies, namely valine, leucine and glycine. Glycine was consistently shown to be inversely associated with BMD, while valine was consistently observed to be positively associated with BMD. Inconsistent associations with BMD was observed for leucine. With advances in metabolomics technology, an increasing number of metabolites associated with BMD have been identified. Two of these metabolites, namely valine and glycine, were consistently associated with BMD, highlighting their potential for clinical application in osteoporosis. International collaboration with a larger population to conduct clinical studies on these metabolites is warranted. On the other hand, given that metabolomics could be affected by genetics and environmental factors, whether the inconsistent association of the metabolites with BMD is due to the interaction between metabolites and genes and/or lifestyle warrants further study.PMID:37060383 | DOI:10.1007/s11914-023-00785-8

Pages