Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

MACdb: A curated knowledgebase for metabolic associations across human cancers

Fri, 07/04/2023 - 12:00
Mol Cancer Res. 2023 Apr 7:MCR-22-0909. doi: 10.1158/1541-7786.MCR-22-0909. Online ahead of print.ABSTRACTCancer is one of the leading causes of human death. As metabolomics techniques become more and more widely used in cancer research, metabolites are increasingly recognized as crucial factors in both cancer diagnosis and treatment. In this study, we developed MACdb (https://ngdc.cncb.ac.cn/macdb), a curated knowledgebase to recruit the metabolic associations between metabolites and cancers. Unlike conventional data-driven resources, MACdb integrates cancer-metabolic knowledge from extensive publications, providing high quality metabolite associations and tools to support multiple research purposes. In the current implementation, MACdb has integrated 40,710 cancer-metabolite associations, covering 267 traits from 17 categories of cancers with high incidence or mortality, based entirely on manual curation from 1,127 studies reported in 462 publications (screened from 5,153 research papers). MACdb offers intuitive browsing functions to explore associations at multi-dimensions (metabolite, trait, study, and publication), and constructs knowledge graph to provide overall landscape among cancer, trait, and metabolite. Furthermore, NameToCid (map metabolite name to PubChem Cid) and Enrichment tools are developed to help users enrich the association of metabolites with various cancer types and traits. Implications: MACdb paves an informative and practical way to evaluate cancer-metabolite associations and has a great potential to help researchers identify key predictive metabolic markers in cancers.PMID:37027007 | DOI:10.1158/1541-7786.MCR-22-0909

Loss of Chloroplast GNAT Acetyltransferases Results in Distinct Metabolic Phenotypes in Arabidopsis

Fri, 07/04/2023 - 12:00
Plant Cell Physiol. 2023 Mar 17:pcad017. doi: 10.1093/pcp/pcad017. Online ahead of print.ABSTRACTAcetylation is one of the most common chemical modifications found on a variety of molecules ranging from metabolites to proteins. Although numerous chloroplast proteins have been shown to be acetylated, the role of acetylation in the regulation of chloroplast functions has remained mainly enigmatic. The chloroplast acetylation machinery in Arabidopsis thaliana consists of eight General control non-repressible 5 (GCN5)-related N-acetyltransferase (GNAT)-family enzymes that catalyze both N-terminal and lysine acetylation of proteins. Additionally, two plastid GNATs have also been reported to be involved in the biosynthesis of melatonin. Here, we have characterized six plastid GNATs (GNAT1, GNAT2, GNAT4, GNAT6, GNAT7 and GNAT10) using a reverse genetics approach with an emphasis on the metabolomes and photosynthesis of the knock-out plants. Our results reveal the impact of GNAT enzymes on the accumulation of chloroplast-related compounds, such as oxylipins and ascorbate, and the GNAT enzymes also affect the accumulation of amino acids and their derivatives. Specifically, the amount of acetylated arginine and proline was significantly decreased in the gnat2 and gnat7 mutants, respectively, as compared to the wild-type Col-0 plants. Additionally, our results show that the loss of the GNAT enzymes results in increased accumulation of Rubisco and Rubisco activase (RCA) at the thylakoids. Nevertheless, the reallocation of Rubisco and RCA did not have consequent effects on carbon assimilation under the studied conditions. Taken together, our results show that chloroplast GNATs affect diverse aspects of plant metabolism and pave way for future research into the role of protein acetylation.PMID:37026998 | DOI:10.1093/pcp/pcad017

A multistrain probiotic increases the serum glutamine/glutamate ratio in patients with cirrhosis: a metabolomic analysis

Fri, 07/04/2023 - 12:00
Hepatol Commun. 2023 Apr 4;7(4):e0072. doi: 10.1097/HC9.0000000000000072. eCollection 2023 Apr 1.ABSTRACTTo explore the potential mechanisms underlying the effects of a probiotic in cirrhotic patients, we analyzed the blood metabolome using proton nuclear magnetic resonance (1H-NMR) spectroscopy in 32 patients with cirrhosis and cognitive dysfunction or falls. Patients were randomized to receive a multistrain probiotic or placebo for 12 weeks. Among the 54 metabolites identified, the only significant changes in the probiotic group were an increase in glutamine, a decrease in glutamate, and an increase in the glutamine/glutamate ratio. In the placebo group, glutamate increased and the glutamine/glutamate ratio decreased. Our results suggest the multistrain probiotic could influence glutamine/glutamate metabolism, increasing the capacity of ammonia detoxification.PMID:37026745 | DOI:10.1097/HC9.0000000000000072

Application of Indole-Alkaloid Harmaline Induces Physical Damage to Photosystem II Antenna Complexes in Adult Plants of <em>Arabidopsis thaliana</em> (L.) Heynh

Fri, 07/04/2023 - 12:00
J Agric Food Chem. 2023 Apr 7. doi: 10.1021/acs.jafc.3c00531. Online ahead of print.ABSTRACTFinding herbicides with new and multiple modes of action is a solution to stop the increase in resistant weed species. Harmaline, a natural alkaloid with proven phytotoxic potential, was tested on Arabidopsis adult plants by watering and spraying; watering resulted as the more effective treatment. Harmaline altered several photosynthetic parameters, reducing the efficiency of the light- (ΦII) and dark-adapted (Fv/Fm) PSII, suggesting physical damages in photosystem II, although dissipation of the energy in excess under the form of heat was not compromised as demonstrated by the significant increase in ΦNPQ. Metabolomic alterations, such as osmoprotectant accumulation and reduction in sugars' content, also indicate a reduction of photosynthetic efficiency and suggest early senescence and water status alteration induced by harmaline. Data suggest that harmaline might be considered a new phytotoxic molecule interesting for further studies.PMID:37026701 | DOI:10.1021/acs.jafc.3c00531

The DNA Damage Response and Inflammation in Cancer

Fri, 07/04/2023 - 12:00
Cancer Discov. 2023 Apr 7:OF1-OF25. doi: 10.1158/2159-8290.CD-22-1220. Online ahead of print.ABSTRACTGenomic stability in normal cells is crucial to avoid oncogenesis. Accordingly, multiple components of the DNA damage response (DDR) operate as bona fide tumor suppressor proteins by preserving genomic stability, eliciting the demise of cells with unrepairable DNA lesions, and engaging cell-extrinsic oncosuppression via immunosurveillance. That said, DDR sig-naling can also favor tumor progression and resistance to therapy. Indeed, DDR signaling in cancer cells has been consistently linked to the inhibition of tumor-targeting immune responses. Here, we discuss the complex interactions between the DDR and inflammation in the context of oncogenesis, tumor progression, and response to therapy.SIGNIFICANCE: Accumulating preclinical and clinical evidence indicates that DDR is intimately connected to the emission of immunomodulatory signals by normal and malignant cells, as part of a cell-extrinsic program to preserve organismal homeostasis. DDR-driven inflammation, however, can have diametrically opposed effects on tumor-targeting immunity. Understanding the links between the DDR and inflammation in normal and malignant cells may unlock novel immunotherapeutic paradigms to treat cancer.PMID:37026695 | DOI:10.1158/2159-8290.CD-22-1220

Metabolomics as a Diagnostic Tool

Fri, 07/04/2023 - 12:00
Am J Med Genet A. 2023 May;191(5):1141-1142. doi: 10.1002/ajmg.a.62806.NO ABSTRACTPMID:37026622 | DOI:10.1002/ajmg.a.62806

Skeletal muscle adaptation to indirect electrical stimulation: divergence between microvascular and metabolic adaptations

Fri, 07/04/2023 - 12:00
Exp Physiol. 2023 Apr 7. doi: 10.1113/EP091134. Online ahead of print.ABSTRACTNEW FINDINGS: What is the central question of this study? Can we manipulate muscle recruitment to differentially enhance skeletal muscle fatigue resistance? What is the main finding and its importance? Through manipulation of muscle activation patterns, it is possible to promote distinct microvascular growth. Enhancement of fatigue resistance is closely associated with the distribution of the capillaries within the muscle, not necessarily with quantity. Additionally, at the acute stages of remodelling in response to indirect electrical stimulation, the improvement in fatigue resistance appears to be primarily driven by vascular remodelling, with metabolic adaptation of secondary importance.ABSTRACT: Exercise involves a complex interaction of factors influencing muscle performance, where variations in recruitment pattern (e.g., endurance vs. resistance training) may differentially modulate the local tissue environment (i.e., oxygenation, blood flow, fuel utilization). These exercise stimuli are potent drivers of vascular and metabolic change. However, their relative contribution to adaptive remodelling of skeletal muscle and subsequent performance is unclear. Using implantable devices, indirect electrical stimulation (ES) of locomotor muscles of rat at different pacing frequencies (4, 10 and 40 Hz) was used to differentially recruit hindlimb blood flow and modulate fuel utilization. After 7 days, ES promoted significant remodelling of microvascular composition, increasing capillary density in the cortex of the tibialis anterior by 73%, 110% and 55% for the 4 Hz, 10 and 40 Hz groups, respectively. Additionally, there was remodelling of the whole muscle metabolome, including significantly elevated amino acid turnover, with muscle kynurenic acid levels doubled by pacing at 10 Hz (P < 0.05). Interestingly, the fatigue index of skeletal muscle was only significantly elevated in 10 Hz (58% increase) and 40 Hz (73% increase) ES groups, apparently linked to improved capillary distribution. These data demonstrate that manipulation of muscle recruitment pattern may be used to differentially expand the capillary network prior to altering the metabolome, emphasising the importance of local capillary supply in promoting exercise tolerance.PMID:37026596 | DOI:10.1113/EP091134

Metabolomics to Study Human Aging: A Review

Fri, 07/04/2023 - 12:00
Curr Mol Med. 2023 Apr 7. doi: 10.2174/1566524023666230407123727. Online ahead of print.ABSTRACTIn the last years, with the increase in the average life expectancy, the world's population is progressively aging, which entails social, health and economic problems. In this sense, the need to better understand the physiology of the aging process becomes an urgent need. Since the study of aging in humans is challenging, cellular and animal models are widely used as alternatives. Omics, namely metabolomics, have emerged in the study of aging, with the aim of biomarker discovering, which may help to uncomplicate this complex process. This paper aims to summarize different models used for aging studies with their advantages and limitations. Also, this review gathers the published articles referring to biomarkers of aging already discovered using metabolomics approaches, comparing the results obtained in the different studies. Finally, the most frequently used senescence biomarkers are described, along with their importance in understanding aging.PMID:37026499 | DOI:10.2174/1566524023666230407123727

Dried blood spots: a robust tool for malaria surveillance in countries targeting elimination

Fri, 07/04/2023 - 12:00
J Vector Borne Dis. 2023 Jan-Mar;60(1):11-17.ABSTRACTWith the advancements in analytical and molecular techniques, Dried Blood Spots (DBS) are re-emerging as attractive and cost-effective alternatives for global health surveillance. The use of DBS has been well-characterized in the neonatal screening of metabolic diseases, therapeutic screening as well as in epidemiological studies for biomonitoring. Malaria is one such infectious disease where DBS use can expedite molecular surveillance for assessing drug resistance and for refining drug usage policies. In India, malaria cases have reduced significantly over the past decade but to achieve malaria elimination by 2030, country-wide DBS-based screening should be conducted to identify the presence of molecular markers of artemisinin resistance and to study parasite reservoirs in asymptomatic populations. DBS has wide applications in genomics, proteomics, and metabolomic studies concerning both host and pathogen factors. Hence, it is a comprehensive tool for malaria surveillance that can capture both host and parasite information. In this review, we elucidate the current and prospective role of DBS in malaria surveillance and its applications in studies ranging from genetic epidemiology, parasite and vector surveillance, drug development and polymorphisms to ultimately how they can pave the roadmap for countries aiming malaria elimination.PMID:37026215

Outdoor particulate matter exposure affects metabolome in chronic obstructive pulmonary disease: Preliminary study

Fri, 07/04/2023 - 12:00
Front Public Health. 2023 Mar 21;11:1069906. doi: 10.3389/fpubh.2023.1069906. eCollection 2023.ABSTRACTINTRODUCTION: The metabolomic changes caused by airborne fine particulate matter (PM2.5) exposure in patients with chronic obstructive pulmonary disease (COPD) remain unclear. The aim of this study was to determine whether it is possible to predict PM2.5-induced acute exacerbation of COPD (AECOPD) using metabolic markers.METHODS: Thirty-eight patients with COPD diagnosed by the 2018 Global Initiative for Obstructive Lung Disease were selected and divided into high exposure and low exposure groups. Questionnaire data, clinical data, and peripheral blood data were collected from the patients. Targeted metabolomics using liquid chromatography-tandem mass spectrometry was performed on the plasma samples to investigate the metabolic differences between the two groups and its correlation with the risk of acute exacerbation.RESULTS: Metabolomic analysis identified 311 metabolites in the plasma of patients with COPD, among which 21 metabolites showed significant changes between the two groups, involving seven pathways, including glycerophospholipid, alanine, aspartate, and glutamate metabolism. Among the 21 metabolites, arginine and glycochenodeoxycholic acid were positively associated with AECOPD during the three months of follow-up, with an area under the curve of 72.50% and 67.14%, respectively.DISCUSSION: PM2.5 exposure can lead to changes in multiple metabolic pathways that contribute to the development of AECOPD, and arginine is a bridge between PM2.5 exposure and AECOPD.PMID:37026137 | PMC:PMC10070744 | DOI:10.3389/fpubh.2023.1069906

The immediate adverse drug reactions induced by ShenMai Injection are mediated by thymus-derived T cells and associated with RhoA/ROCK signaling pathway

Fri, 07/04/2023 - 12:00
Front Immunol. 2023 Mar 21;14:1135701. doi: 10.3389/fimmu.2023.1135701. eCollection 2023.ABSTRACTINTRODUCTION: The mechanism of the immediate adverse drug reactions (ADRs) induced by ShenMai injection (SMI) has not been completely elucidated. Within 30 minutes, the ears and lungs of mice injected with SMI for the first time showed edema and exudation reactions. These reactions were different from the IV hypersensitivity. The theory of pharmacological interaction with immune receptor (p-i) offered a new insight into the mechanisms of immediate ADRs induced by SMI.METHODS: In this study, we determined that the ADRs were mediated by thymus-derived T cells through the different reactions of BALB/c mice (thymus-derived T cell normal) and BALB/c nude mice (thymus-derived T cell deficient) after injecting SMI. The flow cytometric analysis, cytokine bead array (CBA) assay and untargeted metabolomics were used to explain the mechanisms of the immediate ADRs. Moreover, the activation of the RhoA/ROCK signaling pathway was detected by western blot analysis.RESULTS: In BALB/c mice, the vascular leakage and histopathology results showed the occurrence of the immediate ADRs induced by SMI. The flow cytometric analysis revealed that CD4+ T cell subsets (Th1/Th2, Th17/Treg) were imbalanced. And the levels of cytokines such as IL-2, IL-4, IL12P70 and INF-γ increased significantly. However, in BALB/c nude mice, all the indicators mentioned above have not changed significantly. The metabolic profile of both BALB/c mice and BALB/c nude mice was significantly changed after injecting SMI, and the notable increase in lysolecithin level might have a greater association with the immediate ADRs induced by SMI. The Spearman correlation analysis revealed that LysoPC (18:3(6Z,9Z,12Z)/0:0) showed a significant positive correlation with cytokines. After injecting SMI, the levels of RhoA/ROCK signaling pathway-related protein increased significantly in BALB/c mice. Protein-protein interaction (PPI) showed that the increased lysolecithin levels might be related to the activation of the RhoA/ROCK signaling pathway.DISCUSSION: Together, the results of our study revealed that the immediate ADRs induced by SMI were mediated by thymus-derived T cells, and elucidated the mechanisms of such ADRs. This study provided new insights into the underlying mechanism of immediate ADRs induced by SMI.PMID:37026017 | PMC:PMC10070857 | DOI:10.3389/fimmu.2023.1135701

Identification of common molecular signatures of SARS-CoV-2 infection and its influence on acute kidney injury and chronic kidney disease

Fri, 07/04/2023 - 12:00
Front Immunol. 2023 Mar 21;14:961642. doi: 10.3389/fimmu.2023.961642. eCollection 2023.ABSTRACTSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the main cause of COVID-19, causing hundreds of millions of confirmed cases and more than 18.2 million deaths worldwide. Acute kidney injury (AKI) is a common complication of COVID-19 that leads to an increase in mortality, especially in intensive care unit (ICU) settings, and chronic kidney disease (CKD) is a high risk factor for COVID-19 and its related mortality. However, the underlying molecular mechanisms among AKI, CKD, and COVID-19 are unclear. Therefore, transcriptome analysis was performed to examine common pathways and molecular biomarkers for AKI, CKD, and COVID-19 in an attempt to understand the association of SARS-CoV-2 infection with AKI and CKD. Three RNA-seq datasets (GSE147507, GSE1563, and GSE66494) from the GEO database were used to detect differentially expressed genes (DEGs) for COVID-19 with AKI and CKD to search for shared pathways and candidate targets. A total of 17 common DEGs were confirmed, and their biological functions and signaling pathways were characterized by enrichment analysis. MAPK signaling, the structural pathway of interleukin 1 (IL-1), and the Toll-like receptor pathway appear to be involved in the occurrence of these diseases. Hub genes identified from the protein-protein interaction (PPI) network, including DUSP6, BHLHE40, RASGRP1, and TAB2, are potential therapeutic targets in COVID-19 with AKI and CKD. Common genes and pathways may play pathogenic roles in these three diseases mainly through the activation of immune inflammation. Networks of transcription factor (TF)-gene, miRNA-gene, and gene-disease interactions from the datasets were also constructed, and key gene regulators influencing the progression of these three diseases were further identified among the DEGs. Moreover, new drug targets were predicted based on these common DEGs, and molecular docking and molecular dynamics (MD) simulations were performed. Finally, a diagnostic model of COVID-19 was established based on these common DEGs. Taken together, the molecular and signaling pathways identified in this study may be related to the mechanisms by which SARS-CoV-2 infection affects renal function. These findings are significant for the effective treatment of COVID-19 in patients with kidney diseases.PMID:37026010 | PMC:PMC10070855 | DOI:10.3389/fimmu.2023.961642

PRAME and CTCFL-reactive TCRs for the treatment of ovarian cancer

Fri, 07/04/2023 - 12:00
Front Immunol. 2023 Mar 21;14:1121973. doi: 10.3389/fimmu.2023.1121973. eCollection 2023.ABSTRACTRecurrent disease emerges in the majority of patients with ovarian cancer (OVCA). Adoptive T-cell therapies with T-cell receptors (TCRs) targeting tumor-associated antigens (TAAs) are considered promising solutions for less-immunogenic 'cold' ovarian tumors. In order to treat a broader patient population, more TCRs targeting peptides derived from different TAAs binding in various HLA class I molecules are essential. By performing a differential gene expression analysis using mRNA-seq datasets, PRAME, CTCFL and CLDN6 were selected as strictly tumor-specific TAAs, with high expression in ovarian cancer and at least 20-fold lower expression in all healthy tissues of risk. In primary OVCA patient samples and cell lines we confirmed expression and identified naturally expressed TAA-derived peptides in the HLA class I ligandome. Subsequently, high-avidity T-cell clones recognizing these peptides were isolated from the allo-HLA T-cell repertoire of healthy individuals. Three PRAME TCRs and one CTCFL TCR of the most promising T-cell clones were sequenced, and transferred to CD8+ T cells. The PRAME TCR-T cells demonstrated potent and specific antitumor reactivity in vitro and in vivo. The CTCFL TCR-T cells efficiently recognized primary patient-derived OVCA cells, and OVCA cell lines treated with demethylating agent 5-aza-2'-deoxycytidine (DAC). The identified PRAME and CTCFL TCRs are promising candidates for the treatment of patients with ovarian cancer, and are an essential addition to the currently used HLA-A*02:01 restricted PRAME TCRs. Our selection of differentially expressed genes, naturally expressed TAA peptides and potent TCRs can improve and broaden the use of T-cell therapies for patients with ovarian cancer or other PRAME or CTCFL expressing cancers.PMID:37026005 | PMC:PMC10070997 | DOI:10.3389/fimmu.2023.1121973

Seminal plasma metabolomics signatures of normosmic congenital hypogonadotropic hypogonadism

Fri, 07/04/2023 - 12:00
Heliyon. 2023 Mar 23;9(4):e14779. doi: 10.1016/j.heliyon.2023.e14779. eCollection 2023 Apr.ABSTRACTBACKGROUND: Normosmic congenital hypogonadotropic hypogonadism (nCHH) is a rare disease, whose pathogenesis remains unclear. Here, we conducted untargeted metabolomics and lipidomics to identify seminal plasma signatures of nCHH, and to study the effect of LH and FSH deficiency on semen.METHODS: Twenty-five diagnosed patients with nCHH (HH group) and twenty-three healthy participants (HC group) were enrolled. Laboratory parameters, seminal plasma samples and patients' medical data were collected. Untargeted metabolomics and lipidomic profiling were performed using mass spectrometry (MS).RESULTS: The metabolomics profiling are altered among patients with nCHH and healthy controls. There are 160 kinds of differential metabolites and the main different lipid species are TAG, PC, SM and PE.CONCLUSIONS: The metabolomics profiles in patients with nCHH changed. We hope that this work provides important insights into the pathophysiology of nCHH.PMID:37025907 | PMC:PMC10070097 | DOI:10.1016/j.heliyon.2023.e14779

Integrated transcriptomic and metabolomic analysis of cortical neurons reveals dysregulated lipid metabolism, enhanced glycolysis and activated HIF-1 signaling pathways in acute hypoxia

Fri, 07/04/2023 - 12:00
Heliyon. 2023 Mar 27;9(4):e14949. doi: 10.1016/j.heliyon.2023.e14949. eCollection 2023 Apr.ABSTRACTThe brain is the main oxygen-consuming organ and is vulnerable to ischemic shock or insufficient blood perfusion. Brain hypoxia has a persistent and detrimental effect on resident neurons. Previous studies have identified alterations in genes and metabolites in ischemic brain shock by single omics, but the adaptive systems that neurons use to cope with hypoxia remain uncovered. In the present study, we constructed an acute hypoxia model and performed a multi-omics analysis from RNA-sequencing and liquid chromatography-mass spectrometry (LC-MS)-based metabolomics on exploring potentially differentially expressed genes (DEGs) and metabolites (DEMs) in primary cortical neurons under severe acute hypoxic conditions. The TUNEL assay showed acute hypoxia-induced apoptosis in cortical neurons. Omics analysis identified 564 DEGs and 46 DEMs categorized in the Kyoto encyclopedia of genes and genomes (KEGG) database. Integrative pathway analysis highlighted that dysregulated lipid metabolism, enhanced glycolysis, and activated HIF-1 signaling pathways could regulate neuron physiology and pathophysiology under hypoxia. These findings may help us understand the transcriptional and metabolic mechanisms by which cortical neurons respond to hypoxia and identify potential targets for neuron protection.PMID:37025787 | PMC:PMC10070144 | DOI:10.1016/j.heliyon.2023.e14949

Modulation of the biological network of lumbar spinal stenosis by Tongdu Huoxue Decoction based on clinical metabolomics

Fri, 07/04/2023 - 12:00
Front Mol Biosci. 2023 Mar 21;10:1074500. doi: 10.3389/fmolb.2023.1074500. eCollection 2023.ABSTRACTObjective: To explore the clinical efficacy and metabolic mechanism of Tongdu Huoxue Decoction (THD) in treating lumbar spinal stenosis (LSS). Methods: A total of 40 LSS patients and 20 healthy participants were recruited from January 2022 to June 2022. The patients' pre- and post-treatment visual analogue scale (VAS) and Japanese Orthopaedic Association (JOA) scores were recorded. ELISA kits were used to assess pre- and post-treatment levels of serum Interleukin-1beta (IL-1β), Alpha tumour necrosis factor (TNF-α) and prostaglandin E2 (PGE2). Finally, the patients' pre- and post-treatment and healthy human sera were subjected to extensively targeted metabolomics using Ultra Performance Liquid Chromatography (UPLC) to identify potential differential metabolites and metabolic pathways using multivariate statistical analysis. Results: Compared to the pre-treatment (group A), the patients' VAS scores decreased significantly (p < 0.05), while JOA scores increased significantly (p < 0.05) post-treatment (group B), indicating that THD could effectively improve the pain and lumbar spine function of LSS patients. Moreover, THD could effectively inhibit the expression of IL-1β, TNF-α and PGE2-associated inflammatory factors in serum. Regarding metabolomics, the levels of 41 differential metabolites were significantly different in the normal group (group NC) compared to group A, and those were significantly restored after treatment with THD, including chenodeoxycholic acid 3-sulfate, taurohyodeoxycholic acid, 3,5-Dihydroxy-4-methoxybenzoic acid, pinocembrin. These biomarkers are mainly involved in purine metabolism, steroid hormone biosynthesis and amino acid metabolism. Conclusion: This clinical trial demonstrated that THD is effective in improving pain, lumbar spine function and serum levels of inflammation in patients with LSS. Moreover, its mechanism of action is related to the regulation of purine metabolism, steroid hormone biosynthesis and the expression of key biomarkers in the metabolic pathway of amino acid metabolism.PMID:37025656 | PMC:PMC10070985 | DOI:10.3389/fmolb.2023.1074500

An overview of nutritional profiling in foods: Bioanalytical techniques and useful protocols

Fri, 07/04/2023 - 12:00
Front Nutr. 2023 Mar 21;10:1124409. doi: 10.3389/fnut.2023.1124409. eCollection 2023.ABSTRACTMaintaining a nutritious diet is essential for humans if they want to live a healthier life. Several food businesses and food safety organizations play a significant role and offer useful ways for improving nutritional quality that assists consumers in making informed selections. Making poor food choices and consuming unhealthy meals are the main causes of non-communicable diseases (NCDs). Nutritional profiling (NP) models are developed to evaluate the nutritional value, calorie content, and the amount of micronutrients and macronutrients contained in a given food accompanied by additional details on the nutritional anomaly provided by published standard nutrients and nutritional databases. To construct an ideal nutritional model that can facilitate food consumption, bioanalytical methods such as chromatography, microscopic techniques, molecular assays, and metabolomics can be applied. With the use of these technologies, one can learn more about the health advantages of nutrition and how to prevent disease. A wider element of NP is also provided by the developing technologies in the area of nutrition research, such as nanotechnology, proteomics, and microarray technology. In this review, we are focusing on the different bioanalytical techniques and the various protocols of NP and their application and refinement of the models. We have evaluated various NP techniques currently used in the food industry for the detection of different components present in food items.PMID:37025612 | PMC:PMC10070841 | DOI:10.3389/fnut.2023.1124409

Integrated nontargeted and targeted metabolomics analyses amino acids metabolism in infantile hemangioma

Fri, 07/04/2023 - 12:00
Front Oncol. 2023 Mar 21;13:1132344. doi: 10.3389/fonc.2023.1132344. eCollection 2023.ABSTRACTInfantile hemangioma (IH) is the most common benign tumor in children. However, the exact pathogenesis of IH remains unclear. Integrated nontargeted and targeted metabolic analyses were performed to obtain insight into the possible pathogenic mechanism of IH. The results of nontargeted metabolic analysis showed that 216 and 128 differential metabolites (DMs) were identified between hemangioma-derived endothelial cells (HemECs) and HUVECs in positive-ion and negative-ion models, respectively. In both models, these DMs were predominantly enriched in pathways related to amino acid metabolism, including aminoacyl-tRNA biosynthesis and arginine and proline metabolism. Then, targeted metabolic analysis of amino acids was further performed to further clarify HemEC metabolism. A total of 22 amino acid metabolites were identified, among which only 16 metabolites, including glutamine, arginine and asparagine, were significantly differentially expressed between HemECs and HUVECs. These significant amino acids were significantly enriched in 10 metabolic pathways, including 'alanine, aspartate and glutamate metabolism', 'arginine biosynthesis', 'arginine and proline metabolism', and 'glycine, serine and threonine metabolism'. The results of our study revealed that amino acid metabolism is involved in IH. Key differential amino acid metabolites, including glutamine, asparagine and arginine, may play an important role in regulating HemEC metabolism.PMID:37025602 | PMC:PMC10070834 | DOI:10.3389/fonc.2023.1132344

Mass Spectrometry-Based Approaches for Clinical Biomarker Discovery in Traumatic Brain Injury

Fri, 07/04/2023 - 12:00
Curr Treat Options Neurol. 2022 Dec;24(12):605-618. doi: 10.1007/s11940-022-00742-3. Epub 2022 Sep 15.ABSTRACTPURPOSE OF REVIEW: Precision treatments to address the multifaceted pathophysiology of traumatic brain injury (TBI) are desperately needed, which has led to the intense study of fluid-based protein biomarkers in TBI. Mass Spectrometry (MS) is increasingly being applied to biomarker discovery and quantification in neurological disease to explore the proteome, allowing for more flexibility in biomarker discovery than commonly encountered antibody-based assays. In this narrative review, we will provide specific examples of how MS technology has advanced translational research in traumatic brain injury (TBI) focusing on clinical studies, and looking ahead to promising emerging applications of MS to the field of Neurocritical Care.RECENT FINDINGS: Proteomic biomarker discovery using MS technology in human subjects has included the full range of injury severity in TBI, though critically ill patients can offer more options to biofluids given the need for invasive monitoring. Blood, urine, cerebrospinal fluid, brain specimens, and cerebral extracellular fluid have all been sources for analysis. Emerging evidence suggests there are distinct proteomic profiles in radiographic TBI subtypes, and that biomarkers may be used to distinguish patients sustaining TBI from healthy controls. Metabolomics may offer a window into the perturbations of ongoing cerebral insults in critically ill patients after severe TBI.SUMMARY: Emerging MS technologies may offer biomarker discovery and validation opportunities not afforded by conventional means due to its ability to handle the complexities associated with the proteome. While MS techniques are relatively early in development in the neurosciences space, the potential applications to TBI and neurocritical care are likely to accelerate in the coming decade.PMID:37025501 | PMC:PMC10072855 | DOI:10.1007/s11940-022-00742-3

Proteomics and metabolomics profiling of meat exudate to determine the impact of postmortem aging on oxidative stability of beef muscles

Fri, 07/04/2023 - 12:00
Food Chem X. 2023 Mar 23;18:100660. doi: 10.1016/j.fochx.2023.100660. eCollection 2023 Jun 30.ABSTRACTThe objective of this study was to characterize the major proteomes and metabolites in beef exudate and determine their relationship to color and oxidative quality of beef muscles. Beef loin (LD) and tenderloin (PM) muscles were cut into sections, individually vacuum-packaged, and aged for 9, 16 and 23 days at 2 °C. Following aging, beef exudates were collected and analyzed for both proteomics and metabolomics profiles. Proteome analysis indicated clustering by muscle types, while metabolomics profiling further clustered the samples based on the aging periods. The PM exudate had a greater concentration of oxidative enzymes, while the LD exudate contained more glycolytic enzymes. Greater lipid, nucleotide, carnitine and glucoside metabolites were observed in LD and 23d exudates. HSP70 and laminin proteins, together with glucosides metabolites, were correlated to muscle oxidative stability. The results indicated that meat exudate could be a viable analytical matrix to determine changes in quality attributes of meat with aging.PMID:37025416 | PMC:PMC10070507 | DOI:10.1016/j.fochx.2023.100660

Pages