Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

OCTN2 expression and function in the Sertoli cells of testes from patients with non-obstructive azoospermia

Thu, 05/12/2024 - 12:00
J Mol Histol. 2024 Dec 5;56(1):31. doi: 10.1007/s10735-024-10298-y.ABSTRACTBACKGROUND: Among couples, male factors account for approximately 50% of infertility cases, with nonobstructive azoospermia (NOA) representing one of the most clinically common and severe categories of male infertility, affecting approximately 10-15% of patients. Currently, L-carnitine is clinically used to improve spermatogenesis by regulating Sertoli cell function. Multiple clinical trials have described the efficacy of L-carnitine in treating NOA. Notably, Sertoli cells rely on organic carnitine transporter 2 (OCTN2) for carnitine transport. However, it remains unknown whether OCTN2 expression is involved in the pathological process of NOA.OBJECTIVE: To investigate the expression and function of OCTN2 in Sertoli cells from patients with NOA.MATERIALS AND METHODS: Ten testicular tissue samples were collected, including five from a healthy group and five from a group of patients with NOA. Immunohistochemistry and immunofluorescence were used to detect the expression of OCTN2 in testicular tissue. Additionally, an Octn2-KO TM4 cell line (a mouse testicular Sertoli cell line) was constructed to explore the function of OCTN2 expression in Sertoli cells through transcriptomic sequencing, cell proliferation experiments, metabolomic analysis, and Western blot analysis.RESULTS: Compared with those of the healthy group, the immunohistochemistry results revealed a significant decrease in OCTN2 expression in the Sertoli cells of the NOA group. Further investigation through cell proliferation experiments revealed a reduction in the proliferative capacity of the Octn2-KO TM4 cell line. Transcriptomic sequencing and metabolomic data analysis revealed a decrease in autophagy in the Octn2-KO TM4 cell line. Western blot analysis subsequently verified the expression levels of autophagy-related proteins.CONCLUSION: In the Sertoli cells of NOA patients, decreased OCTN2 protein expression leads to decreased cell proliferation and autophagy abnormalities, which may play a crucial role in the spermatogenic dysfunction observed in NOA patients.PMID:39636482 | DOI:10.1007/s10735-024-10298-y

Investigation of antibacterial mode of action of omega-aminoalkoxylxanthones by NMR-based metabolomics and molecular docking

Thu, 05/12/2024 - 12:00
Metabolomics. 2024 Dec 4;21(1):2. doi: 10.1007/s11306-024-02197-w.ABSTRACTINTRODUCTION: The knowledge of the mode of action of an antimicrobial is essential for drug development and helps to fight against bacterial resistance. Thus, it is crucial to use analytical techniques to study the mechanism of action of substances that have potential to act as antibacterial agents OBJECTIVE: To use NMR-based metabolomics combined with chemometrics and molecular docking to identify the metabolic responses of Staphylococcus aureus following exposure to commercial antibiotics and some synthesized ω-aminoalkoxylxanthones.METHODS: Intracellular metabolites of S. aureus were extracted after treatment with four commercial antibiotics and three synthesized ω-aminoalkoxylxanthones. NMR spectra were obtained and 1H NMR data was analyzed using both unsupervised and supervised algorithms (PCA and PLS-DA, respectively). Docking simulations on DNA topoisomerase IV protein were also performed for the ω-aminoalkoxylxanthones.RESULTS: Through chemometric analysis, we distinguished between the control group and antibiotics with extracellular (ampicillin) and intracellular targets (kanamycin, tetracycline, and ciprofloxacin). We identified 21 metabolites, including important metabolites that differentiate the groups, such as betaine, acetamide, glutamate, lysine, alanine, isoleucine/leucine, acetate, threonine, proline, and ethanol. Regarding the xanthone-type derivatives (S6, S7 and S8), we observed a greater similarity between S7 and ciprofloxacin, which targets bacterial DNA replication. The molecular docking analysis showed high affinity of the ω-aminoalkoxylxanthones with the topoisomerase IV enzyme, as well as ciprofloxacin.CONCLUSION: NMR-based metabolomics has shown to be an effective technique to assess the metabolic profile of S. aureus after treatment with certain antimicrobial compounds, helping the investigation of their mechanism of action.PMID:39636460 | DOI:10.1007/s11306-024-02197-w

Untargeted metabolomics and lipidomics in COVID-19 patient plasma reveals disease severity biomarkers

Thu, 05/12/2024 - 12:00
Metabolomics. 2024 Dec 4;21(1):3. doi: 10.1007/s11306-024-02195-y.ABSTRACTINTRODUCTION: Coronavirus disease 2019 (COVID-19) has widely varying clinical severity. Currently, no single marker or panel of markers is considered standard of care for prediction of COVID-19 disease progression. The goal of this study is to gain mechanistic insights at the molecular level and to discover predictive biomarkers of severity of infection and outcomes among COVID-19 patients.METHOD: This cohort study (n = 76) included participants aged 16-78 years who tested positive for SARS-CoV-2 and enrolled in Memphis, TN between August 2020 to July 2022. Clinical outcomes were classified as Non-severe (n = 39) or Severe (n = 37). LC/HRMS-based untargeted metabolomics/lipidomics was conducted to examine the difference in plasma metabolome and lipidome between the two groups.RESULTS: Metabolomics data indicated that the kynurenine pathway was activated in Severe participants. Significant increases in short chain acylcarnitines, and short and medium chain acylcarnitines containing OH-FA chain in Severe vs. Non-severe group, which indicates that (1) the energy pathway switched to FA β-oxidation to maintain the host energy homeostasis and to provide energy for virus proliferation; (2) ROS status was aggravated in Severe vs. Non-severe group. Based on PLS-DA and correlation analysis to severity score, IL-6, and creatine, a biomarker panel containing glucose (pro-inflammation), ceramide and S1P (inflammation related), 4-hydroxybutyric acid (oxidative stress related), testosterone sulfate (immune related), and creatine (kidney function), was discovered. This novel biomarker panel plus IL-6 with an AUC of 0.945 provides a better indication of COVID-19 clinical outcomes than that of IL-6 alone or the three clinical biomarker panel (IL-6, glucose and creatine) with AUCs of 0.875 or 0.892.PMID:39636373 | DOI:10.1007/s11306-024-02195-y

Mechano-induced arachidonic acid metabolism promotes keratinocyte proliferation through cPLA2 activity regulation

Thu, 05/12/2024 - 12:00
FASEB J. 2024 Dec 15;38(23):e70226. doi: 10.1096/fj.202402088R.ABSTRACTMechano-induced keratinocyte hyperproliferation is reported to be associated with various skin diseases. Enhanced cell proliferation often requires the active metabolism of nutrients to produce energy. However, how keratinocytes adapt their cellular metabolism homeostasis to mechanical cues remains unclear. Here, we first found that mechanical stretched keratinocytes showed the accumulation of metabolic arachidonic acid by metabolomic analysis. Second, we found that mechanical stretch promoted keratinocyte proliferation through the activation of cytosolic calcium-dependent phospholipase A2 (cPLA2). Knockdown or inhibition of cPLA2 could reduce the release of arachidonic acid and inhibit the proliferation of stretched keratinocytes in vitro and in vivo. Third, by analyzing overlapping transcriptomes of stretched keratinocytes and arachidonic acid-stimulated keratinocytes, we identified the upregulation of hexokinase domain-containing protein 1 (HKDC1) expression, a novel gene involved in glucose metabolism, which was associated with arachidonic acid-induced keratinocyte proliferation during stretching. Our data reveal a metabolic regulation mechanism by which mechanical stretch induces keratinocyte proliferation, thereby coupling cellular metabolism to the mechanics of the cellular microenvironment. Strategies to change the metabolism process may lead to a new way to treat skin diseases that are related to biophysical forces.PMID:39636236 | DOI:10.1096/fj.202402088R

A conserved cell-pole determinant organizes proper polar flagellum formation

Thu, 05/12/2024 - 12:00
Elife. 2024 Dec 5;13:RP93004. doi: 10.7554/eLife.93004.ABSTRACTThe coordination of cell cycle progression and flagellar synthesis is a complex process in motile bacteria. In γ-proteobacteria, the localization of the flagellum to the cell pole is mediated by the SRP-type GTPase FlhF. However, the mechanism of action of FlhF, and its relationship with the cell pole landmark protein HubP remain unclear. In this study, we discovered a novel protein called FipA that is required for normal FlhF activity and function in polar flagellar synthesis. We demonstrated that membrane-localized FipA interacts with FlhF and is required for normal flagellar synthesis in Vibrio parahaemolyticus, Pseudomonas putida, and Shewanella putrefaciens, and it does so independently of the polar localization mediated by HubP. FipA exhibits a dynamic localization pattern and is present at the designated pole before flagellar synthesis begins, suggesting its role in licensing flagellar formation. This discovery provides insight into a new pathway for regulating flagellum synthesis and coordinating cellular organization in bacteria that rely on polar flagellation and FlhF-dependent localization.PMID:39636223 | DOI:10.7554/eLife.93004

Co-occurrence of direct and indirect extracellular electron transfer mechanisms during electroactive respiration in a dissimilatory sulfate reducing bacterium

Thu, 05/12/2024 - 12:00
Microbiol Spectr. 2024 Dec 5:e0122624. doi: 10.1128/spectrum.01226-24. Online ahead of print.ABSTRACTUnderstanding the extracellular electron transfer mechanisms of electroactive bacteria could help determine their potential in microbial fuel cells (MFCs) and their microbial syntrophy with redox-active minerals in natural environments. However, the mechanisms of extracellular electron transfer to electrodes by sulfate-reducing bacteria (SRB) remain underexplored. Here, we utilized double-chamber MFCs with carbon cloth electrodes to investigate the extracellular electron transfer mechanisms of Desulfovibrio vulgaris Hildenborough (DvH), a model SRB, under varying lactate and sulfate concentrations using different DvH mutants. Our MFC setup indicated that DvH can harvest electrons from lactate at the anode and transfer them to cathode, where DvH could further utilize these electrons. Patterns in current production compared with variations of electron donor/acceptor ratios in the anode and cathode suggested that attachment of DvH to the electrode and biofilm density were critical for effective electricity generation. Electron microscopy analysis of DvH biofilms indicated DvH utilized filaments that resemble pili to attach to electrodes and facilitate extracellular electron transfer from cell to cell and to the electrode. Proteomics profiling indicated that DvH adapted to electroactive respiration by presenting more pili- and flagellar-related proteins. The mutant with a deletion of the major pilus-producing gene yielded less voltage and far less attachment to both anodic and catholic electrodes, suggesting the importance of pili in extracellular electron transfer. The mutant with a deficiency in biofilm formation, however, did not eliminate current production indicating the existence of indirect extracellular electron transfer. Untargeted metabolomics profiling showed flavin-based metabolites, potential electron shuttles.IMPORTANCEWe explored the application of Desulfovibrio vulgaris Hildenborough in microbial fuel cells (MFCs) and investigated its potential extracellular electron transfer (EET) mechanism. We also conducted untargeted proteomics and metabolomics profiling, offering insights into how DvH adapts metabolically to different electron donors and acceptors. An understanding of the EET mechanism and metabolic flexibility of DvH holds promise for future uses including bioremediation or enhancing efficacy in MFCs for wastewater treatment applications.PMID:39636109 | DOI:10.1128/spectrum.01226-24

Metabolic pathways, genomic alterations, and post-translational modifications in pulmonary hypertension and cancer as therapeutic targets and biomarkers

Thu, 05/12/2024 - 12:00
Front Pharmacol. 2024 Nov 20;15:1490892. doi: 10.3389/fphar.2024.1490892. eCollection 2024.ABSTRACTBACKGROUND: Pulmonary hypertension (PH) can lead to right ventricular hypertrophy, significantly increasing mortality rates. This study aims to clarify PH-specific metabolites and their impact on genomic and post-translational modifications (PTMs) in cancer, evaluating DHA and EPA's therapeutic potential to mitigate oxidative stress and inflammation.METHODS: Data from 289,365 individuals were analyzed using Mendelian randomization to examine 1,400 metabolites' causal roles in PH. Anti-inflammatory and antioxidative effects of DHA and EPA were tested in RAW 264.7 macrophages and cancer cell lines (A549, HCT116, HepG2, LNCaP). Genomic features like CNVs, DNA methylation, tumor mutation burden (TMB), and PTMs were analyzed. DHA and EPA's effects on ROS production and cancer cell proliferation were assessed.RESULTS: We identified 57 metabolites associated with PH risk and examined key tumor-related pathways through promoter methylation analysis. DHA and EPA significantly reduced ROS levels and inflammatory markers in macrophages, inhibited the proliferation of various cancer cell lines, and decreased nuclear translocation of SUMOylated proteins during oxidative stress and inflammatory responses. These findings suggest a potential anticancer role through the modulation of stress-related nuclear signaling, as well as a regulatory function on cellular PTMs.CONCLUSION: This study elucidates metabolic and PTM changes in PH and cancer, indicating DHA and EPA's role in reducing oxidative stress and inflammation. These findings support targeting these pathways for early biomarkers and therapies, potentially improving disease management and patient outcomes.PMID:39635438 | PMC:PMC11614602 | DOI:10.3389/fphar.2024.1490892

Mulberry leaf ameliorate STZ induced diabetic rat by regulating hepatic glycometabolism and fatty acid β-oxidation

Thu, 05/12/2024 - 12:00
Front Pharmacol. 2024 Nov 20;15:1428604. doi: 10.3389/fphar.2024.1428604. eCollection 2024.ABSTRACTINTRODUCTION: Type 2 diabetes (T2D) is a metabolic disorder marked by disruptions in glucolipid metabolism, with numerous signaling pathways contributing to its progression. The liver, as the hub of glycolipid metabolism, plays a pivotal role in this context. Mulberry leaf (ML), a staple in traditional Chinese medicine, is widely utilized in the clinical management of T2D. Synthesizing existing literature with the outcomes of prior research, it has become evident that ML enhances glucose metabolism via multiple pathways.METHODS: In our study, we induced T2D in rats through a regimen of high-sugar and high-fat diet supplementation, coupled with intraperitoneal injections of streptozotocin. We subsequently administered the aqueous extract of ML to these rats and assessed its efficacy using fasting blood glucose levels and other diagnostic indicators. Further, we conducted a comprehensive analysis of the rats' liver tissues using metabolomics and proteomics to gain insights into the underlying mechanisms.RESULTS: Our findings indicate that ML not only significantly alleviated the symptoms in T2D rats but also demonstrated the capacity to lower blood glucose levels. This was achieved by modulating the glucose-lipid metabolism and amino-terminal pathways within the liver. ACSL5, Dlat, Pdhb, G6pc, Mdh2, Cs, and other key enzymes in metabolic pathways regulated by ML may be the core targets of ML treatment for T2D.DISCUSSION: Mulberry leaf ameliorate STZ induced diabetic rat by regulating hepatic glycometabolism and fatty acid β-oxidation.PMID:39635431 | PMC:PMC11614592 | DOI:10.3389/fphar.2024.1428604

Integrated multi-omics analyses combined with western blotting discovered that cis-TSG alleviated liver injury via modulating lipid metabolism

Thu, 05/12/2024 - 12:00
Front Pharmacol. 2024 Nov 20;15:1485035. doi: 10.3389/fphar.2024.1485035. eCollection 2024.ABSTRACTBackground: Polygonum multiflorum shows dual hepatoprotective and hepatotoxic effects. The bioactive components responsible for these effects are unknown. This study investigates whether cis-2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (cis-TSG), a stilbene glycoside, has hepatoprotective and/or hepatotoxic effects in a liver injury model. Methods: C57BL/6J mice were administered α-naphthylisothiocyanate (ANIT) to induce cholestasis, followed by treatment with cis-TSG. Hepatoprotective and hepatotoxic effects were assessed using serum biomarkers, liver histology, and metabolomic and lipidomic profiling. Transcriptomic analysis were conducted to explore gene expression changes associated with lipid and bile acid metabolism, inflammation, and oxidative stress. Results and Discussion: ANIT administration caused significant liver injury, evident from elevated alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and dysregulated lipid metabolism. cis-TSG treatment markedly reduced ALT and AST levels, normalized lipid profiles, and ameliorated liver damage, as seen histologically. Metabolomic and lipidomic analyses revealed that cis-TSG influenced key pathways, notably glycerophospholipid metabolism, sphingolipid metabolism, and bile acid biosynthesis. The treatment with cis-TSG increased monounsaturated and polyunsaturated fatty acids (MUFAs and PUFAs), enhancing peroxisome proliferator-activated receptor alpha (PPARα) activity. Transcriptomic data confirmed these findings, showing the downregulation of genes linked to lipid metabolism, inflammation, and oxidative stress in the cis-TSG-treated group. The findings suggest that cis-TSG has a hepatoprotective effect through modulation of lipid metabolism and PPARα activation.PMID:39635428 | PMC:PMC11614611 | DOI:10.3389/fphar.2024.1485035

Targeting gut microbiota and metabolism profiles with coated sodium butyrate to ameliorate high-energy and low-protein diet-induced intestinal barrier dysfunction in laying hens

Thu, 05/12/2024 - 12:00
Anim Nutr. 2024 Jul 27;19:104-116. doi: 10.1016/j.aninu.2024.06.006. eCollection 2024 Dec.ABSTRACTHigh energy diets are a risk factor for intestinal barrier damage. Butyrate, a major energy source for intestinal epithelial cells, has been shown to improve barrier dysfunction and modulate the gut microbiota. In this trial, we examined the preventative effect of coated sodium butyrate (CSB) on high-energy and low-protein (HELP)-induced intestinal barrier injury in laying hens, and also worked to determine the underlying mechanisms by an integrative analysis of gut microbiota and the metabolome. A total of 216 healthy 28-week-old Huafeng laying hens were randomly assigned to 3 groups with 6 replicates each: the CON group (normal diet), HELP group (HELP diet) and CH500 group (500 mg/kg CSB added to HELP diet). The duration of the trial encompassed a period of 10 weeks. The results revealed that CSB treatment improved the laying rate and mitigated the detrimental effects on intestinal barrier function and the inflammatory response induced by the HELP diet in laying hens (P < 0.05). Microbial profiling analysis revealed that the CSB treatment reshaped the HELP-perturbed gut microbiota and promoted the growth of beneficial bacteria (P < 0.05). Untargeted metabolomics analysis revealed that CSB reduced the metabolites associated with intestinal inflammation (P < 0.05). In conclusion, CSB did not merely modulate alterations in the gut microbiota composition and microbial metabolites but also yielded increased egg production, while mitigating intestinal barrier dysfunction and inflammatory responses induced by HELP in laying hens.PMID:39635416 | PMC:PMC11615920 | DOI:10.1016/j.aninu.2024.06.006

<em>Saccharomyces cerevisiae</em> and <em>Kluyveromyces marxianus</em> yeast co-cultures modulate the ruminal microbiome and metabolite availability to enhance rumen barrier function and growth performance in weaned lambs

Thu, 05/12/2024 - 12:00
Anim Nutr. 2024 Jul 18;19:139-152. doi: 10.1016/j.aninu.2024.06.005. eCollection 2024 Dec.ABSTRACTIn lambs, weaning imposes stress that can contribute to impaired rumen epithelial barrier functionality and immunological dysregulation. In this study, the effects of a yeast co-culture consisting of Saccharomyces cerevisiae and Kluyveromyces marxianus (NM) on rumen health in lambs was evaluated, with a focus on parameters including growth performance, ruminal fermentation, and epithelial barrier integrity, ruminal metabolic function, and the composition of the ruminal bacteria. In total, 24 lambs were grouped into four groups of six lambs including a control (C) group fed a basal diet, and N, M, and NM groups in which lambs were fed the basal diet respectively supplemented with S. cerevisiae yeast cultures (30 g/d per head), K. marxianus yeast cultures (30 g/d per head), and co-cultures of both yeasts (30 g/d per head), the experiment lasted for 42 d. Subsequent analyses revealed that relative to the C group, the average daily gain (ADG) of lambs in the NM group was significantly greater and exhibited significant increases in a range of mRNA relative expression including monocarboxylate transporter 1 (MCT1), (Na+)/hydrogen (H+) exchanger 1 (NHE1), (Na+)/hydrogen (H+) exchanger 3 (NHE3), proton-coupled amino acid transporter 1 (PAT1), vacuolar H+-ATPase (vH+ ATPase), claudin-1, occludin in the rumen epithelium (P < 0.05). Compared with the C group, the pH of the rumen contents in the NM group was significantly decreased , and the concentrations of acetate, propionate, and butyrate were significantly increased (P < 0.05). Analysis of the rumen bacteria showed that the NM group exhibited increases in the relative abundance of Prevotella, Treponema, Moryella, Fibrobacter, CF231 and Ruminococcus (P < 0.05). Metabolomics analyses revealed an increase in the relative content of phthalic acid and cinnamaldehyde in the NM group as compared to the C group (P < 0.05), together with the greater relative content of L-tyrosine, L-dopa, rosmarinic acid, and tyrosol generated by the tyrosine metabolic pathway (P < 0.05). Spearman's correlation analyses revealed relative abundance levels of Fibrobacter and Ruminococcus were positively correlated with the mRNA relative expression levels of PAT1, NHE3, and zonula occluden-1 (ZO-1), as well as with tyrosol, phthalic acid, and cinnamaldehyde levels (P < 0.05). Ultimately, these results suggest that dietary supplementation with NM has a wide range of beneficial effects on weaned lambs and is superior to single bacterial fermentation. These effects include improvements in daily gain and rumen epithelial barrier integrity, as well as improvements in the composition of the rumen microbiome, and alterations in tyrosine metabolic pathways.PMID:39635413 | PMC:PMC11615919 | DOI:10.1016/j.aninu.2024.06.005

Metabolomic profile of cerebral tissue after acoustically-mediated blood-brain barrier opening in a healthy rat model: a focus on the contralateral side

Thu, 05/12/2024 - 12:00
Front Mol Neurosci. 2024 Nov 20;17:1383963. doi: 10.3389/fnmol.2024.1383963. eCollection 2024.ABSTRACTMicrobubble (MB)-assisted ultrasound (US) is an innovative modality for the non-invasive, targeted, and efficient delivery of therapeutic molecules into the brain. Previously, we reported the first metabolomic signature of blood-brain barrier opening (BBBO) induced by MB-assisted US. In the present study, the neurometabolic consequences of acoustically-mediated BBBO on cerebral tissue were investigated using multimodal metabolomics approaches. Sinusoid US waves (1 MHz, peak negative pressure 0.6 MPa, burst length 10 ms, total treatment time 30 s, MB bolus dose 0.7 × 105 MBs/g) were applied on the rats' right striatum (ipsilateral side). Brain was collected and both striata were then dissected 3 h, 2 days, and 1 week after BBBO. After tissue preparation, the samples were analyzed using nuclear magnetic resonance spectrometry (NMRS) and high-performance liquid chromatography coupled to mass spectrometry (HPLC-MS). Our findings showed a slight disruption of metabolic pathways in contralateral striata of animals. Analyses of metabolic pathways indicated changes in amino acid metabolisms. In addition, tryptophan derivate dosages revealed the perturbation of a central metabolite of the kynurenine pathway (i.e., 3-hydroxy-kynurenine). In conclusion, the acoustically-mediated BBBO of the ipsilateral cerebral hemisphere induced significant change in metabolism of contralateral one.PMID:39634608 | PMC:PMC11615074 | DOI:10.3389/fnmol.2024.1383963

Metabolomics of black beans (Phaseolus vulgaris L.) during atmospheric pressure steaming and in vitro simulated digestion

Thu, 05/12/2024 - 12:00
Food Chem X. 2024 Nov 15;24:101997. doi: 10.1016/j.fochx.2024.101997. eCollection 2024 Dec 30.ABSTRACTIn the paper, metabolomics techniques based on UHPLC-QE-MS were used to study raw black beans, steaming black beans, and their in vitro digestion products. The results show that the three groups of raw black beans, atmospheric pressure-steamed black beans, and their in vitro digests comprised 922, 945, and 878 characteristic metabolites, respectively, dominated by amino acids, organic acids, polyphenols, and sugars. After screening the differential metabolites, content comparison, the content of amino acids, sugars, and phenolics in black beans was found to be increased after atmospheric steaming. During in vitro digestion, the amino acid content increased and the phenolic content decreased, with amino acid synthesis, phenolic degradation, and conversion predominating. This study provides data to support the changes in black beans metabolites during atmospheric steam processing and in vitro digestion.PMID:39634527 | PMC:PMC11615610 | DOI:10.1016/j.fochx.2024.101997

Circulating Protein and Metabolite Correlates of Histologically Confirmed Diabetic Kidney Disease

Thu, 05/12/2024 - 12:00
Kidney Med. 2024 Oct 16;6(12):100920. doi: 10.1016/j.xkme.2024.100920. eCollection 2024 Dec.ABSTRACTRATIONALE & OBJECTIVE: Diabetic kidney disease (DKD) is one of the leading causes of end-stage kidney disease globally. We aim to identify proteomic and metabolomic correlates of histologically confirmed DKD that may improve our understanding of its pathophysiology.STUDY DESIGN: A cross-sectional study.SETTING & PARTICIPANTS: A total of 434 Boston Kidney Biopsy Cohort participants.PREDICTORS: Histopathological diagnosis of DKD on biopsy.OUTCOMES: Proteins and metabolites associated with DKD.ANALYTICAL APPROACH: We performed linear regression to identify circulating proteins and metabolites associated with a histopathological diagnosis of DKD (n = 81) compared with normal or thin basement membrane (n = 27), and other kidney diseases without diabetes (n = 279). Pathway enrichment analysis was used to explore biological pathways enriched in DKD. Identified proteins were assessed for their discriminative ability in cases of DKD versus a distinct set of 48 patients with diabetes but other kidney diseases.RESULTS: After adjusting for age, sex, estimated glomerular filtration, and albuminuria levels, there were 8 proteins and 1 metabolite that differed between DKD and normal/thin basement membrane, and 84 proteins and 11 metabolites that differed between DKD and other kidney diseases without diabetes. Five proteins were significant in both comparisons: C-type mannose receptor 2, plexin-A1, plexin-D1, renin, and transmembrane glycoprotein NMB. The addition of these proteins improved discrimination over clinical variables alone of a histopathological diagnosis of DKD on biopsy among patients with diabetes (change in area under the curve 0.126; P = 0.008).LIMITATIONS: A cross-sectional approach and lack of an external validation cohort.CONCLUSIONS: Distinct proteins and biological pathways are correlated with a histopathological diagnosis of DKD.PMID:39634330 | PMC:PMC11615146 | DOI:10.1016/j.xkme.2024.100920

Polystyrene microplastics exposition on human placental explants induces time-dependent cytotoxicity, oxidative stress and metabolic alterations

Thu, 05/12/2024 - 12:00
Front Endocrinol (Lausanne). 2024 Nov 20;15:1481014. doi: 10.3389/fendo.2024.1481014. eCollection 2024.ABSTRACTINTRODUCTION: Microplastics (MPs) are environmental pollutants that pose potential risks to living organisms. MPs have been shown to accumulate in human organs, including the placenta. In this study, we investigated the biochemical impact of 5 μm polystyrene microplastics (PS-MPs) on term placental chorionic villi explants, focusing on cytotoxicity, oxidative stress, metabolic changes, and the potential for MPs to cross the placental barrier.METHODS: Term placental chorionic explants were cultured for 24 hours with varying concentrations of PS-MPs, with MTT assays used to determine the appropriate concentration for further analysis. Cytotoxicity was assessed using the lactate dehydrogenase (LDH) release assay over a period of up to 72 hours. Reactive oxygen species formation and antioxidant activity were evaluated using biochemical assays. Metabolomic profiling was performed using proton nuclear magnetic resonance (1H NMR).RESULTS: Placental explants exposed to 100 μg/mL of PS-MPs showed a significant increase in cytotoxicity over time (p < 0.01). Levels of mitochondrial and total superoxide anion (p < 0.01 and p < 0.05, respectively) and hydrogen peroxide (p < 0.001) were significantly elevated. PS-MP exposure resulted in a reduction in total sulfhydryl content (p < 0.05) and the activities of antioxidant enzymes superoxide dismutase (p < 0.01) and catalase (p < 0.05), while glutathione peroxidase activity increased (p < 0.05), and the oxidized/reduced glutathione ratio decreased (p < 0.05). Markers of oxidative damage, such as malondialdehyde and carbonylated proteins, also increased significantly (p < 0.001 and p < 0.01, respectively), confirming oxidative stress. Metabolomic analysis revealed significant differences between control and PS-MP-exposed groups, with reduced levels of alanine, formate, glutaric acid, and maltotriose after PS-MP exposure.DISCUSSION: This study demonstrates that high concentrations of PS-MPs induce time-dependent cytotoxicity, oxidative stress, and alterations in the TCA cycle, as well as in folate, amino acid, and energy metabolism. These findings highlight the need for further research to clarify the full impact of MP contamination on pregnancy and its implications for future generations.PMID:39634179 | PMC:PMC11614646 | DOI:10.3389/fendo.2024.1481014

Metabolic signatures of combined exercise and fasting: an expanded perspective on previous telomere length findings

Thu, 05/12/2024 - 12:00
Front Aging. 2024 Nov 20;5:1494095. doi: 10.3389/fragi.2024.1494095. eCollection 2024.ABSTRACTINTRODUCTION: Aging is a complex process marked by a gradual decline in physiological function and increased susceptibility to diseases. Telomere length is frequently regarded as one of the primary biomarkers of aging. Metabolic profiles are key features in longevity and have been associated with both age and age-related diseases. We previously reported an increase in the telomere length in healthy female subjects when Ramadan fasting was combined with physical training. This study aims to characterize the metabolic signature differentiating the combined effects of exercise and fasting from exercise alone and explore the correlations with the previously reported telomere length changes.METHODS: Twenty-nine young, non-obese, and healthy female subjects were previously randomized into two groups: one group followed a 4-week exercise program, while the other group followed the same 4-week exercise program but also fasted during Ramadan. Metabolic profiles were assessed pre- and post-intervention using untargeted metabolomics.RESULTS AND DISCUSSION: Our results showed a significant decrease in many lipid metabolites in the exercise-while-fasting group, particularly ceramides. Our study sheds light on the dynamic changes in lipid metabolism and its potential role in inflammation and age-related diseases, and contributes to the broader understanding of how lifestyle factors can influence cellular aging and metabolic health.PMID:39633874 | PMC:PMC11615071 | DOI:10.3389/fragi.2024.1494095

SiRCle (Signature Regulatory Clustering) model integration reveals mechanisms of phenotype regulation in renal cancer

Thu, 05/12/2024 - 12:00
Genome Med. 2024 Dec 4;16(1):144. doi: 10.1186/s13073-024-01415-3.ABSTRACTBACKGROUND: Clear cell renal cell carcinoma (ccRCC) tumours develop and progress via complex remodelling of the kidney epigenome, transcriptome, proteome and metabolome. Given the subsequent tumour and inter-patient heterogeneity, drug-based treatments report limited success, calling for multi-omics studies to extract regulatory relationships, and ultimately, to develop targeted therapies. Yet, methods for multi-omics integration to reveal mechanisms of phenotype regulation are lacking.METHODS: Here, we present SiRCle (Signature Regulatory Clustering), a method to integrate DNA methylation, RNA-seq and proteomics data at the gene level by following central dogma of biology, i.e. genetic information proceeds from DNA, to RNA, to protein. To identify regulatory clusters across the different omics layers, we group genes based on the layer where the gene's dysregulation first occurred. We combine the SiRCle clusters with a variational autoencoder (VAE) to reveal key features from omics' data for each SiRCle cluster and compare patient subpopulations in a ccRCC and a PanCan cohort.RESULTS: Applying SiRCle to a ccRCC cohort, we showed that glycolysis is upregulated by DNA hypomethylation, whilst mitochondrial enzymes and respiratory chain complexes are translationally suppressed. Additionally, we identify metabolic enzymes associated with survival along with the possible molecular driver behind the gene's perturbations. By using the VAE to integrate omics' data followed by statistical comparisons between tumour stages on the integrated space, we found a stage-dependent downregulation of proximal renal tubule genes, hinting at a loss of cellular identity in cancer cells. We also identified the regulatory layers responsible for their suppression. Lastly, we applied SiRCle to a PanCan cohort and found common signatures across ccRCC and PanCan in addition to the regulatory layer that defines tissue identity.CONCLUSIONS: Our results highlight SiRCle's ability to reveal mechanisms of phenotype regulation in cancer, both specifically in ccRCC and broadly in a PanCan context. SiRCle ranks genes according to biological features. https://github.com/ArianeMora/SiRCle_multiomics_integration .PMID:39633487 | DOI:10.1186/s13073-024-01415-3

ApoC-III proteoforms are associated with better lipid, inflammatory, and glucose profiles independent of total apoC-III

Thu, 05/12/2024 - 12:00
Cardiovasc Diabetol. 2024 Dec 4;23(1):433. doi: 10.1186/s12933-024-02531-5.ABSTRACTBACKGROUND: Apolipoprotein (apo) C-III is involved in several processes that increase triglyceride levels, inflammation, and insulin resistance. Four of its proteoforms have been the focus of several studies and have shown differential associations with cardiovascular risk biomarkers, mostly lipids. However, there are other proteoforms of apoC-III that have not yet been investigated in detail. The aim of this study was to evaluate the associations of seven apoC-III proteoforms with a comprehensive set of biomarkers, including lipid metabolism, inflammation, and glucose homeostasis.METHODS: Seven apoC-III proteoforms (apoC-III0a, apoC-III0b, apoC-III1, apoC-III1d, apoC-III2, apoC-III2d, and apoC-III0f) were measured using a mass spectrometry immunoassay in 875 participants from the cross-sectional study of the Di@bet.es cohort. The complete lipoprotein profile was obtained via the Liposcale test, and the proton nuclear magnetic resonance (1H-NMR)-assessed glycoprotein signals were also obtained as biomarkers of inflammation.RESULTS: Three proteoform ratios (apoC-III2d, apoC-III2, and apoC-III0f normalized to apoC-III1) showed protective associations with most of the cardiovascular risk biomarkers in comparison with total apoC-III in linear regression models and were negatively associated with triglycerides (β=-0.173, p < 0.001; β=-0.297, p < 0.001; β=-0.223, p = 0.002), very low-density (VLDL) particle concentration (β=-0.133, p < 0.001; β=-0.265, p < 0.001; β=-0.203, p < 0.001), GlycA (β=-0.148, p < 0.001; β=-0.263, p < 0.001; β=-0.211, p < 0.001) and homeostatic model assessment of insulin resistance (HOMA-IR) (β=-0.096, p = 0.003; β=-0.199, p < 0.001; β=-0.114, p = 0.002). These associations were partly independent of total apoC-III concentrations. Participants with high levels of these proteoforms had a lower prevalence of cardiometabolic disorders, such as type 2 diabetes (p = 0.022), obesity (p = 0.001), and metabolic syndrome (p = 0.013).CONCLUSIONS: While apoC-III is positively associated with biomarkers of cardiometabolic risk, the proportions of three apoC-III proteoforms show opposite associations, independent of total apoC-III concentrations. Measuring not only apoC-III but also the proportions of apoC-III proteoforms can provide valuable information since individuals with similar levels of total apoC-III could display opposite lipid profiles depending on the proportion of apoC-III proteoforms.PMID:39633383 | DOI:10.1186/s12933-024-02531-5

Diet and Immune Effects Trial (DIET)- a randomized, double-blinded dietary intervention study in patients with melanoma receiving immunotherapy

Thu, 05/12/2024 - 12:00
BMC Cancer. 2024 Dec 4;24(1):1493. doi: 10.1186/s12885-024-13234-1.ABSTRACTBACKGROUND: Gut microbiome modulation is a promising strategy for enhancing the response to immune checkpoint blockade (ICB). Fecal microbiota transplant studies have shown positive signals of improved outcomes in both ICB-naïve and refractory melanoma patients; however, this strategy is challenging to scale. Diet is a key determinant of the gut microbiota, and we have previously shown that (a) habitual high dietary fiber intake is associated with an improved response to ICB and (b) fiber manipulation in mice impacts antitumor immunity. We recently demonstrated the feasibility of a controlled high-fiber dietary intervention (HFDI) conducted in melanoma survivors with excellent compliance and tolerance. Building on this, we are now conducting a phase II randomized trial of HFDI versus a healthy control diet in melanoma patients receiving ICB.METHODS: This is a randomized, double-blind, fully controlled feeding study that will enroll 45 melanoma patients starting standard-of-care (SOC) ICB in three settings: adjuvant, neoadjuvant, and unresectable. Patients are randomized 2:1 to the HFDI (target fiber 50 g/day from whole foods) or healthy control diet (target fiber 20 g/day) stratified by BMI and cohort. All meals are prepared by the MD Anderson Bionutrition Core and are isocaloric and macronutrient-controlled. The intervention includes a 1-week equilibration period and then up to 11 weeks of diet intervention. Longitudinal blood, stool and tumor tissue (if available) are collected throughout the trial and at 12 weeks post intervention.DISCUSSION: This DIET study is the first fully controlled feeding study among cancer patients who are actively receiving immunotherapy. The goal of the current study is to establish the effects of dietary intervention on the structure and function of the gut microbiome in patients with melanoma treated with SOC immunotherapies. The secondary endpoints include changes in systemic and tumor immunity, changes in the metabolic profile, quality of life, symptoms, disease response and immunotherapy toxicity.TRIAL REGISTRATION: This protocol is registered with the U.S. National Institutes of Health trial registry, ClinicalTrials.gov, under the identifier NCT04645680. First posted 2020-11-27; last verified 2024-06.PMID:39633321 | DOI:10.1186/s12885-024-13234-1

Clinical spectrum and genetic variation of six patients with methylmalonic aciduria (MMA); a report from Iran

Thu, 05/12/2024 - 12:00
BMC Pediatr. 2024 Dec 4;24(1):795. doi: 10.1186/s12887-024-05291-z.ABSTRACTOBJECTIVE: Methylmalonic acidemia (MMAs) is known as a severe, complex, and lethal disorder of methylmalonate and cobalamin. The patients with MMA may have developmental, neurological, and metabolic disorders such as liver disease. Here, we aim to evaluate 6 Iranian patients suspected to MMA disorder.STUDY DESIGN: We will provide genetic results, biochemical analysis and treatment for these patients. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) and variant screening in probands by whole exome sequencing (WES) were performed.RESULTS: A total of six homozygous variants were identified, including five previously identified variants and one novel variant, in the two MMA-causing genes as follows: c.577G > C, c.290 + 69G > T, c.662T > A, c.290 + 69G > T of MMAB, and c.100dupA, c.394 C > T of MMACHC. Sanger sequencing confirmed the identified variants. Additionally, metabolomics data analysis reliably identified elevated C3 and MMA levels, as well as abnormalities in the amino acid profile, indicating the presence of pathogenic variants.CONCLUSIONS: Our findings expand the global spectrum of genotypes in MMA. While WES, combined with metabolomics and biochemical analysis, offers valuable insights for accurate diagnosis and subtyping of MMA, it is most beneficial in complex cases where clinical findings are unclear.PMID:39633313 | DOI:10.1186/s12887-024-05291-z

Pages