Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Active post-transcriptional regulation and ACLY-mediated acetyl-CoA synthesis as a pivotal target of Shuang-Huang-Sheng-Bai formula for lung adenocarcinoma treatment

Sat, 18/03/2023 - 11:00
Phytomedicine. 2023 Feb 26;113:154732. doi: 10.1016/j.phymed.2023.154732. Online ahead of print.ABSTRACTBACKGROUND: New therapeutic approaches are required to improve the outcomes of lung cancer (LC), a leading cause of cancer-related deaths worldwide. Chinese herbal medicine formulae widely used in China provide a unique opportunity for improving LC treatment, and the Shuang-Huang-Sheng-Bai (SHSB) formula is a typical example. However, the underlying mechanisms of action remains unclear.PURPOSE: This study aimed to confirm the efficacy of SHSB against lung adenocarcinoma (LUAD), which is a major histological type of LC, unveil the downstream targets of this formula, and assess the clinical relevance and biological roles of the newly identified target.METHODS: An experimental metastasis mouse model and a subcutaneous xenograft mouse model were used to evaluate the anti-cancer activity of SHSB. Multi-omics profiling of subcutaneous tumors and metabolomic profiling of sera were performed to identify downstream targets, especially the metabolic targets of SHSB. A clinical trial was conducted to verify the newly identified metabolic targets in patients. Next, the metabolites and enzymes engaged in the metabolic pathway targeted by SHSB were measured in clinical samples. Finally, routine molecular experiments were performed to decipher the biological functions of the metabolic pathways targeted by SHSB.RESULTS: Oral SHSB administration showed overt anti-LUAD efficacy as revealed by the extended overall survival of the metastasis model and impaired growth of implanted tumors in the subcutaneous xenograft model. Mechanistically, SHSB administration altered protein expression in the post-transcriptional layer and modified the metabolome of LUAD xenografts. Integrative analysis demonstrated that SHSB markedly inhibited acetyl-CoA synthesis in tumors by post-transcriptionally downregulating ATP-citrate lyase (ACLY). Consistently, our clinical trial showed that oral SHSB administration declined serum acetyl-CoA levels of patients with LC. Moreover, acetyl-CoA synthesis and ACLY expression were both augmented in clinical LUAD tissues of patients, and high intratumoral ACLY expression predicted a detrimental prognosis. Finally, we showed that ACLY-mediated acetyl-CoA synthesis is essential for LUAD cell growth by promoting G1/S transition and DNA replication.CONCLUSION: Limited downstream targets of SHSB for LC treatment have been reported in previous hypothesis-driven studies. In this study, we conducted a comprehensive multi-omics investigation and demonstrated that SHSB exerted its anti-LUAD efficacy by actively and post-transcriptionally modulating protein expression and particularly restraining ACLY-mediated acetyl-CoA synthesis.PMID:36933457 | DOI:10.1016/j.phymed.2023.154732

UPLC-QTOF-MS-based metabolomics and chemometrics studies of geographically diverse Acer truncatum leaves: A traditional herbal tea in Northern China

Sat, 18/03/2023 - 11:00
Food Chem. 2023 Mar 13;417:135873. doi: 10.1016/j.foodchem.2023.135873. Online ahead of print.ABSTRACTTraditionally in Northern China, Acer truncatum leaves (ATL) have been used as herbal tea, now consumed worldwide. Few studies have reported ATL metabolites from different areas and their correlation with the environment. Thus, metabolomic analyses were conducted on ATL collected from twelve locations throughout four environmental zones in Northern China to understand the phytochemical differences with regards to environmental conditions. Sixty-four compounds, mostly flavonoids (FLAs) and gallic acid-containing natural products (GANPs), were characterized, including 34 previously unreported constituents from A. truncatum. Twenty-two markers were useful to differentiate ATL from the four environmental zones. Humidity, temperature, and sunshine duration are the predominant factors affecting FLAs and GANPs levels. Sunshine duration was positively correlated with eriodictyol (r = 0.994, p < 0.01), and humidity negatively with epicatechin gallate (r = -0.960, p < 0.05). These findings provide insights into ATL phytochemistry, aiding cultivation of A. truncatum tea with higher potential health benefits.PMID:36933422 | DOI:10.1016/j.foodchem.2023.135873

Analysis of oil synthesis pathway in Cyperus esculentus tubers and identification of oleosin and caleosin genes

Sat, 18/03/2023 - 11:00
J Plant Physiol. 2023 Mar 7;284:153961. doi: 10.1016/j.jplph.2023.153961. Online ahead of print.ABSTRACTThe tubers of the widely distributed Cyperus esculentus are rich in oil, and therefore, the plant is considered to have a high utilization value in the vegetable oil industry. Oleosins and caleosins are lipid-associated proteins found in oil bodies of seeds; however oleosins and caleosins genes have not been identified in C. esculentus. In this study, we performed transcriptome sequencing and lipid metabolome analysis of C. esculentus tubers at four developmental stages to obtain the information on their genetic profile, expression trends, and metabolites in oil accumulation pathways. Overall, 120,881 non-redundant unigenes and 255 lipids were detected; 18 genes belonged to the acetyl-CoA carboxylase (ACC), malonyl-CoA:ACP transacylase (MCAT), β-ketoacyl-ACP synthase (KAS), and fatty acyl-ACP thioesterase (FAT) gene families involved in fatty acid biosynthesis, and 16 genes belonged to the glycerol-3-phosphate acyltransferase (GPAT), diacylglycerol acyltransferase 3 (DGAT3), phospholipid:diacylglycerol acyltransferase (PDAT), FAD2, and lysophosphatidic acid acyltransferase (LPAAT) gene families playing important roles in triacylglycerol synthesis. We also identified 9 oleosin- and 21 caleosin-encoding genes in C. esculentus tubers. These results provide detailed information on the C. esculentus transcriptional and metabolic profiles, which can be used as reference for the development of strategies to increase oil content in C. esculentus tubers.PMID:36933340 | DOI:10.1016/j.jplph.2023.153961

Forensic identification of sudden cardiac death: a new approach combining metabolomics and machine learning

Sat, 18/03/2023 - 11:00
Anal Bioanal Chem. 2023 Mar 18. doi: 10.1007/s00216-023-04651-5. Online ahead of print.ABSTRACTThe determination of sudden cardiac death (SCD) is one of the difficult tasks in the forensic practice, especially in the absence of specific morphological changes in the autopsies and histological investigations. In this study, we combined the metabolic characteristics from corpse specimens of cardiac blood and cardiac muscle to predict SCD. Firstly, ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry (UPLC-HRMS)-based untargeted metabolomics was applied to obtain the metabolomic profiles of the specimens, and 18 and 16 differential metabolites were identified in the cardiac blood and cardiac muscle from the corpses of those who died of SCD, respectively. Several possible metabolic pathways were proposed to explain these metabolic alterations, including the metabolism of energy, amino acids, and lipids. Then, we validated the capability of these combinations of differential metabolites to distinguish between SCD and non-SCD through multiple machine learning algorithms. The results showed that stacking model integrated differential metabolites featured from the specimens showed the best performance with 92.31% accuracy, 93.08% precision, 92.31% recall, 91.96% F1 score, and 0.92 AUC. Our results revealed that the SCD metabolic signature identified by metabolomics and ensemble learning in cardiac blood and cardiac muscle has potential in SCD post-mortem diagnosis and metabolic mechanism investigations.PMID:36933055 | DOI:10.1007/s00216-023-04651-5

Deciphering the mechanism of fungal pathogen-induced disease-suppressive soil

Sat, 18/03/2023 - 11:00
New Phytol. 2023 Mar 17. doi: 10.1111/nph.18886. Online ahead of print.ABSTRACTOne model of a disease-suppressive soil predicts that the confrontation of plant with a phytopathogen can lead to the recruitment and accumulation of beneficial microorganisms. However, more information is need to be deciphered regarding which beneficial microbes become enriched, and how the disease suppression is achieved. Here, we conditioned soil by continuously growing eight generations of cucumber inoculated with Fusarium oxysporum f.sp. cucumerinum in a split-root- system. Disease incidence was found to decrease gradually upon pathogen infection accompanied with higher quantity of reactive oxygen species (ROS mainly OH·) in roots and accumulation of Bacillus and Sphingomonas. These key microbes were proven to protect the cucumber from pathogen infection by inducing high ROS level in the roots through enrichment of pathways, including a two-component system, a bacterial secretion system and flagellar assembly revealed by metagenomics sequencing. Untargeted metabolomics analysis combined with in vitro application assays suggested that threonic acid and lysine were pivotal to recruit Bacillus and Sphingomonas. Collectively, our study deciphered a "cry for help" case wherein cucumber releases particular compounds to enrich beneficial microbes that raise the ROS level of host to prevent pathogen attack. More importantly, this may be one of the fundamental mechanisms underpinning disease-suppressive soil formation.PMID:36932631 | DOI:10.1111/nph.18886

HIV-1 Tat amino acid residues that influence Tat-TAR binding affinity: a scoping review

Sat, 18/03/2023 - 11:00
BMC Infect Dis. 2023 Mar 17;23(1):164. doi: 10.1186/s12879-023-08123-0.ABSTRACTHIV-1 remains a global health concern and to date, nearly 38 million people are living with HIV. The complexity of HIV-1 pathogenesis and its subsequent prevalence is influenced by several factors including the HIV-1 subtype. HIV-1 subtype variation extends to sequence variation in the amino acids of the HIV-1 viral proteins. Of particular interest is the transactivation of transcription (Tat) protein due to its key function in viral transcription. The Tat protein predominantly functions by binding to the transactivation response (TAR) RNA element to activate HIV-1 transcriptional elongation. Subtype-specific Tat protein sequence variation influences Tat-TAR binding affinity. Despite several studies investigating Tat-TAR binding, it is not clear which regions of the Tat protein and/or individual Tat amino acid residues may contribute to TAR binding affinity. We, therefore, conducted a scoping review on studies investigating Tat-TAR binding. We aimed to synthesize the published data to determine (1) the regions of the Tat protein that may be involved in TAR binding, (2) key Tat amino acids involved in TAR binding and (3) if Tat subtype-specific variation influences TAR binding. A total of thirteen studies met our inclusion criteria and the key findings were that (1) both N-terminal and C-terminal amino acids outside the basic domain (47-59) may be important in increasing Tat-TAR binding affinity, (2) substitution of the amino acids Lysine and Arginine (47-59) resulted in a reduction in binding affinity to TAR, and (3) none of the included studies have investigated Tat subtype-specific substitutions and therefore no commentary could be made regarding which subtype may have a higher Tat-TAR binding affinity. Future studies investigating Tat-TAR binding should therefore use full-length Tat proteins and compare subtype-specific variations. Studies of such a nature may help explain why we see differential pathogenesis and prevalence when comparing HIV-1 subtypes.PMID:36932337 | DOI:10.1186/s12879-023-08123-0

Dietary vitamin B12 deficiency impairs motor function and changes neuronal survival and choline metabolism after ischemic stroke in middle-aged male and female mice

Sat, 18/03/2023 - 11:00
Nutr Neurosci. 2023 Mar 17:1-10. doi: 10.1080/1028415X.2023.2188639. Online ahead of print.ABSTRACTNutrition is a modifiable risk factor for ischemic stroke. As people age their ability to absorb some nutrients decreases, a primary example is vitamin B12. Older individuals with a vitamin B12 deficiency are at a higher risk for ischemic stroke and have worse stroke outcome. However, the mechanisms through which these occur remain unknown. The aim of the study was to investigate the role of vitamin B12 deficiency in ischemic stroke outcome and mechanistic changes in a mouse model. Ten-month-old male and female mice were put on control or vitamin B12 deficient diets for 4 weeks prior to and after ischemic stroke to the sensorimotor cortex. Motor function was measured, and tissues were collected to assess potential mechanisms. All deficient mice had increased levels of total homocysteine in plasma and liver tissues. After ischemic stroke, deficient mice had impaired motor function compared to control mice. There was no difference between groups in ischemic damage volume. However, within the ischemic damage region, there was an increase in total apoptosis of male deficient mice compared to controls. Furthermore, there was an increase in neuronal survival in ischemic brain tissue of the vitamin B12 deficient mice compared to controls. Additionally, there were changes in choline metabolites in ischemic brain tissue because of a vitamin B12 deficiency. The data presented in this study confirms that a vitamin B12 deficiency worsens stroke outcome in male and female mice. The mechanisms driving this change may be a result of neuronal survival and compensation in choline metabolism within the damaged brain tissue.PMID:36932327 | DOI:10.1080/1028415X.2023.2188639

Growth substrates alter aboveground plant microbial and metabolic properties thereby influencing insect herbivore performance

Sat, 18/03/2023 - 11:00
Sci China Life Sci. 2023 Mar 14. doi: 10.1007/s11427-022-2279-5. Online ahead of print.ABSTRACTThe gut microbiome of plant-eaters is affected by the food they eat, but it is currently unclear how the plant metabolome and microbiome are influenced by the substrate the plant grows in and how this subsequently impacts the feeding behavior and gut microbiomes of insect herbivores. Here, we use Plutella xylostella caterpillars and show that the larvae prefer leaves of cabbage plants growing in a vermiculite substrate to those from plants growing in conventional soil systems. From a plant metabolomics analysis, we identified 20 plant metabolites that were related to caterpillar feeding performance. In a bioassay, the effects of these plant metabolites on insects' feeding were tested. Nitrate and compounds enriched with leaves of soilless cultivation promoted the feeding of insects, while compounds enriched with leaves of plants growing in natural soil decreased feeding. Several microbial groups (e.g., Sporolactobacillus, Haliangium) detected inside the plant correlated with caterpillar feeding performance and other microbial groups, such as Ramlibacter and Methylophilus, correlated with the gut microbiome. Our results highlight the role of growth substrates on the food metabolome and microbiome and on the feeding performance and the gut microbiome of plant feeders. It illustrates how belowground factors can influence the aboveground properties of plant-animal systems, which has important implications for plant growth and pest control.PMID:36932313 | DOI:10.1007/s11427-022-2279-5

Cardiometabolic health, diet and the gut microbiome: a meta-omics perspective

Sat, 18/03/2023 - 11:00
Nat Med. 2023 Mar 17. doi: 10.1038/s41591-023-02260-4. Online ahead of print.ABSTRACTCardiometabolic diseases have become a leading cause of morbidity and mortality globally. They have been tightly linked to microbiome taxonomic and functional composition, with diet possibly mediating some of the associations described. Both the microbiome and diet are modifiable, which opens the way for novel therapeutic strategies. High-throughput omics techniques applied on microbiome samples (meta-omics) hold the unprecedented potential to shed light on the intricate links between diet, the microbiome, the metabolome and cardiometabolic health, with a top-down approach. However, effective integration of complementary meta-omic techniques is an open challenge and their application on large cohorts is still limited. Here we review meta-omics techniques and discuss their potential in this context, highlighting recent large-scale efforts and the novel insights they provided. Finally, we look to the next decade of meta-omics research and discuss various translational and clinical pathways to improving cardiometabolic health.PMID:36932240 | DOI:10.1038/s41591-023-02260-4

Metabolomic profiling of cardiac allografts after controlled circulatory death

Fri, 17/03/2023 - 11:00
J Heart Lung Transplant. 2023 Feb 23:S1053-2498(23)01534-6. doi: 10.1016/j.healun.2023.02.1492. Online ahead of print.ABSTRACTBACKGROUND: Assessment of myocardial viability during ex situ heart perfusion (ESHP) is based on the measurement of lactate concentrations. As this provides with limited information, we sought to investigate the metabolic signature associated with donation after circulatory death (DCD) and the impact of ESHP on the myocardial metabolome.METHODS: Porcine hearts were retrieved either after warm ischemia (DCD group, N = 6); after brain-stem death (BSD group, N = 6); or without DCD nor BSD (Control group, N = 6). Hearts were perfused using normothermic oxygenated blood for 240 minutes. Plasma and myocardial samples were collected respectively every 30 and 60 minutes, and analyzed by an untargeted metabolomic approach using liquid chromatography coupled to high-resolution mass spectrometry.RESULTS: Median duration of warm ischemia was 23 minutes [19-29] in DCD animals. Lactate level within myocardial biopsies was not significantly different between groups at T0 (p = 0.281), and remained stable over the 4-hour period of ESHP. More than 300 metabolites were detected in plasma and heart biopsy samples. Compared to BSD animals, metabolomics changes involving energy and nucleotide metabolisms were observed in plasma samples of DCD animals before initiation of ESHP, whereas 2 metabolites (inosine monophosphate and methylbutyrate) exhibited concentration changes in biopsy samples. Normalization of DCD metabolic profile was remarkable after 4 hours of ESHP.CONCLUSION: A specific metabolic profile was observed in DCD hearts, mainly characterized by an increased nucleotide catabolism. DCD and BSD metabolomes proved normalized during ESHP. Complementary investigations are needed to correlate these findings to cardiac performances.PMID:36931989 | DOI:10.1016/j.healun.2023.02.1492

Systems metabolic engineering upgrades Corynebacterium glutamicum for selective high-level production of the chiral drug precursor and cell-protective extremolyte L-pipecolic acid

Fri, 17/03/2023 - 11:00
Metab Eng. 2023 Mar 15:S1096-7176(23)00047-2. doi: 10.1016/j.ymben.2023.03.006. Online ahead of print.ABSTRACTThe nonproteinogenic cyclic metabolite l-pipecolic acid is a chiral precursor for the synthesis of various commercial drugs and functions as a cell-protective extremolyte and mediator of defense in plants, enabling high-value applications in the pharmaceutical, medical, cosmetic, and agrochemical markets. To date, the production of the compound is unfavorably fossil-based. Here, we upgraded the strain Corynebacterium glutamicum for l-pipecolic acid production using systems metabolic engineering. Heterologous expression of the l-lysine 6-dehydrogenase pathway, apparently the best route to be used in the microbe, yielded a family of strains that enabled successful de novo synthesis from glucose but approached a limit of performance at a yield of 0.18 mol mol-1. Detailed analysis of the producers at the transcriptome, proteome, and metabolome levels revealed that the requirements of the introduced route were largely incompatible with the cellular environment, which could not be overcome after several further rounds of metabolic engineering. Based on the gained knowledge, we based the strain design on l-l-lysine 6-aminotransferase instead, which enabled a substantially higher in vivo flux toward l-pipecolic acid. The tailormade producer C. glutamicum PIA-7 formed l-pipecolic acid up to a yield of 562 mmol mol-1, representing 75% of the theoretical maximum. Ultimately, the advanced mutant PIA-10B achieved a titer of 93 g L-1 in a fed-batch process on glucose, outperforming all previous efforts to synthesize this valuable molecule de novo and even approaching the level of biotransformation from l-lysine. Notably, the use of C. glutamicum allows the safe production of GRAS-designated l-pipecolic acid, providing extra benefit toward addressing the high-value pharmaceutical, medical, and cosmetic markets. In summary, our development sets a milestone toward the commercialization of biobased l-pipecolic acid.PMID:36931556 | DOI:10.1016/j.ymben.2023.03.006

Ethanol extract of propolis regulates type 2 diabetes in mice via metabolism and gut microbiota

Fri, 17/03/2023 - 11:00
J Ethnopharmacol. 2023 Mar 15:116385. doi: 10.1016/j.jep.2023.116385. Online ahead of print.ABSTRACTETHNOPHARMACOLOGICAL RELEVANCE: Propolis is a traditional natural medicine with various activities such as antioxidant and anti-inflammatory, immunomodulatory, anti-tumour, gastroenteritis treatment and prevention, anti-microbial and parasitic, as well as glucose regulation and anti-diabetes, and is expected to be an anti-diabetic candidate with few side effects, but the mechanism of action of propolis on type 2 diabetes mellitus (T2DM) has not been fully elucidated.AIM OF THE STUDY: The purpose of this study was to investigate the mechanism of the effect of ethanol extract of propolis (EEP) on the regulation of blood glucose in T2DM mice.MATERIALS AND METHODS: We studied the possible mechanism of EEP on T2DM using an animal model of T2DM induced by a combination of a high-fat diet and intraperitoneal injection of streptozotocin (STZ). The experiment was divided into four groups, namely, the normal group (HC), model group (T2DM), EEP and metformin group (MET). Biochemical indexes and cytokines were measured, and the differences of metabolites in the serum were compared by 1H-NMR. In addition, the diversity of intestinal flora in feces was studied by 16S rDNA amplicon sequencing.RESULTS: The results showed that following treatment with EEP and MET, the weight-loss trend of mice was alleviated, and the fasting blood glucose, insulin secretion level, insulin resistance index, C peptide level and oral glucose tolerance level decreased, whereas the insulin sensitivity index increased, thereby EEP effectively alleviated the occurrence of T2DM and insulin resistance. Compared with the T2DM group, the concentrations of pro-inflammatory cytokines interleukin-1 beta (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) decreased significantly in EEP and MET groups, whereas the concentrations of anti-inflammatory cytokine interleukin-10 (IL-10) increased significantly. Metabolomics results revealed that EEP and MET regulate carbohydrate metabolism and restore amino acid and lipid metabolism. Correlation analysis of intestinal flora in mouse feces showed that compared with the HC group, harmful bacteria such as Bilophila, Eubacterium_ventriosum_group, Mucispirillum and Desulfovibrio were found in the T2DM group, whereas the abundance of beneficial bacteria such as Lactobacillus was significantly reduced. Parabacteroides, Akkermansia, Leuconostoc, and Alloprevotella were abundantly present in the EEP group; however, the MET group showed an increase in the genus Parasutterella, which could regulate energy metabolism and insulin sensitivity.CONCLUSIONS: The results showed that EEP and MET reduce fasting blood glucose in T2DM mice, followed by alleviating insulin resistance, improving the inflammatory reaction of mice, regulating the metabolism of mice, and affecting the steady state of gut microbiota. However, the overall therapeutic effect of EEP is better than that of MET.PMID:36931413 | DOI:10.1016/j.jep.2023.116385

Immunometabolomics provides a new perspective for studying systemic lupus erythematosus

Fri, 17/03/2023 - 11:00
Int Immunopharmacol. 2023 Mar 15;118:109946. doi: 10.1016/j.intimp.2023.109946. Online ahead of print.ABSTRACTSystemic lupus erythematosus (SLE) is a chronic multi-organ autoimmune disease characterized by clinical heterogeneity, unpredictable progression, and flare ups. Due to the heterogeneous nature of lupus, it has been challenging to identify sensitive and specific biomarkers for its diagnosis and monitoring. Despite the fact that the mechanism of SLE remains unknown, impressive progress has been made over the last decade towards understanding how different immune cells contribute to its pathogenesis. Research suggests that cellular metabolic programs could affect the immune response by regulating the activation, proliferation, and differentiation of innate and adaptive immune cells. Many studies have shown that the dysregulation of the immune system is associated with changes to metabolite profiles. The study of metabolite profiling may provide a means for mechanism exploration and novel biomarker discovery for disease diagnostic, classification, and monitoring. Here we review the latest advancements in understanding the role of immunometabolism in SLE, as well as the systemic metabolite profiling of this disease along with possible clinical application.PMID:36931174 | DOI:10.1016/j.intimp.2023.109946

Evaluation of different blackcurrant seed ingredients in meatballs by using conventional quality assessment and untargeted metabolomics

Fri, 17/03/2023 - 11:00
Meat Sci. 2023 Mar 10;200:109160. doi: 10.1016/j.meatsci.2023.109160. Online ahead of print.ABSTRACTBlackcurrants are sources of phenolic compounds, such as anthocyanins, possessing strong antioxidant, antimicrobial and antifungal activity. Therefore, the addition of different blackcurrant pomace ingredients may affect the overall meat quality. The actual chemical profile and bioactivities of blackcurrant pomace ingredients may strongly depend on its preparation; for instance, in our study the highest values of the in vitro antioxidant capacity were determined for blackcurrant seeds after supercritical CO2 extraction. Starting from these background conditions, in this work, we evaluated the ability of three different concentrations (namely 1, 3, and 5% w/w) of blackcurrant (BC) seeds following EtOH/water extraction (BC-AE), before supercritical fluid CO2 extraction (BC-RS), and after supercritical fluid CO2 extraction (BC-ASC) to affect different quality parameters of pork meatballs. These latter were stored considering three different time-points, namely 1, 3 and 6 days at 4 °C packed under modified atmosphere (i.e., 70% N2 and 30% CO2). Untargeted metabolomics allowed to identify several lipid and protein-related oxidation products involved in redox reactions, such as 13-L-hydroperoxylinoleic acid, (12S,13S)-epoxylinolenic acid, 9,10-epoxyoctadecenoic acid, glutathione, glutathione disulfide, L-carnosine, l-ascorbic acid, and tocotrienols. Besides, multivariate statistics applied on the metabolomics dataset confirmed that the chemical profile of meatballs was an exclusive combination of both BC inclusion levels and type of BC-ingredients considered. Our findings showed that the higher the concentration of BC seed ingredients in meatballs, the lower the cooking loss and the higher the fibre content. Also, all the ingredients significantly affected the colour parameters.PMID:36931151 | DOI:10.1016/j.meatsci.2023.109160

HPLC-MS-based untargeted metabolomic analysis of differential plasma metabolites and their associated metabolic pathways in reproductively anosmic black porgy, Acanthopagrus schlegelii

Fri, 17/03/2023 - 11:00
Comp Biochem Physiol Part D Genomics Proteomics. 2023 Mar 11;46:101071. doi: 10.1016/j.cbd.2023.101071. Online ahead of print.ABSTRACTOlfaction, a universal form of chemical communication, is a powerful channel for animals to obtain social and environmental cues. The mechanisms by which fish olfaction affects reproduction, breeding and disease control are not yet clear. To evaluate metabolites profiles, plasma from anosmic and control black porgy during reproduction was analyzed by non-targeted metabolomics using ultra high-performance liquid chromatography-mass spectrometry and multivariate statistical analysis techniques, including principal component analysis and orthogonal partial least squares discriminant analysis. The metabolite profiles of anosmia and control groups were found to be significantly separated. Ten different differential metabolites, mainly including amino acids, such as isoleucine and methionine, and lipids, such as phosphatidylserine, were screened based on the combined analysis of variable importance in the projection and p values. In addition, six key differential metabolic pathways were analyzed using the Kyoto Encyclopedia of Genes and Genomes and enriched for four metabolic pathways including the citrate acid (TCA) cycle, tyrosine metabolism, arginine and proline metabolism, and arginine synthesis. The TCA cycle enhances fertility through the reduction of pyruvate kinase, and intermediate derivatives (acetyl CoA, malonyl CoA) act as signaling factors that regulate immune cell function. The tyrosine cycle can indirectly participate and promote reproduction in black porgy through melanin-concentrating hormone. Arginine and proline metabolism can promote reproduction by promoting growth hormone and enhance immunity in anosmic black porgy by stimulating T lymphocytes. Our metabolomic study revealed that anosmia in black porgy played an active role in immunity and reproduction and provided theoretical support for breeding and disease control.PMID:36931130 | DOI:10.1016/j.cbd.2023.101071

The lipidomic and inflammatory profiles of visceral and subcutaneous adipose tissues are distinctly regulated by the SGLT2 inhibitor empagliflozin in Zucker diabetic fatty rats

Fri, 17/03/2023 - 11:00
Biomed Pharmacother. 2023 Mar 15;161:114535. doi: 10.1016/j.biopha.2023.114535. Online ahead of print.ABSTRACTThe pharmacological inhibition of sodium-glucose cotransporter 2 (SGLT2) has emerged as a treatment for patients with type 2 diabetes mellitus (T2DM), cardiovascular disease and/or other metabolic disturbances, although some of the mechanisms implicated in their beneficial effects are unknown. The SGLT2 inhibitor (SGLT2i) empagliflozin has been suggested as a regulator of adiposity, energy metabolism, and systemic inflammation in adipose tissue. The aim of our study was to evaluate the impact of a 6-week-empagliflozin treatment on the lipidome of visceral (VAT) and subcutaneous adipose tissue (SAT) from diabetic obese Zucker Diabetic Fatty (ZDF) rats using an untargeted metabolomics approach. We found that empagliflozin increases the content of diglycerides and oxidized fatty acids (FA) in VAT, while in SAT, it decreases the levels of several lysophospholipids and increases 2 phosphatidylcholines. Empagliflozin also reduces the expression of the cytokines interleukin-1 beta (IL-1β), IL-6, tumor necrosis factor-alpha (TNFα), monocyte-chemotactic protein-1 (MCP-1) and IL-10, and of Cd86 and Cd163 M1 and M2 macrophage markers in VAT, with no changes in SAT, except for a decrease in IL-1β. Empagliflozin treatment also shows an effect on lipolysis increasing the expression of hormone-sensitive lipase (HSL) in SAT and VAT and of adipose triglyceride lipase (ATGL) in VAT, together with a decrease in the adipose content of the FA transporter cluster of differentiation 36 (CD36). In conclusion, our data highlighted differences in the VAT and SAT lipidomes, inflammatory profiles and lipolytic function, which suggest a distinct metabolism of these two white adipose tissue depots after the empagliflozin treatment.PMID:36931025 | DOI:10.1016/j.biopha.2023.114535

The inhibition effects of chlorogenic acid on the formation of colored oxidation products of (-)-epigallocatechin gallate under enzymatic oxidation

Fri, 17/03/2023 - 11:00
Food Chem. 2023 Mar 15;417:135895. doi: 10.1016/j.foodchem.2023.135895. Online ahead of print.ABSTRACTUntargeted Liquid chromatography tandem mass spectrometry (LC-MS) based metabolomics in combination with UV-visible and colorimeter was applied in identifying critical colored enzymatically oxidized products of (-)-epigallocatechin gallate (EGCG). Pearson correlation coefficient analysis between marker compounds and a* value was conducted, and then a series of colored oxidation products were targeted and subsequently identified by diode array detection and mass fragmentation ions. The quinone of oolongtheanin 3-O'-gallate degraded product with quasi-molecular mass ion at m/z 711 was identified as a critical colored oxidation product of single EGCG. To explore the effect of chlorogenic acid on the formation of colored EGCG enzymatic oxidation products, the variation of oxidation products on the oolongtheanin pathway was semi-quantitatively determined. The result showed chlorogenic acid significantly inhibited the formation of colored oxidation products, thus lightened the color of EGCG oxidation mixture. The addition of chlorogenic acid influences the process of tea polyphenols' enzymatic oxidation.PMID:36931012 | DOI:10.1016/j.foodchem.2023.135895

Using an In-Sample Addition of Medronic Acid for the Analysis of Purine- and Pyrimidine-Related Derivatives and Its Application in the Study of Lung Adenocarcinoma A549 Cell Lines by LC-MS/MS

Fri, 17/03/2023 - 11:00
J Proteome Res. 2023 Mar 17. doi: 10.1021/acs.jproteome.2c00736. Online ahead of print.ABSTRACTIntracellular purine- and pyrimidine-related derivatives are vital molecules for preserving genetic information and are essential for cellular bioenergetics and signal transduction. This study developed a practical liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for quantifying intracellular purine- and pyrimidine-related derivatives. To solve the distorted peak shape related to di- and triphosphate nucleotides, in-sample addition of medronic acid and ammonium phosphate was performed. Using the BEH-amide column, the results showed that adding 0.5 mM medronic acid to the sample significantly improved the peak shape without causing an obvious ion suppressive effect. Method validation confirmed that the coefficients of determination (R2) values for linearity evaluation were above 0.94 for all analytes. The intraday and interday accuracies ranged from 85.1 to 128.4%, with the precision below 16.6%. The validated method was successfully applied in characterizing the alterations of purine- and pyrimidine-related derivatives in the A549 cell line with perturbed mitochondrial fission or blockade of the electron transport chain. Collectively, this study demonstrates that the strategy of in-sample medronic acid addition is effective in improving the quantification of intracellular purine- and pyrimidine-related derivatives. We believe that our proposed platform can facilitate the development of novel drugs targeting purine and pyrimidine metabolism in the future.PMID:36930966 | DOI:10.1021/acs.jproteome.2c00736

The impact of hyperglycemia upon BeWo trophoblast cell metabolic function: A multi-OMICS and functional metabolic analysis

Fri, 17/03/2023 - 11:00
PLoS One. 2023 Mar 17;18(3):e0283118. doi: 10.1371/journal.pone.0283118. eCollection 2023.ABSTRACTPre-existing and gestationally-developed diabetes mellitus have been linked with impairments in placental villous trophoblast cell metabolic function, that are thought to underlie the development of metabolic diseases early in the lives of the exposed offspring. Previous research using placental cell lines and ex vivo trophoblast preparations have highlighted hyperglycemia is an important independent regulator of placental function. However, it is poorly understood if hyperglycemia directly influences aspects of placental metabolic function, including nutrient storage and mitochondrial respiration, that are altered in term diabetic placentae. The current study examined metabolic and mitochondrial function as well as nutrient storage in both undifferentiated cytotrophoblast and differentiated syncytiotrophoblast BeWo cells cultured under hyperglycemia conditions (25 mM glucose) for 72 hours to further characterize the direct impacts of placental hyperglycemic exposure. Hyperglycemic-exposed BeWo trophoblasts displayed increased glycogen and triglyceride nutrient stores, but real-time functional readouts of metabolic enzyme activity and mitochondrial respiratory activity were not altered. However, specific investigation into mitochondrial dynamics highlighted increased expression of markers associated with mitochondrial fission that could indicate high glucose-exposed trophoblasts are transitioning towards mitochondrial dysfunction. To further characterize the impacts of independent hyperglycemia, the current study subsequently utilized a multi-omics approach and evaluated the transcriptomic and metabolomic signatures of BeWo cytotrophoblasts. BeWo cytotrophoblasts exposed to hyperglycemia displayed increased mRNA expression of ACSL1, HSD11B2, RPS6KA5, and LAP3 and reduced mRNA expression of CYP2F1, and HK2, concomitant with increased levels of: lactate, malonate, and riboflavin metabolites. These changes highlighted important underlying alterations to glucose, glutathione, fatty acid, and glucocorticoid metabolism in BeWo trophoblasts exposed to hyperglycemia. Overall, these results demonstrate that hyperglycemia is an important independent regulator of key areas of placental metabolism, nutrient storage, and mitochondrial function, and these data continue to expand our knowledge on mechanisms governing the development of placental dysfunction.PMID:36930661 | DOI:10.1371/journal.pone.0283118

Plant and microbial sciences as key drivers in the development of metabolomics research

Fri, 17/03/2023 - 11:00
Proc Natl Acad Sci U S A. 2023 Mar 21;120(12):e2217383120. doi: 10.1073/pnas.2217383120. Epub 2023 Mar 17.ABSTRACTThis year marks the 25th anniversary of the coinage of the term metabolome [S. G. Oliver et al., Trends Biotech. 16, 373-378 (1998)]. As the field rapidly advances, it is important to take stock of the progress which has been made to best inform the disciplines future. While a medical-centric perspective on metabolomics has recently been published [M. Giera et al., Cell Metab. 34, 21-34 (2022)], this largely ignores the pioneering contributions made by the plant and microbial science communities. In this perspective, we provide a contemporary overview of all fields in which metabolomics is employed with particular emphasis on both methodological and application breakthroughs made in plant and microbial sciences that have shaped this evolving research discipline from the very early days of its establishment. This will not cover all types of metabolomics assays currently employed but will focus mainly on those utilizing mass spectrometry-based measurements since they are currently by far the most prominent. Having established the historical context of metabolomics, we will address the key challenges currently facing metabolomics and offer potential approaches by which these can be faced. Most salient among these is the fact that the vast majority of mass features are as yet not annotated with high confidence; what we may refer to as definitive identification. We discuss the potential of both standard compound libraries and artificial intelligence technologies to address this challenge and the use of natural variance-based approaches such as genome-wide association studies in attempt to assign specific functions to the myriad of structurally similar and complex specialized metabolites. We conclude by stating our contention that as these challenges are epic and that they will need far greater cooperative efforts from biologists, chemists, and computer scientists with an interest in all kingdoms of life than have been made to date. Ultimately, a better linkage of metabolome and genome data will likely also be needed particularly considering the Earth BioGenome Project.PMID:36930598 | DOI:10.1073/pnas.2217383120

Pages