PubMed
Revealing the role of gut microbiota in immune regulation and organ damage in sepsis using 16s rRNA and untargeted metabolomics
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2023 Sep;35(9):927-932. doi: 10.3760/cma.j.cn121430-20230517-00378.ABSTRACTOBJECTIVE: To analyze the composition and metabolites of gut microbiota in septic rats by fecal 16s rRNA sequencing and untargeted metabolomics, and to preliminarily explore the effect and potential mechanism of gut microbiota and its metabolites on inflammatory response and multiple organ damage in sepsis.METHODS: Ten males healthy male Wistar rats were randomly divided into a sham operated group (Sham group) and sepsis model group (CLP group) using a random number table method, with 5 rats in each group. A rat sepsis model was established by cecal ligation and perforation (CLP) method. The animals were sacrificed 24 hours after modeling, the levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in peripheral blood were detected by enzyme-linked immunosorbent assay (ELISA). Hematoxylin-eosin (HE) staining was used to observe the pathological changes of lung and kidney tissues, and the pathological scores were evaluated. Fecal samples were collected, and 16s rRNA high-throughput sequencing and non-targeted metabolomics were used to screen microbiota, metabolites and potential signal pathways that may play an important role in disease outcomes. Spearman correlation analysis was conducted to jointly analyze the gut microbiota and non-targeted metabolism.RESULTS: Compared with the Sham group, the degree of pathological damage to lung and kidney tissues in the CLP group was significantly increased (lung tissue score: 3.60±0.80 vs. 0.00±0.00, kidney tissue score: 2.40±0.80 vs. 0.00±0.00, both P < 0.01), the level of IL-6 and TNF-α in peripheral blood significantly increased [TNF-α (ng/L): 248.12±55.98 vs. 143.28±36.57, IL-6 (ng/L): 260.26±39.47 vs. 116.01±26.43, both P < 0.05], the species diversity of intestinal flora of rats in the CLP group was significantly reduced, the relative abundance of Morganella, Bacteroides and Escherichia-Shigella were significantly increased, and the relative abundance of Lachnospiraceae NK4A136, Ruminococcus, Romboutsia and Roseburia were significantly reduced. In addition, the biosynthesis and bile secretion of phenylalanine, tyrosine, and tryptophan in the gut microbiota of the CLP group were significantly increased, while the biosynthesis of secondary bile acids was significantly reduced. There was a significant correlation between differential metabolites and differential microbiota.CONCLUSIONS: Sepsis can cause significant changes in the characteristics of gut microbiota and fecal metabolites in rats, which provides a basis for translational research to seek new targets for the treatment of sepsis.PMID:37803951 | DOI:10.3760/cma.j.cn121430-20230517-00378
Peanut skin procyanidins reduce intestinal glucose transport protein expression, regulate serum metabolites and ameliorate hyperglycemia in diabetic mice
Food Res Int. 2023 Nov;173(Pt 2):113471. doi: 10.1016/j.foodres.2023.113471. Epub 2023 Sep 11.ABSTRACTOne of diabetic characteristics is the postprandial hyperglycemia. Inhibiting glucose uptake may be beneficial for controlling postprandial blood glucose levels and regulating the glucose metabolism Peanut skin procyanidins (PSP) have shown a potential for lowering blood glucose; however, the underlying mechanism through which PSP regulate glucose metabolism remains unknown. In the current study, we investigated the effect of PSP on intestinal glucose transporters and serum metabolites using a mouse model of diabetic mice. Results showed that PSP improved glucose tolerance and systemic insulin sensitivity, which coincided with decreased expression of sodium-glucose cotransporter 1 and glucose transporter 2 in the intestinal epithelium induced by an activation of the phospholipase C β2/protein kinase C signaling pathway. Moreover, untargeted metabolomic analysis of serum samples revealed that PSP altered arachidonic acid, sphingolipid, glycerophospholipid, bile acids, and arginine metabolic pathways. The study provides new insight into the anti-diabetic mechanism of PSP and a basis for further research.PMID:37803795 | DOI:10.1016/j.foodres.2023.113471
Use of reconstituted kefir consortia to determine the impact of microbial composition on kefir metabolite profiles
Food Res Int. 2023 Nov;173(Pt 2):113467. doi: 10.1016/j.foodres.2023.113467. Epub 2023 Sep 12.ABSTRACTKefir is fermented traditionally with kefir grains, but commercial kefir production often relies on fermentation with planktonic cultures. Kefir has been associated with many health benefits, however, the utilization of kefir grains to facilitate large industrial production of kefir is challenging and makes to difficult to ensure consistent product quality and consistency. Notably, the microbial composition of kefir fermentations has been shown to impact kefir associated health benefits. This study aimed to compare volatile compounds, organic acids, and sugar composition of kefir produced through a traditional grain fermentation and through a reconstituted kefir consortium fermentation. Additionally, the impact of two key microbial communities on metabolite production in kefir was assessed using two modified versions of the consortium, with either yeasts or lactobacilli removed. We hypothesized that the complete kefir consortium would closely resemble traditional kefir, while the consortia without yeasts or lactobacilli would differ significantly from both traditional kefir and the complete consortium fermentation. Kefir fermentations were examined after 12 and 18 h using two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOFMS) to identify volatile compounds and high performance liquid chromatography (HPLC) to identify organic acid and sugar composition. The traditional kefir differed significantly from the kefir consortium fermentation with the traditional kefir having 15-20 log2(fold change) higher levels of esters and the consortium fermented kefir having between 1 and 3 log2(fold change) higher organic acids including lactate and acetate. The use of a version of kefir consortium that lacked lactobacilli resulted in between 2 and 20 log2(fold change) lower levels of organic acids, ethanol, and butanoic acid ethyl ester, while the absence of yeast from the consortium resulted in minimal change. In summary, the kefir consortium fermentation is significantly different from traditional grain fermented kefir with respect to the profile of metabolites present, and seems to be driven by lactobacilli, as evidenced by the significant decrease in multiple metabolites when the lactobacilli were removed from the fermentation and minimal differences observed upon the removal of yeast.PMID:37803789 | DOI:10.1016/j.foodres.2023.113467
Refined mackerel oil increases hepatic lipid accumulation and reduces choline and choline-containing metabolites in the liver tissue in mice fed a Western diet
Food Res Int. 2023 Nov;173(Pt 2):113450. doi: 10.1016/j.foodres.2023.113450. Epub 2023 Sep 11.ABSTRACTIn this study, we aimed to evaluate the impact of consuming refined mackerel oil (MO) from rest raw material on hepatic fat accumulation, glucose tolerance, and metabolomic changes in the liver from male C57BL/6N mice. The mice were fed either a Western diet (WD) or a chow diet, with 30 g or 60 g MO per kg of diet (3% or 6%) for 13 weeks. Body weight, energy intake, and feed efficiency were monitored throughout the experiment. A glucose tolerance test was conducted after 11 weeks, and metabolomic analyses of the liver were performed at termination. Inclusion of MO in the WD, but not in the chow diet, led to increased liver weight, hepatic lipid accumulation, elevated fasting blood glucose, reduced glucose tolerance, and insulin sensitivity. Hepatic levels of eicosapentaenoic and docosahexaenoic acid increased, but no changes in levels of saturated and monounsaturated fatty acids were observed. The liver metabolomic profile was different between mice fed a WD with or without MO, with a reduction in choline ether lipids, phosphatidylcholines, and sphingomyelins in mice fed MO. This study demonstrates that supplementing the WD, but not the chow diet, with refined MO accelerates accumulation of hepatic fat droplets and negatively affects blood glucose regulation. The detrimental effects of supplementing a WD with MO were accompanied by increased fat digestibility and overall energy intake, and lower levels of choline and choline-containing metabolites in liver tissue.PMID:37803779 | DOI:10.1016/j.foodres.2023.113450
Metabolomic analysis reveals linkage between chemical composition and sensory quality of different floral honey samples
Food Res Int. 2023 Nov;173(Pt 2):113454. doi: 10.1016/j.foodres.2023.113454. Epub 2023 Sep 11.ABSTRACTHoney has a distinct flavor characterized by various volatiles and non-volatiles from diverse origins. In this study, metabolomics combined with sensory analysis was performed to identify relationships between chemical profile and sensory quality of honey. Targeted metabolomic analysis was conducted to determine volatile and non-volatile profiles of seven different honey. Volatile profile was analyzed using headspace solid-phase microextraction (HS-SPME) coupled to GC - MS. LC - MS/MS, HPLC - UV, and HPLC-RI were employed to analyze flavonoids, organic acids, and sugars, respectively. Authentic standards were utilized for confirmation of metabolites. Sensory evaluation included quantitative descriptive analysis and consumer acceptance test. The results showed that sucrose (sweetness) was responsible for a positive hedonic perception, while organic acids and flavonoids (sourness, astringency, bitterness) negatively affected consumer acceptance. Volatiles with floral notes (e.g. decyl formate) were preferred, but others with off-flavors (e.g. 2-methylbenzofuran) were not preferred by consumers. Flavor familiarity was strongly correlated with the consumer acceptance of honey, indicating that the balance between volatiles and non-volatiles is significant for honey flavor quality. This work demonstrates the role of key flavor compounds in honey quality, and may be applicable to the quality control of honey.PMID:37803778 | DOI:10.1016/j.foodres.2023.113454
Main urinary biomarkers of golden berries (Physalis peruviana) following acute and short-term nutritional intervention in healthy human volunteers
Food Res Int. 2023 Nov;173(Pt 2):113443. doi: 10.1016/j.foodres.2023.113443. Epub 2023 Sep 11.ABSTRACTThe metabolites entering the bloodstream and being excreted in urine as a result of consuming golden berries are currently unidentified. However, these metabolites potentially underlie the health benefits observed in various in vitro, animal, and human models. A nutritional intervention with 18 healthy human volunteers was performed, and urine was collected at baseline and after acute and short-term fruit consumption for 19 days. After UPLC-ESI/QToF-MS analysis, untargeted metabolomics was performed on the urine samples, and from the 50 most discriminant ions (VIP > 2) generated by a validated PLS-DA model (CV-ANOVA = 3.7e-35; R^2Y = 0.86, Q^2Y = 0.62 and no overfitting), 22 compounds were identified with relatively high confidence. The most discriminant metabolites confirmed by DHS/GC-MS2 analysis of volatiles in urine were sesquiterpenes (C15H22): 3 stereoisomers, β-vatirenene, β-vetivenene, and β-vetispirene, and 2 isomers, eremophila-1(10),8,11-triene and α-curcumene. Another major urinary biomarker was 4β-hydroxywithanolide E and its phase II derivatives, which were observed in urine for all individual up to 24 h after the fruit was consumed; thus, the bioavailability of this biomarker in humans was demonstrated for the first time. Additionally, the excretion of certain acylcarnitines and hypoxanthine in urine increased after golden berry consumption, which may be associated with a detoxifying effect and may occur because fats were utilized rather than carbohydrates to meet the body's energy needs. The main biomarkers of golden berry consumption are specific to this fruit, confirming its potential for the functional food market.PMID:37803771 | DOI:10.1016/j.foodres.2023.113443
Adequate pre-freezing handling slows the quality deterioration of frozen obscure pufferfish: Revealed by untargeted metabolomics
Food Res Int. 2023 Nov;173(Pt 2):113423. doi: 10.1016/j.foodres.2023.113423. Epub 2023 Aug 30.ABSTRACTTo investigate the effect of different pre-freezing handling methods on the frozen quality of farmed obscure pufferfish, live pufferfish were treated with commercial slaughter (CS), spinal cord cutting (SCC), or spinal cord cutting and precooling (SCCP) before freezing. The metabolic status was evaluated by metabolomics before freezing, and quality attributes were analyzed through the water-holding capacity and texture properties of dorsal muscle during frozen storage. The results showed that quality loss followed the order of CS > SCC > SCCP, as revealed by thawing loss, cooking loss, and springiness. A total of 654 metabolites were identified from pufferfish samples; 33 and 25 differential metabolites were screened from the SCC/CS and SCCP/CS groups, respectively. Different pre-freezing handling methods significantly affected arginine and histidine metabolism, fatty acid biosynthesis, and purine metabolism, which may inhibit protein denaturation and ice crystal growth, thereby slowing the quality degradation of frozen pufferfish.PMID:37803762 | DOI:10.1016/j.foodres.2023.113423
Effect of inoculating Pichia spp. starters on flavor formation of fermented chili pepper: Metabolomics and genomics approaches
Food Res Int. 2023 Nov;173(Pt 2):113397. doi: 10.1016/j.foodres.2023.113397. Epub 2023 Aug 23.ABSTRACTThe influence of Pichia spp. on flavor formation and metabolic pathways during chili pepper fermentation was investigated in this study. Multiple omics approaches were employed, including metabolomics analysis to identify volatile and non-volatile flavor compounds, and genomic analysis to gain insights into the underlying molecular mechanism driving flavor formation of chili peppers inoculated with Pichia spp. The results showed that inoculation with Pichia spp. accelerated fermentation process of chili peppers compared to spontaneous fermentation. Metabolomics analysis showed P. fermentans promoted characteristic terpenes [e.g., (Z)-β-ocimene and linalool], L-glutamate, gamma-aminobutyric acid, and succinate production, while P. manshurica produced more alcohols (e.g., isoamyl alcohol and phenylethyl alcohol) and phenols (e.g., 4-ethylguaiacol and 2-methoxy-4-methylphenol). Genomics analysis revealed that a substantial portion of the genes in Pichia spp. were associated with amino acid and carbohydrate metabolism. Specifically, the pathways involved in amino acid metabolism and the release of glycoside-bound aromatic compounds were identified as the primary drivers behind the unique flavor of fermented chili peppers, facilitated by Pichia spp.PMID:37803735 | DOI:10.1016/j.foodres.2023.113397
Must protection, sulfites versus bioprotection: A metabolomic study
Food Res Int. 2023 Nov;173(Pt 2):113383. doi: 10.1016/j.foodres.2023.113383. Epub 2023 Aug 18.ABSTRACTThe reduction of chemical inputs in wine has become one of the main challenges of the wine industry. One of the alternatives to sulfites developed is bioprotection, which consists in using non-Saccharomyces strains to prevent microbial deviation. However, the impact of substituting sulfites by bioprotection on the final wine remains poorly studied. For the first time, we characterized this impact on Chardonnay wine through an integrative approach. Interestingly, physico-chemical analysis did not reveal any difference between both treatments regarding classical oenological parameters. Nevertheless, bioprotection did not seem to provide as much protection against oxidation as sulfites, as observed through phenolic compound analysis. At a deeper level, untargeted metabolomic analyses revealed substantial changes in wine composition according to must treatment. In particular, the specific footprint of each treatment revealed an impact on nitrogen-containing compounds. This observation could be related to modifications in S. cerevisiae metabolism, in particular amino acid biosynthesis and tryptophan metabolism pathways. Thus, the type of must treatment seemed to impact metabolic fluxes of yeast differently, leading to the production of different compounds. For example, we observed glutathione and melatonin, compounds with antioxidant properties, which were enhanced with sulfites, but not with bioprotection. However, despite substantial modifications in wines regarding their chemical composition, the change in must treatment did not seem to impact the sensory profile of wine. This integrative approach has provided relevant new insights on the impact of sulfite substitution by bioprotection on Chardonnay wines.PMID:37803722 | DOI:10.1016/j.foodres.2023.113383
Dynamic analysis of metabolomics reveals the potential associations between colonic peptides and serum appetite-related hormones
Food Res Int. 2023 Nov;173(Pt 2):113376. doi: 10.1016/j.foodres.2023.113376. Epub 2023 Aug 18.ABSTRACTGut signals, including hormones and metabolites are crucial zeitgebers that regulate the circadian rhythm of host metabolism, but the potential links have been explored more in rodents. Herein, we performed an hour-scale metabolomics analysis of serum and colonic digesta to characterize the circadian rhythmic metabolic patterns using a pig model under ad libitum feeding conditions. Importantly, our findings identified potential associations between colonic and body metabolism, revealing the potential relationships between colonic peptides and host appetite regulation. Concretely, amino acids accounted for the highest proportion in rhythmic serum metabolites, whereas lipids accounted for the highest proportion in rhythmic colonic metabolites. The diurnal difference analysis revealed that the levels of most amino acids and peptides were higher in the light phase, while the levels of most lipids were higher in the dark phase. And more correlations were be checked between serum amino acids, lipids, peptides and colonic metabolites in the light and more correlations were be checked between serum carbohydrates, cofactors and vitamins, energy, nucleotides, xenobiotics and colonic metabolites in the dark. Interestingly, peptides oscillated to a similar extent in serum and colonic digesta. Of note, colonic peptides composed of valine, proline and leucine were checked in positive associations to glucagon-like peptide-1 (GLP-1) in serum. And these peptides were positive with the genera Butyricicoccus, Streptococcus, Clostridioides, Bariatricus and Coriobacteriia_norank, and negative with Prevotella, and showed the potential relationships with colonic microbial biosynthesis of amino acids. Collectively, we mapped the rhythmic profiling on pig serum and colonic metabolites and revealed the relationships between host and gut metabolism. However, the underlying regulatory mechanisms remains to be further investigated.PMID:37803714 | DOI:10.1016/j.foodres.2023.113376
Corrigendum to "Comparative metabolomics of flavonoids in twenty vegetables reveal their nutritional diversity and potential health benefits" [Food Res. Int. 164 (2023) 112384]
Food Res Int. 2023 Nov;173(Pt 1):113439. doi: 10.1016/j.foodres.2023.113439. Epub 2023 Sep 22.NO ABSTRACTPMID:37803663 | DOI:10.1016/j.foodres.2023.113439
Integration of multi-omics analyses highlights the secondary metabolism response of tomato fruit to low temperature storage
Food Res Int. 2023 Nov;173(Pt 1):113316. doi: 10.1016/j.foodres.2023.113316. Epub 2023 Jul 24.ABSTRACTInappropriate low temperature storage usually leads to quality deterioration of harvested tomato fruits. In this study, we performed comparative metabolome, transcriptome, and proteome analyses to comprehensively understand the effects of low temperature on metabolic changes in tomato fruit (fresh fruit, C0d; 4 °C 8 days, C8d; 4 °C 7 days and then 25 °C 1 day, C7dS1). Large amounts of secondary metabolites (including flavonoids and phenolic acids) increased after low temperature treatment. The overlap differentially accumulated metabolites in three comparative groups (C0d vs. C8d, C0d vs. C7dS1, C8d vs. C7dS1) were mainly flavonoid metabolites. A total of 1438 differentially expressed genes identified in these three comparative groups were primarily enriched in metabolic pathways and secondary metabolites biosynthesis pathways. Similarly, proteomic analysis showed that the differentially expressed proteins were enriched in the secondary metabolites biosynthesis and phenylpropanoid biosynthesis pathways. There was a strong correlation between changes in flavonoid metabolites and the expression of chalcone synthase (SlCHS), chalcone isomerase-like (SlCHIL), and coumarate 3-hydroxylase (SlC3H), which are involved in the phenylpropanoid and flavonoid biosynthesis. Additionally, seven differentially expressed MYB transcription factors were identified; SlMYB91, SlMYB106, and SlMYB70 strongly correlated with flavonoid biosynthesis structural genes after low temperature treatment. Other genes involved in fruit ripening and quality were also affected by low temperature. The data generated in this study may unravel the transcriptional regulatory network of secondary metabolism associated with low-temperature storage and provide a solid foundation for future studies.PMID:37803628 | DOI:10.1016/j.foodres.2023.113316
2'-Fucosyllactose (2'-FL) changes infants gut microbiota composition and their metabolism in a host-free human colonic model
Food Res Int. 2023 Nov;173(Pt 1):113293. doi: 10.1016/j.foodres.2023.113293. Epub 2023 Jul 22.ABSTRACTBACKGROUND: Breast milk is critical for neonates, providing the necessary energy, nutrients, and bioactive compounds for growth and development. Research indicated that human milk oligosaccharides (HMOs) have been shown to shape a beneficial gut microbiota, as well as their metabolism (e.g. short-chain fatty acids). 2'-Fucosyllactose (2'-FL) is one major HMO that composed of 30% of total HMOs.OBJECTIVES: This study aimed to understand the impact of 2'-FL on the composition and metabolism of infant gut microbiota.METHODS: Our study utilized an in-vitro human colonic model (HCM) to investigate the host-free interactions between 2'-FL and infant gut microbiota. To simulate the infant gut microbiota, we inoculated the HCM system with eight representative bacterial species from infant gut microbiota. The effects of 2'-FL on the gut microbial composition and their metabolism were determined through real-time quantitative PCR and liquid-chromatography mass spectrometry (LC/MS). The obtained data were analyzed using Compound Discoverer 3.1 and MetaboAnalyst 4.0.RESULTS: Our study findings suggest that the intervention of 2'-FL in HCM resulted in a significant change in the abundance of representative bacterial species. PCR analysis showed a consistent increase in the abundance of Parabacteroides. distasonis in all three colon sections. Furthermore, analysis of free fatty acids revealed a significant increase in their levels in the ascending, transverse, and descending colons, except for caproic acid, which was significantly reduced to a non-detectable level. The identification of significant extracellular polar metabolites, such as glutathione and serotonin, enabled us to distinguish between the metabolomes before and after 2'-FL intervention. Moreover, correlation analysis revealed a significant association between the altered microbes and microbial metabolites.CONCLUSIONS: In summary, our study demonstrated the impact of 2'-FL intervention on the defined composition of infant gut microbiota and their metabolic pathways in an in vitro setting. Our findings provide valuable insights for future follow-up investigations into the role of 2'-FL in regulating the growth and development of infant gut microbiota in vivo.PMID:37803605 | DOI:10.1016/j.foodres.2023.113293
Camel milk peptides alleviate hyperglycemia by regulating gut microbiota and metabolites in type 2 diabetic mice
Food Res Int. 2023 Nov;173(Pt 1):113278. doi: 10.1016/j.foodres.2023.113278. Epub 2023 Jul 13.ABSTRACTThis study aimed to investigate the hypoglycemic effect of Camel milk peptides (CMPs) on Type 2 diabetes mellitus (T2DM) mice and reveal its related mechanism from the aspect of gut microbiota and metabolites. The administering CMPs significantly alleviated the weight loss, polydipsia and polyphagia, reduced fasting blood glucose (FBG), improved insulin resistance and sensitivity, and restored the level of serum hormones, lipopolysaccharide (LPS), lipid metabolic and tissue damage. Furthermore, CMPs intervention remarkably reversed gut microbiota dysbiosis in T2DM mice by reducing the relative abundance of Proteobacteria, Allobaculum, Clostridium, Shigella and the Firmicutes/Bacteroidetes ratio, while increasing the relative abundance of Bacteroidetes and Blautia. Metabolomic analysis identified 84 different metabolites between T2DM and CMPs-treated groups, participating in three pathways of Pantothenate and CoA biosynthesis, Phenylalanine metabolism and Linoleic acid metabolism. Ureidopropionic acid, pantothenic acid, hippuric acid, hydrocinnamic acid and linoleic acid were identified as key acidic metabolites closely related to hypoglycemic effect. Correlation analysis indicated that CMPs might have a hypoglycemic effect through their impact on gut microbiota, leading to variations in short-chain fatty acids (SCFAs), acidic metabolites and metabolic pathways. These findings suggest that CMPs could be a beneficial nutritional supplement for intervention T2DM.PMID:37803591 | DOI:10.1016/j.foodres.2023.113278
Determination of the effects of pre-harvest bagging treatment on kiwifruit appearance and quality via transcriptome and metabolome analyses
Food Res Int. 2023 Nov;173(Pt 1):113276. doi: 10.1016/j.foodres.2023.113276. Epub 2023 Jul 13.ABSTRACTBagging is an effective cultivation strategy to produce attractive and pollution-free kiwifruit. However, the effect and metabolic regulatory mechanism of bagging treatment on kiwifruit quality remain unclear. In this study, transcriptome and metabolome analyses were conducted to determine the regulatory network of the differential metabolites and genes after bagging. Using outer and inner yellow single-layer fruit bags, we found that bagging treatment improved the appearance of kiwifruit, increased the soluble solid content (SSC) and carotenoid and anthocyanin levels, and decreased the chlorophyll levels. We also identified 41 differentially expressed metabolites and 897 differentially expressed genes (DEGs) between the bagged and control 'Hongyang' fruit. Transcriptome and metabolome analyses revealed that the increase in SSC after bagging treatment was mainly due to the increase in D-glucosamine metabolite levels and eight DEGs involved in amino sugar and nucleotide sugar metabolic pathways. A decrease in glutamyl-tRNA reductase may be the main reason for the decrease in chlorophyll. Downregulation of lycopene epsilon cyclase and 9-cis-epoxycarotenoid dioxygenase increased carotenoid levels. Additionally, an increase in the levels of the taxifolin-3'-O-glucoside metabolite, flavonoid 3'-monooxygenase, and some transcription factors led to the increase in anthocyanin levels. This study provides novel insights into the effects of bagging on the appearance and internal quality of kiwifruit and enriches our theoretical knowledge on the regulation of color pigment synthesis in kiwifruit.PMID:37803588 | DOI:10.1016/j.foodres.2023.113276
GC/QQQ coupling with metabolomics for selection of predicator of tea fermentation
Food Res Int. 2023 Nov;173(Pt 1):113273. doi: 10.1016/j.foodres.2023.113273. Epub 2023 Jul 13.ABSTRACTFermentation is the most crucial process for manufacture of black tea. Signature components were desired for the establishment of accurate prediction of fermentation degree. In this study, finished black teas were prepared using leaves that had been fermented for various times, and sensory quality evaluation was performed. Tracking analysis of volatiles during fermentation was conducted to discriminate the iconic compounds. On the basis of both the sensory evaluation results and the enzymatic oxidation traits of fermentation, the ratio of β-cyclocitral to γ-pylpyrone was proposed as an indicator. A positive correlation was observed between this ratio and the sensory score of finished black tea with varied duration of fermentation, and the correlation coefficient was 0.78. Furthermore, widely plant-targeted metabolomics was applied to cognize the fermentation. Comparative analysis of metabolites was conducted by category, and special attention was paid to flavonoids and terpenes. Significant metabolic differences emerged discriminatively. The results would be useful for intelligent modulation of the manufacture of black tea.PMID:37803585 | DOI:10.1016/j.foodres.2023.113273
Transcriptomics and metabolomics reveal improved performance of Hu sheep on hybridization with Southdown sheep
Food Res Int. 2023 Nov;173(Pt 1):113240. doi: 10.1016/j.foodres.2023.113240. Epub 2023 Jul 11.ABSTRACTConsumers are increasingly demanding high-quality mutton. Cross breeding can improve meat quality and is widely used in sheep breeding. However, little is known about the molecular mechanism of cross breeding sheep meat quality. In this study, male Southdown and female Hu sheep were hybridized. The slaughter performance and longissimus dorsi quality of the 6-month-old hybrid offspring were measured, and the longissimus dorsi of the hybrid offspring was analyzed by transcriptomics and metabolomics to explore the effect of cross breeding on meat quality. The results showed that the production performance of Southdown × Hu F1 sheep was significantly improved, the carcass fat content was significantly decreased, and the eating quality of Southdown × Hu F1 sheep were better. Compared with the HS group (Hu × Hu), the NH group (Southdown × Hu) had 538 differentially expressed genes and 166 differentially expressed metabolites (P < 0.05), which were significantly enriched in amino acid metabolism and other related pathways. Up-regulated genes METTL21C, PPARGC1A and down-regulated gene WFIKKN2 are related to muscle growth and development. Among them, the METTL21C gene, which is related to muscle development, was highly correlated with carnosine, a metabolite related to meat quality (correlation > 0.6 and P < 0.05). Our results provide further understanding of the molecular mechanism of cross breeding for sheep muscle growth and meat quality optimization.PMID:37803553 | DOI:10.1016/j.foodres.2023.113240
Revealing the chemical differences and their application in the storage year prediction of Qingzhuan tea by SWATH-MS based metabolomics analysis
Food Res Int. 2023 Nov;173(Pt 1):113238. doi: 10.1016/j.foodres.2023.113238. Epub 2023 Jul 7.ABSTRACTIt's generally believed that the longer the storage, the better the quality of dark tea, but the chemical differences of Qingzhuan tea (QZT) with different storage years is still unclear. Herein, in this work, an untargeted metabolomic approach based on SWATH-MS was established to investigate the differential compounds of QZT with 0-9 years' storage time. These QZT samples were roughly divided into two categories by principal component analysis (PCA). After orthogonal projections to latent structures discriminant analysis (OPLS-DA), 18 differential compounds were putatively identified as chemical markers for the storage year variation of QZT. Heatmap visualization showed that the contents of catechins, fatty acids, and some phenolic acids significantly reduced, flavonoid glycosides, triterpenoids, and 8-C N-ethyl-2-pyrrolidinone-substituted flavan-3-ols (EPSFs) increased with the increase of storage time. Furthermore, these chemical markers were verified by the peak areas corresponding to MS2 ions from SWATH-MS. Based on the extraction chromatographic peak areas of MS and MS2 ions, a duration time prediction model was built for QZT with correlation coefficient R2 of 0.9080 and 0.9701, and RMSEP value of 0.85 and 1.24, respectively. This study reveals the chemical differences of QZT with different storage years and provides a theoretical basis for the quality evaluation of stored dark tea.PMID:37803551 | DOI:10.1016/j.foodres.2023.113238
Uncovering the phenolic diversity of Guabiju fruit: LC-MS/MS-based targeted metabolomics approach
Food Res Int. 2023 Nov;173(Pt 1):113236. doi: 10.1016/j.foodres.2023.113236. Epub 2023 Jul 14.ABSTRACTThe comprehensive composition of phenolic compounds (PC) from seven genotypes of guabiju were analyzed by high-performance liquid chromatography coupled to a diode array detector and mass spectrometry (HPLC-ESI-qTOF-MS/MS), and a targeted metabolomic approach was utilized to explore the PC-related similarities among the genotypes. Sixty-seven phenolic compounds were annotated and twenty-four were quantified in all genotypes of guabiju. The phenolic acids and anthocyanins were the major PC, representing more than 63% (w/w) of the total PC. Di-O-galloylquinic and tri-O-galloylquinic acids and ellagitannins were reported for the first time in guabiju. The results of hierarchical clustering and principal components analysis (PCA) suggested seven groups as suitable clusters to be formed according to phenolic composition. Eleven PC were selected as relevant for sample clustering, and six of them were highlighted as the most informative (in decreasing order of importance): epicatechin, catechin, (epi)gallocatechin gallate II, di-O-galloylquinic acid I, tri-O-galloylquinic acid and delphinidin 3-O-glucoside. To the best of our knowledge, this study contributes to the literature with the most complete phenolic profile of guabiju genotypes up to date. Moreover, guabiju susceptibility to fungal infestation related to PC composition was briefly discussed based on a parallel study using the same genotypes.PMID:37803550 | DOI:10.1016/j.foodres.2023.113236
Correction: <em>Sympathetic nervous activation, mitochondrial dysfunction and outcome in acutely decompensated cirrhosis: the metabolomic prognostic models (CLIF-C MET)</em>
Gut. 2023 Nov;72(11):e4. doi: 10.1136/gutjnl-2022-328708corr1.NO ABSTRACTPMID:37802539 | DOI:10.1136/gutjnl-2022-328708corr1