PubMed
The Lipid Metabolism as Target and Modulator of BOLD-100 Anticancer Activity: Crosstalk with Histone Acetylation
Adv Sci (Weinh). 2023 Sep 26:e2301939. doi: 10.1002/advs.202301939. Online ahead of print.ABSTRACTThe leading first-in-class ruthenium-complex BOLD-100 currently undergoes clinical phase-II anticancer evaluation. Recently, BOLD-100 is identified as anti-Warburg compound. The present study shows that also deregulated lipid metabolism parameters characterize acquired BOLD-100-resistant colon and pancreatic carcinoma cells. Acute BOLD-100 treatment reduces lipid droplet contents of BOLD-100-sensitive but not -resistant cells. Despite enhanced glycolysis fueling lipid accumulation, BOLD-100-resistant cells reveal diminished lactate secretion based on monocarboxylate transporter 1 (MCT1) loss mediated by a frame-shift mutation in the MCT1 chaperone basigin. Glycolysis and lipid catabolism converge in the production of protein/histone acetylation substrate acetyl-coenzymeA (CoA). Mass spectrometric and nuclear magnetic resonance analyses uncover spontaneous cell-free BOLD-100-CoA adduct formation suggesting acetyl-CoA depletion as mechanism bridging BOLD-100-induced lipid metabolism alterations and histone acetylation-mediated gene expression deregulation. Indeed, BOLD-100 treatment decreases histone acetylation selectively in sensitive cells. Pharmacological targeting confirms histone de-acetylation as central mode-of-action of BOLD-100 and metabolic programs stabilizing histone acetylation as relevant Achilles' heel of acquired BOLD-100-resistant cell and xenograft models. Accordingly, histone gene expression changes also predict intrinsic BOLD-100 responsiveness. Summarizing, BOLD-100 is identified as epigenetically active substance acting via targeting several onco-metabolic pathways. Identification of the lipid metabolism as driver of acquired BOLD-100 resistance opens novel strategies to tackle therapy failure.PMID:37752764 | DOI:10.1002/advs.202301939
The gut metabolite 3-hydroxyphenylacetic acid rejuvenates spermatogenic dysfunction in aged mice through GPX4-mediated ferroptosis
Microbiome. 2023 Sep 27;11(1):212. doi: 10.1186/s40168-023-01659-y.ABSTRACTBACKGROUND: Aging-related fertility decline is a prevalent concern globally. Male reproductive system aging is mainly characterized by a decrease in sperm quality and fertility. While it is known that intestinal physiology changes with age and that microbiota is shaped by physiology, the underlying mechanism of how the microbiota affects male reproductive aging is still largely unexplored.RESULTS: Here, we utilized fecal microbiota transplantation (FMT) to exchange the fecal microbiota between young and old mice. Cecal shotgun metagenomics and metabolomics were used to identify differences in gut microbiota composition and metabolic regulation during aging. Our results demonstrated that FMT from young to old mice alleviated aging-associated spermatogenic dysfunction through an unexpected mechanism mediated by a gut bacteria-derived metabolite, 3-hydroxyphenylacetic acid (3-HPAA). 3-HPAA treatment resulted in an improvement of spermatogenesis in old mice. RNA sequencing analysis, qRT-PCR and Western blot revealed that 3-HPAA induced an upregulation of GPX4, thereby restraining ferroptosis and restoring spermatogenesis. These findings were further confirmed by in vitro induction of ferroptosis and inhibition of GPX4 expression.CONCLUSIONS: Our results demonstrate that the microbiome-derived metabolite, 3-HPAA, facilitates spermatogenesis of old mice through a ferroptosis-mediated mechanism. Overall, these findings provide a novel mechanism of dysregulated spermatogenesis of old mice, and suggest that 3-HPAA could be a potential therapy for fertility decline of aging males in clinical practice. Video Abstract.PMID:37752615 | DOI:10.1186/s40168-023-01659-y
Serum metabolite profiling reveals metabolic characteristics of sepsis patients using LC/MS-based metabolic profiles: a cross-sectional study
BMC Med Genomics. 2023 Sep 26;16(1):224. doi: 10.1186/s12920-023-01666-w.ABSTRACTBACKGROUND: Individuals with sepsis exhibited a higher likelihood of benefiting from early initiation of specialized treatment to enhance the prognosis of the condition. The objective of this study is to identify potential biomarkers of sepsis by means of serum metabolomics.MATERIALS AND METHODS: The screening of putative biomarkers of sepsis was conducted using serum samples from patients with sepsis and a control group of healthy individuals. The pathogenesis of sepsis was determined through the utilization of liquid chromatography-mass spectrometry-based metabolic profiles and bioinformatic techniques, which in turn provided a foundation for timely diagnosis and intervention.RESULTS: Individuals with sepsis had significantly different metabolic characteristics compared to those with normal health. The concentrations of phosphatidylcholines (PCs), phosphatidylserine (PS), lysophosphatidylethanolamine (LysoPEs), and lysophosphatidylcholine (LysoPCs) exhibited a decrease, while the levels of creatinine, C17-Sphinganine, and PS(22:0/22:1(11Z)) demonstrated an increase in the serum of sepsis patients when compared to the control group. Additionally, ROC curves were generated to assess the discriminatory ability of the differentially expressed metabolites. The area under the ROC curve for PS (22:0/22:1(11Z)) and C17-Sphinganine were determined to be 0.976 and 0.913, respectively. These metabolites may potentially serve as diagnostic markers for sepsis. Additionally, the pathogenesis of sepsis is associated with mTOR signaling, NF-κB signaling pathway, calcium signaling, calcium transport, and tRNA charging pathway.CONCLUSION: The identification of differential expression of these metabolites in sepsis serum samples could aid in the timely diagnosis and intervention of sepsis, as well as enhance our understanding of its pathogenesis.PMID:37752563 | DOI:10.1186/s12920-023-01666-w
Tracheal microbiome and metabolome profiling in iatrogenic subglottic tracheal stenosis
BMC Pulm Med. 2023 Sep 26;23(1):361. doi: 10.1186/s12890-023-02654-7.ABSTRACTBACKGROUND: To study the role of microecology and metabolism in iatrogenic tracheal injury and cicatricial stenosis, we investigated the tracheal microbiome and metabolome in patients with tracheal stenosis after endotracheal intubation.METHODS: We collected 16 protected specimen brush (PSB) and 8 broncho-alveolar lavage (BAL) samples from 8 iatrogenic subglottic tracheal stenosis patients, including 8 PSB samples from tracheal scar sites, 8 PSB samples from scar-free sites and 8 BAL samples, by lavaging the subsegmental bronchi of the right-middle lobe. Metagenomic sequencing was performed to characterize the microbiome profiling of 16 PSB and 8 BAL samples. Untargeted metabolomics was performed in 6 PSB samples (3 from tracheal scar PSB and 3 from tracheal scar-free PSB) using high-performance liquid chromatography‒mass spectrometry (LC‒MS).RESULTS: At the species level, the top four bacterial species were Neisseria subflava, Streptococcus oralis, Capnocytophaga gingivals, and Haemophilus aegyptius. The alpha and beta diversity among tracheal scar PSB, scar-free PSB and BAL samples were compared, and no significant differences were found. Untargeted metabolomics was performed in 6 PSB samples using LC‒MS, and only one statistically significant metabolite, carnitine, was identified. Pathway enrichment analysis of carnitine revealed significant enrichment in fatty acid oxidation.CONCLUSION: Our study found that carnitine levels in tracheal scar tissue were significantly lower than those in scar-free tissue, which might be a new target for the prevention and treatment of iatrogenic tracheal stenosis in the future.PMID:37752498 | DOI:10.1186/s12890-023-02654-7
Mechanisms for leaf color changes in Osmanthus fragrans 'Ziyan Gongzhu' using physiology, transcriptomics and metabolomics
BMC Plant Biol. 2023 Sep 27;23(1):453. doi: 10.1186/s12870-023-04457-8.ABSTRACTBACKGROUND: Color-leaved O. fragrans is a variety of Osmanthus fragrans, which has both the fragrance of Osmanthus and the color of color-leaved plants. However, the molecular mechanism of color change of color-leaved O. fragrans is not clear. In this study, we analyzed the regulatory mechanism of four different color leaves of 'Ziyan Gongzhu' through physiological, transcriptome and metabolome levels.RESULTS: Firstly, we measured the leaf pigments content and leaf chromatic parameters for correlation analysis, indicating a significant correlation between them. Overall, the content of chlorophyll a + b is low and the content of anthocyanin is high in T1 and T2 leaves, along with low expression of chlorophyll synthesis genes (HEMA, CHLG, and CAO, etc.) and high expression of anthocyanin synthesis genes (F3H, F3'H, DFR and ANS, etc.), resulting purple red and light purple in T1 and T2 leaves, respectively. It was also found that the pigment closely related to the color leaves of 'Ziyan Gongzhu' was cyanidin. The content anthocyanins, may be regulated by two putative MYB activators (OfMYB3 and OfMYB4) and two putative MYB repressors (OfMYB1 and OfMYB2). In contrast, the content of chlorophyll a + b is high and the content of anthocyanin is low in T3 and T4 leaves, along with high expression of chlorophyll synthesis genes and low expression of anthocyanin synthesis genes, resulting yellow green and dark green in T3 and T4 leaves, respectively. And abnormal chloroplast development affects chlorophyll content in T1, T2, and T3 leaves. Although the content of carotenoids first dropped in T2 leaves, it then rapidly accumulated in T4 leaves, in sync with the increase in the expression of genes related to carotenoid biosynthesis (ZDS, LHYB, and ZEP, for example). Analysis of photosynthetic, carbohydrate and hormone-related differentially abundant metabolites (DAMs) and DEGs found that they may participate in the regulation of leaf color change of 'Ziyan Gongzhu' by affecting pigment synthesis.CONCLUSION: Our results pave the way for a comprehensive knowledge of the regulatory processes governing leaf color in 'Ziyan Gongzhu' and identify possible genes for application regarding molecular colored-leaf cultivar breeding.PMID:37752431 | DOI:10.1186/s12870-023-04457-8
Comprehensive brain tissue metabolomics and biological network technology to decipher the mechanism of hydrogen-rich water on Radiation-induced cognitive impairment in rats
BMC Mol Cell Biol. 2023 Sep 26;24(1):30. doi: 10.1186/s12860-023-00491-4.ABSTRACTBACKGROUND: Hydrogen-rich water (HRW) has been shown to prevent cognitive impairment caused by ionizing radiation. This study aimed to investigate the pharmacological effects and mechanisms of HRW on ionizing radiation by coupling the brain metabolomics and biological target network methods.METHODS AND RESULTS: HRW significantly improves the cognitive impairment in rats exposed to ionizing radiation. Based on metabolomics and biological network results, we identified 54 differential metabolites and 93 target genes. The KEGG pathway indicates that glutathione metabolism, ascorbic acid and aldehyde acid metabolism, pentose and glucuronic acid interconversion, and glycerophospholipid metabolism play important roles in ionizing radiation therapy.CONCLUSION: Our study has systematically elucidated the molecular mechanism of HRW against ionizing radiation, which can be mediated by modulating targets, pathways and metabolite levels. This provides a new perspective for identifying the underlying pharmacological mechanism of HRW.PMID:37752412 | DOI:10.1186/s12860-023-00491-4
Evaluation of amino acids and other related metabolites levels in end-stage renal disease (ESRD) patients on hemodialysis by LC/MS/MS and GC/MS
Anal Bioanal Chem. 2023 Sep 27. doi: 10.1007/s00216-023-04926-x. Online ahead of print.ABSTRACTEnd-stage renal disease (ESRD) is a rapidly increasing health problem, and every year, about 2 million ESRD cases are reported worldwide. Hemodialysis (HD) is the vital renal reinstatement therapy for ESRD, and HD patterns play a crucial role in patients' health. Plasma metabolomics is the potential approach to understanding the HD process, effectiveness, and patterns. The lack of protein vitality is a primary problem for HD patients, and the quantities of amino acids intracellularly and in the blood are considered to be a symbolic index of protein metabolism and nutrition conditions. In the current study, LC/MS/MS and GC/MS methods were developed for 29 targeted plasma metabolites and validated as per ICH bioanalytical method validation M10 guidelines. The 29 metabolites included 20 proteinogenic amino acids and nine other related metabolites. The methods were employed to measure the absolute quantities (µM) of the targeted metabolites in HD patients (n=60) before and after dialysis (PRE-HD and POST-HD), and compared with the healthy control (HC) group (n=60). Phenylacetylglutamine was found to be higher in both PRE-HD (72.88±14.5 µM) and POST-HD (26.62±7.9 µM), when compared to HC (1.61±0.6 µM). On the other hand, glutamic acid was lower in PRE-HD (14.90±6.5 µM), and POST-HD (13.6±6.1 µM) than that of HC (245.4±37.8 µM). The dialytic loss was found to be 52-45% for arginine, lysine, and histidine, while it was 38-26% for glycine, cysteine, proline, alanine, threonine, glutamine, valine, and methionine. The dialytic loss was low (≤12%) for aspartic acid, glutamic acid, asparagine, leucine, tyrosine, tryptophan, and isoleucine. Graphical abstract adapted from mass spectrometry templates by Biorender.com retrieved from https://app.biorender.com/biorender-templates .PMID:37752301 | DOI:10.1007/s00216-023-04926-x
Liquid biopsy: creating opportunities in brain space
Br J Cancer. 2023 Sep 26. doi: 10.1038/s41416-023-02446-0. Online ahead of print.ABSTRACTIn recent years, liquid biopsy has emerged as an alternative method to diagnose and monitor tumors. Compared to classical tissue biopsy procedures, liquid biopsy facilitates the repetitive collection of diverse cellular and acellular analytes from various biofluids in a non/minimally invasive manner. This strategy is of greater significance for high-grade brain malignancies such as glioblastoma as the quantity and accessibility of tumors are limited, and there are collateral risks of compromised life quality coupled with surgical interventions. Currently, blood and cerebrospinal fluid (CSF) are the most common biofluids used to collect circulating cells and biomolecules of tumor origin. These liquid biopsy analytes have created opportunities for real-time investigations of distinct genetic, epigenetic, transcriptomics, proteomics, and metabolomics alterations associated with brain tumors. This review describes different classes of liquid biopsy biomarkers present in the biofluids of brain tumor patients. Moreover, an overview of the liquid biopsy applications, challenges, recent technological advances, and clinical trials in the brain have also been provided.PMID:37752289 | DOI:10.1038/s41416-023-02446-0
Metabolic inputs in the probiotic bacterium Lacticaseibacillus rhamnosus contribute to cell-wall remodeling and increased fitness
NPJ Biofilms Microbiomes. 2023 Sep 26;9(1):71. doi: 10.1038/s41522-023-00431-2.ABSTRACTLacticaseibacillus rhamnosus GG (LGG) is a Gram-positive beneficial bacterium that resides in the human intestinal tract and belongs to the family of lactic acid bacteria (LAB). This bacterium is a widely used probiotic and was suggested to provide numerous benefits for human health. However, as in most LAB strains, the molecular mechanisms that mediate the competitiveness of probiotics under different diets remain unknown. Fermentation is a fundamental process in LAB, allowing the oxidation of simple carbohydrates (e.g., glucose, mannose) for energy production under oxygen limitation, as in the human gut. Our results indicate that fermentation reshapes the metabolome, volatilome, and proteome architecture of LGG. Furthermore, fermentation alters cell envelope remodeling and peptidoglycan biosynthesis, which leads to altered cell wall thickness, aggregation properties, and cell wall composition. In addition, fermentable sugars induced the secretion of known and novel metabolites and proteins targeting the enteric pathogens Enterococcus faecalis and Salmonella enterica Serovar Typhimurium. Overall, our results link simple carbohydrates with cell wall remodeling, aggregation to host tissues, and biofilm formation in probiotic strains and connect them with the production of broad-spectrum antimicrobial effectors.PMID:37752249 | DOI:10.1038/s41522-023-00431-2
Single-polyp metabolomics reveals biochemical structuring of the coral holobiont at multiple scales
Commun Biol. 2023 Sep 26;6(1):984. doi: 10.1038/s42003-023-05342-8.ABSTRACTAll biology happens in space, and spatial structuring plays an important role in mediating biological processes at all scales from cells to ecosystems. However, the metabolomic structuring of the coral holobiont has yet to be fully explored. Here, we present a method to detect high-quality metabolomic data from individual coral polyps and apply this method to study the patterning of biochemicals across multiple spatial (~1 mm - ~100 m) and organizational scales (polyp to population). The data show a strong signature for individual coral colonies, a weaker signature of branches within colonies, and variation at the polyp level related to the polyps' location along a branch. Mapping metabolites to either the coral or algal components of the holobiont reveals that polyp-level variation along the length of a branch was largely driven by molecules associated with the cnidarian host as opposed to the algal symbiont, predominantly putative sulfur-containing metabolites. This work yields insights on the spatial structuring of biochemicals in the coral holobiont, which is critical for design, analysis, and interpretation of studies on coral reef biochemistry.PMID:37752236 | DOI:10.1038/s42003-023-05342-8
Preterm preeclampsia screening using biomarkers: combining phenotypic classifiers into robust prediction models
Am J Obstet Gynecol MFM. 2023 Sep 20:101110. doi: 10.1016/j.ajogmf.2023.101110. Online ahead of print.ABSTRACTBACKGROUND: Preeclampsia screening is a critical component of antenatal care worldwide. Currently, the most developed screening test for preeclampsia at 11 to 13 weeks' gestation integrates maternal demographic characteristics and medical history with 3 biomarkers-serum placental growth factor, mean arterial pressure, and uterine artery pulsatility index-to identify approximately 75% of women who develop preterm preeclampsia with delivery before 37 weeks of gestation. It is generally accepted that further improvements to preeclampsia screening require the use of additional biomarkers. We recently reported that the levels of specific metabolites and metabolite ratios are associated with preterm preeclampsia. Notably, for several of these markers, preterm preeclampsia prediction varied according to maternal body mass index class. These findings motivated us to study whether patient classification allowed for combining metabolites with the current biomarkers more effectively to improve prediction of preterm preeclampsia.OBJECTIVE: This study aimed to investigate whether metabolite biomarkers can improve biomarker-based preterm preeclampsia prediction in 3 screening resource scenarios according to the availability of: (1) placental growth factor, (2) placental growth factor+mean arterial pressure, and (3) placental growth factor+mean arterial pressure+uterine artery pulsatility index.STUDY DESIGN: This was an observational case-control study, drawn from a large prospective screening study at 11 to 13 weeks' gestation on the prediction of pregnancy complications, conducted at King's College Hospital, London, United Kingdom. Maternal blood samples were also collected for subsequent research studies. We used liquid chromatography-mass spectrometry to quantify levels of 50 metabolites previously associated with pregnancy complications in plasma samples from singleton pregnancies. Biomarker data, normalized using multiples of medians, on 1635 control and 106 preterm preeclampsia pregnancies were available for model development. Modeling was performed using a methodology that generated a prediction model for preterm preeclampsia in 4 consecutive steps: (1) z-normalization of predictors, (2) combinatorial modeling of so-called (weak) classifiers in the unstratified patient set and in discrete patient strata based on body mass index and/or race, (3) selection of classifiers, and (4) aggregation of the selected classifiers (ie, bagging) into the final prediction model. The prediction performance of models was evaluated using the area under the receiver operating characteristic curve, and detection rate at 10% false-positive rate.RESULTS: First, the predictor development methodology itself was evaluated. The patient set was split into a training set (2/3) and a test set (1/3) for predictor model development and internal validation. A prediction model was developed for each of the 3 different predictor panels, that is, placental growth factor+metabolites, placental growth factor+mean arterial pressure+metabolites, and placental growth factor+mean arterial pressure+uterine artery pulsatility index+metabolites. For all 3 models, the area under the receiver operating characteristic curve in the test set did not differ significantly from that of the training set. Next, a prediction model was developed using the complete data set for the 3 predictor panels. Among the 50 metabolites available for modeling, 26 were selected across the 3 prediction models; 21 contributed to at least 2 out of the 3 prediction models developed. Each time, area under the receiver operating characteristic curve and detection rate were significantly higher with the new prediction model than with the reference model. Markedly, the estimated detection rate with the placental growth factor+mean arterial pressure+metabolites prediction model in all patients was 0.58 (95% confidence interval, 0.49-0.70), a 15% increase (P<.001) over the detection rate of 0.43 (95% confidence interval, 0.33-0.55) estimated for the reference placental growth factor+mean arterial pressure. The same prediction model significantly improved detection in Black (14%) and White (19%) patients, and in the normal-weight group (18.5≤body mass index<25) and the obese group (body mass index≥30), with respectively 19% and 20% more cases detected, but not in the overweight group, when compared with the reference model. Similar improvement patterns in detection rates were found in the other 2 scenarios, but with smaller improvement amplitudes.CONCLUSION: Metabolite biomarkers can be combined with the established biomarkers of placental growth factor, mean arterial pressure, and uterine artery pulsatility index to improve the biomarker component of early-pregnancy preterm preeclampsia prediction tests. Classification of the pregnant women according to the maternal characteristics of body mass index and/or race proved instrumental in achieving improved prediction. This suggests that maternal phenotyping can have a role in improving the prediction of obstetrical syndromes such as preeclampsia.PMID:37752025 | DOI:10.1016/j.ajogmf.2023.101110
Insights from the COCOA birth cohort: The origins of childhood allergic diseases and future perspectives
Allergol Int. 2023 Sep 24:S1323-8930(23)00103-X. doi: 10.1016/j.alit.2023.09.005. Online ahead of print.ABSTRACTThe ongoing COhort for Childhood Origin of Asthma and allergic diseases (COCOA) study is a prospective birth cohort investigating the origin and natural courses of childhood allergic diseases, including atopic dermatitis, food allergy, allergic rhinitis and asthma, with long-term prognosis. Initiated under the premise that allergic diseases result from a complex interplay of immune development alterations, environmental exposures, and host susceptibility, the COCOA study explores these dynamic interactions during prenatal and postnatal periods, framed within the hygiene and microbial hypotheses alongside the developmental origins of health and disease (DOHaD) hypothesis. The scope of the COCOA study extends to genetic predispositions, indoor and outdoor environmental variables affecting mothers and their offsprings such as outdoor and indoor air pollution, psychological factors, diets, and the microbiomes of skin, gut, and airway. We have embarked on in-depth investigations of diverse risk factors and the pathophysiological underpinnings of allergic diseases. By employing multi-omics approaches-proteomics, transcriptomics, and metabolomics-we gain deeper insights into the distinct pathophysiological processes across various endotypes of childhood allergic diseases, incorporating the exposome using extensive resources within the COCOA study. Integration with large-scale datasets, such as national health insurance records, enhances robustness and mitigates potential limitations inherent to birth cohort studies. As part of global networks focused on childhood allergic diseases, the COCOA study fosters collaborative research across multiple cohorts. The findings from the COCOA study are instrumental in informing precision medicine strategies for childhood allergic diseases, underpinning the establishment of disease trajectories.PMID:37752021 | DOI:10.1016/j.alit.2023.09.005
Metabolomic response to high light from pgrl1 and pgr5 mutants of Chlamydomonas reinhardtii
Photochem Photobiol Sci. 2023 Sep 26. doi: 10.1007/s43630-023-00478-2. Online ahead of print.ABSTRACTChlamydomonas (C.) reinhardtii metabolomic changes in cyclic electron flow-dependent mutants are still unknown. Here, we used mass spectrometric analysis to monitor the changes in metabolite levels in wild-type, cyclic electron-deficient mutants pgrl1 and pgr5 grown under high-light stress. A total of 55 metabolites were detected using GC-MS analysis. High-light stress-induced selective anaplerotic amino acids in pgr5. In addition, pgr5 showed enhancement in carbohydrate, polyamine, and polyol metabolism by 2.5-fold under high light. In response to high light, pgr5 triggers an increase in several metabolites involved in regulating osmotic pressure. Among these metabolites are glycerol pathway compounds such as glycerol-3-phosphate and glyceryl-glycoside, which increase significantly by 1.55 and 3.07 times, respectively. In addition, pgr5 also enhanced proline and putrescine levels by 2.6- and 1.36-fold under high light. On the other hand, pgrl1-induced metabolites, such as alanine and serine, are crucial for photorespiration when subjected to high-light stress. We also observed a significant increase in levels of polyols and glycerol by 1.37- and 2.97-fold in pgrl1 under high-light stress. Both correlation network studies and KEGG pathway enrichment analysis revealed that metabolites related to several biological pathways, such as amino acid, carbohydrate, TCA cycle, and fatty acid metabolism, were positively correlated in pgrl1 and pgr5 under high-light stress conditions. The relative mRNA expression levels of genes related to the TCA cycle, including PDC3, ACH1, OGD2, OGD3, IDH3, and MDH4, were significantly upregulated in pgrl1 and pgr5 under HL. In pgr5, the MDH1 level was significantly increased, while ACS1, ACS3, IDH2, and IDH3 levels were reduced considerably in pgrl1 under high-light stress. The current study demonstrates both pgr5 and prgl1 showed a differential defense response to high-light stress at the primary metabolites and mRNA expression level, which can be added to the existing knowledge to explore molecular regulatory responses of prg5 and pgrl1 to high-light stress.PMID:37751074 | DOI:10.1007/s43630-023-00478-2
Effects of Chaihu Shugan San on Brain Functional Network Connectivity in the Hippocampus of a Perimenopausal Depression Rat Model
Mol Neurobiol. 2023 Sep 26. doi: 10.1007/s12035-023-03615-1. Online ahead of print.ABSTRACTIn this study, we used Chaihu Shugan San (CSS), a traditional Chinese herbal formula, as a probe to investigate the involvement of brain functional network connectivity and hippocampus energy metabolism in perimenopausal depression. A network pharmacology approach was performed to discover the underlying mechanisms of CSS in improving perimenopausal depression, which were verified in perimenopausal depression rat models. Network pharmacology analysis indicated that complex mechanisms of energy metabolism, neurotransmitter metabolism, inflammation, and hormone metabolic processes were closely associated with the anti-depressive effects of CSS. Thus, the serum concentrations of estradiol (E2), glutamate (Glu), and 5-hydroxytryptamine (5-HT) were detected by ELISA. The brain functional network connectivity between the hippocampus and adjacent brain regions was evaluated using resting-state functional magnetic resonance imaging (fMRI). A targeted metabolomic analysis of the hippocampal tricarboxylic acid cycle was also performed to measure the changes in hippocampal energy metabolism using liquid chromatography-tandem mass spectrometry (LC-MS/MS). CSS treatment significantly improved the behavioral performance, decreased the serum Glu levels, and increased the serum 5-HT levels of PMS + CUMS rats. The brain functional connectivity between the hippocampus and other brain regions was significantly changed by PMS + CUMS processes but improved by CSS treatment. Moreover, among the metabolites in the hippocampal tricarboxylic acid cycle, the concentrations of citrate and the upregulation of isocitrate and downregulation of guanosine triphosphate (GTP) in PMS + CUMS rats could be significantly improved by CSS treatment. A brain functional network connectivity mechanism may be involved in perimenopausal depression, wherein the hippocampal tricarboxylic acid cycle plays a vital role.PMID:37751044 | DOI:10.1007/s12035-023-03615-1
Metabolites from Lysobacter gummosus YMF3.00690 against Meloidogyne javanica
Phytopathology. 2023 Sep 26. doi: 10.1094/PHYTO-07-23-0261-LE. Online ahead of print.ABSTRACTThe strains in Lysobacter have the potential to control plant parasitic nematodes. In our experiment, Lysobacter gummosus YMF3.00690 showed antagonistic effects against plant root-knot nematode. Nine metabolites were isolated and identified from cultures of L. gummosus YMF3.00690, of which compound 1 was identified as a new metabolite tetrahydro-4,4,6-trimethyl-6-[(tetrahydro-6,6-dimethyl-2-oxo-4(1H)-pyrimidinylidene) methyl]-2(1H)-pyrimidinone. The activity assay showed that two compounds, 5-(hydroxymethyl)-1H-pyrrole-2-carbaldehyde (2) and 1H-pyrrole-2-carboxylic acid (3), had nematicidal activities against Meloidogyne javanica with mortalities of 69.93% and 90.54% at 400 ppm for 96 h, respectively. These two compounds were further tested for the inhibition activity of eggs hatching, and compound 3 showed significant inhibition rate of 63.36% at 50 ppm for 48 h. In the chemotactic activity assay, three compounds (1-3) were found to have concentration-dependent chemotactic activity, of which compound 1 showed attractive activity. This experiment explored the active metabolites of L. gummosus YMF3.00690 against M. javanica, and laid the foundation for biopesticide development.PMID:37750871 | DOI:10.1094/PHYTO-07-23-0261-LE
Gut microbiota-driven regulation of queen bee ovarian metabolism
Microbiol Spectr. 2023 Sep 26:e0214523. doi: 10.1128/spectrum.02145-23. Online ahead of print.ABSTRACTWith the global prevalence of Varroa mites, more and more beekeepers resort to confining the queen bee in a queen cage to control mite infestation or to breed superior and robust queen bees. However, the impact of such practices on the queen bee remains largely unknown. Therefore, we subjected the queen bees to a 21-day egg-laying restriction treatment (from the egg stage to the emergence of adult worker bees) and analyzed the queen bees' ovarian metabolites and gut microbiota after 21 days, aiming to assess the queen bees' quality and assist beekeepers in better hive management. Our findings revealed a significant reduction in the relative expression levels of Vg and Hex110 genes in the ovaries of egg laying-restricted queen bees compared to unrestricted egg-laying queens. The diversity of gut microbiota in the queen bee exhibited a notable decrease, accompanied by corresponding changes in the core bacteria of the microbial community, the relative abundance of Lactobacillus and Bifidobacterium increased from 22.34% to 53.14% (P = 0.01) and from 0.053% to 0.580% (P = 0.04), respectively. The relative abundance of Bombella decreased from 25.85% to 1.720% (P = 0.002). Following egg-laying restriction, the activity of the queen bee's ovaries decreased, while the metabolism of glycerophospholipids remained or stored more lipid molecules, awaiting environmental changes for the queen bee to resume egg laying promptly. Furthermore, we observed that Bombella in the queen bee's gut may regulate the queen's ovarian metabolism through tryptophan metabolism. These findings provide novel insights into the interplay among queen egg laying, gut microbiota, and ovarian metabolism. IMPORTANCE With Varroa mite infestation, beekeepers often confine the queen bee in cages for control or breeding. However, the impact on the queen bee is largely unknown. We evaluated queen bee quality by restricting egg laying and analyzing ovarian metabolites and gut microbiota. In this study, we provided a comprehensive explanation of the expression of ovarian genes, the diversity of gut microbiota, and changes in ovarian metabolism in the queen bee. Through integrated analysis of the queen bee's gut microbiota and ovarian metabolism, we discovered that the gut microbiota can regulate the queen bee's ovarian metabolism. These findings provide valuable insights into the interplay among egg laying, gut microbiota, and the reproductive health of the queen bee. Understanding these relationships can contribute to the development of better strategies for Varroa mite control and queen bee breeding.PMID:37750696 | DOI:10.1128/spectrum.02145-23
Comparison of sperm carnitine profiles of normospermic, oligospermic and azospermic individuals
Eur Rev Med Pharmacol Sci. 2023 Sep;27(17):8154-8162. doi: 10.26355/eurrev_202309_33575.ABSTRACTOBJECTIVE: The World Health Organization recognizes infertility as a public health issue. An estimated 48.5 million couples worldwide grapple with infertility. Infertility and spermatogenesis dysfunction arise from diverse genetic factors, including single-gene mutations and chromosomal abnormalities. Current research continues to explore other potential causes of infertility, leveraging both proteomic and metabolomic analyses. The primary aim of this study is to underscore the significance of investigating male infertility from a metabolomic perspective.PATIENTS AND METHODS: This study aimed to identify new markers for diagnosing and treating male infertility by examining the carnitine profiles in seminal fluids of individuals diagnosed with the normospermic group, oligospermic group, and azospermic group, employing the LC/MS-MS method.RESULTS: The first three L-carnitines C2 (Acetylcarnitine), C8:1 (Octenoylcarnitine), and C16:1 (Palmitoleylcarnitine), emerged as potential novel markers for diagnosis and treatment.CONCLUSIONS: Based on these findings, we posit that the results obtained in this study will aid in diagnosing, treating, and monitoring systemic diseases, and provide a foundation for more comprehensive future molecular studies aimed at enhancing prevention and treatment strategies for infertility.PMID:37750643 | DOI:10.26355/eurrev_202309_33575
Product Profiles of Promiscuous Enzymes Can be Altered by Controlling In Vivo Spatial Organization
Adv Sci (Weinh). 2023 Sep 26:e2303415. doi: 10.1002/advs.202303415. Online ahead of print.ABSTRACTEnzyme spatial organization is an evolved mechanism for facilitating multi-step biocatalysis and can play an important role in the regulation of promiscuous enzymes. The latter function suggests that artificial spatial organization can be an untapped avenue for controlling the specificity of bioengineered metabolic pathways. A promiscuous terpene synthase (nerolidol synthase) is co-localized and spatially organized with the preceding enzyme (farnesyl diphosphate synthase) in a heterologous production pathway, via translational protein fusion and/or co-encapsulation in a self-assembling protein cage. Spatial organization enhances nerolidol production by ≈11- to ≈62-fold relative to unorganized enzymes. More interestingly, striking differences in the ratio of end products (nerolidol and linalool) are observed with each spatial organization approach. This demonstrates that artificial spatial organization approaches can be harnessed to modulate the product profiles of promiscuous enzymes in engineered pathways in vivo. This extends the application of spatial organization beyond situations where multiple enzymes compete for a single substrate to cases where there is competition among multiple substrates for a single enzyme.PMID:37750486 | DOI:10.1002/advs.202303415
Solving the unsolved genetic epilepsies - current and future perspectives
Epilepsia. 2023 Sep 26. doi: 10.1111/epi.17780. Online ahead of print.ABSTRACTMany patients suffering from epilepsy undergo exome or genome sequencing as part of a diagnostic work-up, however, many remain genetically unsolved. There are various factors that account for negative results in exome/genome sequencing for epilepsy patients; 1) the underlying cause is not genetic, 2) there is a complex polygenic explanation, 3) the illness is monogenic but the causative gene remains to be linked to a human disorder, 4) family segregation with reduced penetrance, 5) somatic mosaicism or the complexity of eg. a structural rearrangement, or 6) limited knowledge or diagnostic tools hinder the proper classification of a variant, resulting in its designation as a variant of unknown significance. The objective of this review is to outline some of the diagnostic options that lie beyond the exome/genome, and that might become clinically relevant within the foreseeable future. These options include: 1) re-analysis of older exome/genome data as knowledge increases or symptoms change, 2) looking for somatic mosaicism or long-read sequencing to detect low-complexity repeat variants or specific structural variants missed by traditional exome/genome sequencing, 3) exploration of the non-coding genome including disruption of topologically associated domains, long range non-coding RNA or other regulatory elements, and finally 4) transcriptomics, DNA methylation signatures and metabolomics as complementary diagnostic methods that may be used in the assessment of variants of unknown significance. Some of these tools are currently not integrated into standard diagnostic work-up. However, it is reasonable to expect that they will become increasingly available and improve current diagnostic capabilities, thereby enabling precision diagnosis in patients that are currently undiagnosed.PMID:37750451 | DOI:10.1111/epi.17780
Total Flavonoids of Rhizoma Drynariae Treat Osteoarthritis by Inhibiting Arachidonic Acid Metabolites Through AMPK/NFκB Pathway
J Inflamm Res. 2023 Sep 20;16:4123-4140. doi: 10.2147/JIR.S418345. eCollection 2023.ABSTRACTOBJECTIVE: Previous clinical studies have found that total flavonoids of Rhizoma Drynariae (TFRD) have a good therapeutic effect on osteoarthritis (OA), but its therapeutic mechanism needs further research.METHODS: OA rat model was established by Hulth method and was intervened by TFRD. Pathological assessments were conducted to assess the protective effect of TFRD on cartilage. Serum metabolomics and network pharmacology were detected to predict the mechanism of TFRD treating OA. In further experiments, molecular biology experiment was carried out to confirm the predicted mechanisms in vivo and in vitro.RESULTS: TFRD can effectively reduce chondrocyte apoptosis and cartilage degeneration in OA model rats. Serum metabolomics revealed that the intervention effect may be closely related to arachidonic acid metabolism pathway. Network pharmacologic prediction showed that COX-2 was the key target of TFRD in treating OA, and its mechanism might be related with NFκB, apoptosis, AMPK and arachidonic acid metabolism pathway. In vivo experiments indicated that TFRD can inhibit the abnormal expression of COX-2 mRNA in OA model rats. In the in vitro studies, the expression of COX-2 mRNA and protein increased, AMPK phosphorylation was inhibited, and NFκB signaling pathway was activated in IL-1β-induced chondrocytes, and these changes can be reversed by TFRD. After the activation of AMPK signaling pathway or the block-down of NFκB signaling pathway, the effect of TFRD on COX-2 mRNA expression was significantly weakened.CONCLUSION: TFRD can inhibit COX-2-mediated arachidonic acid metabolites, and its mechanism is closely related to AMPK/NFκB pathway, which may be a key mechanism in the treatment of OA.PMID:37750171 | PMC:PMC10518150 | DOI:10.2147/JIR.S418345