Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Live and pasteurized Akkermansia muciniphila ameliorates diabetic cognitive impairment by modulating gut microbiota and metabolites in db/db mice

Thu, 23/05/2024 - 12:00
Exp Neurol. 2024 May 21:114823. doi: 10.1016/j.expneurol.2024.114823. Online ahead of print.ABSTRACTThe established role of disturbances in the microbiota-gut-brain axis in the development of diabetic cognitive impairment (DCI) has long been recognized. It has shown the potential of Akkermansia muciniphila (A. muciniphila) in improving metabolic disorders and exerting anti-inflammatory effects. However, there remains a lack of comprehensive understanding regarding the specific effects and mechanisms underlying the treatment of DCI with A. muciniphila. This study aimed to evaluate the potential of A. muciniphila in alleviating DCI in db/db mice. Eleven-week-old db/db mice were administered either live or pasteurized A. muciniphila (5 × 109 CFU/200 μL) for a duration of eight weeks. Administering live A. muciniphila significantly ameliorated cognitive impairments, improved the synaptic ultrastructure, and inhibited hippocampal neuron loss in the CA1 and CA3 subregions in db/db mice. Both live and pasteurized A. muciniphila effectively mitigated neuroinflammation. Moreover, live A. muciniphila increased the relative abundance of Lactococcus and Staphylococcus, whereas pasteurized A. muciniphila increased the relative abundance of Lactobacillus, Prevotellaceae_UCG_001, and Alistipes. Supplementation of A. muciniphila also induced alterations in serum and brain metabolites, with a particular enrichment observed in tryptophan metabolism, glyoxylate and dicarboxylate metabolism, nitrogen metabolism, and pentose and glucuronate interconversions. Correlation analysis further demonstrated a direct and substantial correlation between the altered gut microbiota and the metabolites in the serum and brain tissue. In conclusion, the results indicate that live A. muciniphila demonstrated greater efficacy compared to pasteurized A. muciniphila. The observed protective effects of A. muciniphila against DCI are likely mediated through the neuroinflammation and microbiota-metabolites-brain axis.PMID:38782351 | DOI:10.1016/j.expneurol.2024.114823

Integrating metabolomics and network pharmacology analysis to explore mechanism of Pueraria lobata against pulmonary fibrosis: involvement of arginine metabolism pathway

Thu, 23/05/2024 - 12:00
J Ethnopharmacol. 2024 May 21:118346. doi: 10.1016/j.jep.2024.118346. Online ahead of print.ABSTRACTETHNOPHARMACOLOGICAL RELEVANCE: Pueraria lobata (Willd.) Ohwi is a typical medicinal and edible plant with a long application history in China and Southeast Asia. As a widely used traditional medicine, P. lobata exhibits the properties of anti-inflammatory, antipyretic, antioxidant, relieving cough and asthma. Particularly, the increasing evidence indicates that the P. lobata has the therapeutic effect on fibrotic-related diseases in terms of metabolic regulation. However, the mechanisms of P. lobata on pulmonary fibrosis (PF) has not been thoroughly explored.AIM OF THE STUDY: This study aimed to explore the effect of arginine metabolites of P. lobata againist PF model by integrating metabolomics and network pharmacology analysis. It might provide a new idea for the target finding of P. lobata anti-pulmonary fibrosis.MATERIALS AND METHODS: In this study, the Sprague Dawley (SD) rats were randomly divided into five experimental groups: saline-treated control group, bleomycin-induced fibrosis group, prednisolone acetate group, P. lobata 3.2 g/kg group and P. lobata 6.4 g/kg group. The therapeutic effect of P. lobata on bleomycin-induced PF in rats was evaluated by clinical symptoms such as lung function, body weight, hematoxylin eosin staining (HE), Masson staining and hydroxyproline assay. Next, the plasma metabolomics analysis was carried out by LC-MS to explore the pathological differences between the group of control, PF and P. lobata-treated rats. Then, the network pharmacology study coupled with experimental validation was conducted to analysis the results of metabolic research. We constructed the "component-target-disease" network of P. lobata in the treatment of PF. In addition, the molecular docking method was used to verify the interaction between potential active ingredients and core targets of P. lobata. Finally, we tested NOS2 and L-OT in arginine-related metabolic pathway in plasma of the rats by enzyme-linked immunosorbent assay (ELISA). Real-time PCR was performed to observe the level of TNF-α mRNA and MMP9 mRNA. And we tested the expression of TNF-α and MMP9 by Western blot analysis.RESULTS: Our findings revealed that P. lobata improved lung function and ameliorated the pathological symptoms, such as pathological damage, collagen deposition, and body weight loss in PF rats. Otherwise, the plasma metabolomics were employed to screen the differential metabolites of amino acids, lipids, flavonoids, arachidonic acid metabolites, glycoside, etc. Finally, we found that the arginine metabolism signaling mainly involved in the regulating of P. lobata on the treatment of PF rats. Furtherly, the network pharmacology predicted that the arginine metabolism pathway was contained in the top 20 pathways. Next, we integrated metabolomics and network pharmacology that identified NOS2, MMP9 and TNF-α as the P. lobata regulated hub genes by molecular docking. Importantly, it indicated a strong affinity between the puerarin and the NOS2. P. lobata attenuated TNF-α, MMP-9 and NOS2 levels, suppressed TNF-α and MMP-9 protein expression, and decreased L-OT and NOS2 content in PF rats. These results indicated that the effects of P. lobata may ameliorated PF via the arginine metabolism pathway in rats. Therefore, P. lobata may be a potential therapeutic agent to ameliorated PF.CONCLUSION: In this work, we used metabolomics and network pharmacology to explore the mechanisms of P. lobata in the treatment of PF. Finally, we confirmed that P. lobata alleviated BLM-induced PF in rats by regulating arginine metabolism pathway based on reducing the L-OT and NOS2-related signal molecular. The search for the biomarkers finding of arginine metabolism pathway revealed a new strategy for P. lobata in the treatment of PF.PMID:38782311 | DOI:10.1016/j.jep.2024.118346

Untargeted serum and gastric metabolomics and network pharmacology analysis reveal the superior efficacy of zingiberis rhizoma recens-/euodiae fructus-processed Coptidis Rhizoma on gastric ulcer rats

Thu, 23/05/2024 - 12:00
J Ethnopharmacol. 2024 May 21:118376. doi: 10.1016/j.jep.2024.118376. Online ahead of print.ABSTRACTETHNOPHARMACOLOGICAL RELEVANCE: Zingiberis rhizoma recens-/wine-/euodiae fructus-processed Coptidis Rhizoma (CR, zCR/wCR/eCR) are the commonly used processed products of CR in clinic. After being processed with different excipients, the efficacy of CR will change accordingly. I.e., wCR could resolve excessive heat of the upper energizer, zCR could eliminate gastric heat and harmonize the stomach, eCR could smooth the liver and harmonize the stomach. However, the underlying mechanisms were still unclear.AIM OF THE STUDY: To further verify the differential efficacy of the three processed CR products and compare the mechanisms on gastric ulcer.MATERIAL AND METHODS: First, a GU model, whose onset is closely related to the heat in stomach and the disharmony between liver and stomach, was established, and the therapeutic effects of zCR/wCR/eCR/CR were evaluated by pathologic observation and measurement of cytokine levels. Second, metabolomics analysis and network pharmacology were conducted to reveal the differential intervening mechanism of zCR/eCR on GU. Third, the predicted mechanisms from metabolomics analysis and network pharmacology were validated using western blotting, flow cytometry and immunofluorescence.RESULTS: zCR/wCR/eCR/CR could alleviate the pathologic damage to varying degrees. In metabolomics research, fewer metabolic pathways were enriched in serum samples, and most of them were also present in the results of gastric tissue samples. The gastroprotective, anti-inflammatory, antioxidant, and anti-apoptotic effects of zCR/wCR/eCR/CR might be due to their interference on histidine, arachidonic acid, and glycerophospholipids metabolism. Quantitative results indicated that zCR/eCR had a better therapeutic effect than wCR/CR in treating GU. A comprehensive analysis of metabolomics and network pharmacology revealed that zCR and eCR exerted anti-GU effects via intervening in five core targets, including AKT, TNF-α, IL6, IL1B and PPARG. In the validation experiment, zCR/eCR could significantly reverse the abnormal expression of proteins related to apoptosis, inflammation, oxidative stress, gastric function, as well as the PI3K/AKT signaling pathways.CONCLUSION: zCR and eCR could offer gastroprotective benefits by resisting inflammation and apoptosis, inhibiting gastric-acid secretion, as well as strengthening gastric mucosal defense and antioxidant capacity. Integrating network pharmacology and metabolomics analysis could reveal the acting mechanism of drugs and promote the development of medications to counteract GU.PMID:38782310 | DOI:10.1016/j.jep.2024.118376

Ganlu Formula ethyl acetate extract (GLEE) blocked the development of experimental arthritis by inhibiting NLRP3 activation and reducing M1 type macrophage polarization

Thu, 23/05/2024 - 12:00
J Ethnopharmacol. 2024 May 21:118377. doi: 10.1016/j.jep.2024.118377. Online ahead of print.ABSTRACTETHNOPHARMACOLOGICAL RELEVANCE: The Tibetan medicine Ganlu Formula, as a classic prescription, is widely used across the Qinghai-Tibet Plateau area of China, which has a significant effect on relieving the course of rheumatoid arthritis (RA). However, the active compounds and underlying mechanisms of Ganlu Formula in RA treatment remain largely unexplored.AIM OF THE STUDY: This study aimed to elucidate the active substances and potential mechanisms of the ethyl acetate extract of Ganlu Formula ethyl acetate extract (GLEE) in the treatment of RA.MATERIALS AND METHODS: Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) was utilized to analyze and identify the chemical constituents within GLEE. Discovery Studio molecular virtual docking technology was utilized to dock the interaction of GLEE with inflammation-related pathway proteins. The GLEE gene library was obtained by transcriptome sequencing. Collagen-induced arthritic(CIA) rats were utilized to assess the antiarthritic efficacy of GLEE. Micro-CT imaging was employed to visualize the rat paw, and ultrasound imaging revealed knee joint effusion. Evaluation of synovial tissue pathological changes was conducted through hematoxylin-eosin staining and saffranine solid green staining, while immunohistochemical staining was employed to assess NLRP3 expression along with inflammatory markers. Immunofluorescence staining was utilized to identify M1 macrophages.RESULTS: Metabolomic analysis via UPLC-Q-TOF-MS identified 28 potentially bioactive compounds in GLEE, which interacted with the active sites of key proteins such as NLRP3, NF-κB, and STAT3 through hydrogen bonds, C-H bonds, and electrostatic attractions. In vitro analyses demonstrated that GLEE significantly attenuated NLRP3 inflammasome activation and inhibited the polarization of bone marrow-derived macrophages (BMDMs) towards the M1 phenotype. In vivo, GLEE not only prevented bone mineral density (BMD) loss but also reduced ankle swelling in CIA rats. Furthermore, it decreased the expression of the NLRP3 inflammasome and curtailed the release of inflammatory mediators within the knee joint.CONCLUSION: GLEE effectively mitigated inflammatory responses in both blood and knee synovial membranes of CIA rats, potentially through the down-regulation of the NLRP3/Caspase-1/IL-1β signaling pathway and reduction in M1 macrophage polarization.PMID:38782307 | DOI:10.1016/j.jep.2024.118377

Active metabolomics identify potential functional metabolites for preeclampsia prevention

Thu, 23/05/2024 - 12:00
Clin Chim Acta. 2024 May 21:119717. doi: 10.1016/j.cca.2024.119717. Online ahead of print.ABSTRACTBACKGROUND: Preeclampsia (PE) is a leading cause of maternal and fetal morbidity and mortality, with limited effective clinical treatment options. Active metabolomics offers a promising approach to uncover metabolic changes in PE and identify potential biomarkers or therapeutic targets. This study performed untargeted metabolomics using LC-MS to compare serum samples from preeclampsia and normal pregnancies.METHODS: We performed untargeted metabolomics using liquid chromatography-mass spectrometry (LC-MS) to compare serum samples from PE patients and normal pregnancies. We analyzed the alterations in metabolites and conducted functional experiments to assess the effects of LysoPE(16:0) on trophoblast cell invasion and migration. Mechanistic studies were performed to explore the potential targeting of GSK-3β by LysoPE(16:0).RESULTS: Our metabolomics analysis revealed significant alterations in several metabolites, including lysophosphatidylcholines and organic acids. Notably, LysoPE(16:0) was found to be downregulated in the serum of PE patients. Functional experiments demonstrated that LysoPE(16:0) could promote trophoblast cell invasion and migration. Mechanistic studies suggest that the protective effect of LysoPE(16:0) against PE might be mediated through the modulation of the GSK-3β/β-Catenin pathway, with LysoPE(16:0) potentially targeting the GSK-3β protein.CONCLUSIONS: Our findings highlight the potential role of LysoPE(16:0) in the pathophysiology of PE and its ability to modulate the GSK-3β/β-Catenin pathway. These results provide new insights into the metabolic changes associated with PE and suggest that LysoPE(16:0) could serve as a promising biomarker or therapeutic target for the prevention and treatment of PE.PMID:38782157 | DOI:10.1016/j.cca.2024.119717

Multi-omics approaches for the understanding of therapeutic mechanism for Huang-Qi-Long-Dan Granule against ischemic stroke

Thu, 23/05/2024 - 12:00
Pharmacol Res. 2024 May 21:107229. doi: 10.1016/j.phrs.2024.107229. Online ahead of print.ABSTRACTAfter long-term clinical application, traditional Chinese medicine (TCM) has accumulated rich experience in the stroke treatment. Huang-Qi-Long-Dan Granule (HQLDG) is a TCM formula that was used in clinical for the treatment of acute ischemic stroke. However, its mechanism against ischemic stroke still unknown. This study aimed to identify HQLDG's effect against ischemic stroke and explore its underlying mechanism. 16s rRNA sequencing, metabolomics/tryptophan (Trp)-targeted metabolomics analysis and transcriptomic analysis were used to investigate HQLDG underlying therapeutic mechanism. Our results revealed that HQLDG significantly decreased the infarct volume, improved mouse behavior and brain slices pathological staining. In addition, it could ameliorate intestinal barrier damage and regulate tight junction gene expression. 16s rRNA, metabolomics and transcriptomics analysis revealed that HQLDG treatment significantly improved the composition of gut microbiota and Trp metabolism pathway, and further downregulated Th17/IL-17 signaling pathway. HQLDG treatment could significantly decrease serum inflammatory cytokines, IL-17A and IL-22; down-regulate Trp metabolism receptor gene (Ahr), inflammatory cytokines genes (IL-17a, IL-22), and an important coding gene for maintaining the mature Th17 (rorc) in both brain and intestinal tissues. In the contrary, after gut microbiota removal, this effect of HQLDG was impaired. HQLDG treated mouse fecal microbiota transplantation also had positive effect against tMCAO injury. Moreover, AhR inhibitor could decrease IL-17A immunofluorescence. These results suggested that the gut microbiota regulation might be an important intermediate in HQLDG against tMCAO injury. HQLDG might exerts anti-ischemic stroke effects through the gut microbiota-Trp metabolism-Th17/IL-17 signaling, which provides new insights into HQLDG-mediated prevention in ischemic stroke.PMID:38782148 | DOI:10.1016/j.phrs.2024.107229

Potential of FGF21 in type 2 diabetes mellitus treatment based on untargeted metabolomics

Thu, 23/05/2024 - 12:00
Biochem Pharmacol. 2024 May 21:116306. doi: 10.1016/j.bcp.2024.116306. Online ahead of print.ABSTRACTFibroblast growth factor 21 (FGF21) has promise for treating diabetes and its associated comorbidities. It has been found to reduce blood glucose in mice and humans; however, its underlying mechanism is not known. Here, the metabolic function of FGF21 in diabetes was investigated. Diabetic db/db mice received intraperitoneal injections of FGF21 for 28 days, the serum of each mouse was collected, and their metabolites were analyzed by untargeted metabolomics using UHPLC-MS/MS. It was found that FGF21 reduced blood glucose and oral glucose tolerance without causing hypoglycemia. Moreover, administration of FGF21 reduced the levels of TG and LDL levels while increasing those of HDL and adiponectin. Importantly, the levels of 45 metabolites, including amino acids and lipids, were significantly altered, suggesting their potential as biomarkers. We speculated that FGF21 may treat T2DM through the regulation of fatty acid biosynthesis, the TCA cycle, and vitamin digestion and absorption. These findings provide insight into the mechanism of FGF21 in diabetes and suggest its potential for treating diabetes.PMID:38782076 | DOI:10.1016/j.bcp.2024.116306

Ehf controls mammary alveolar lineage differentiation and is a putative suppressor of breast tumorigenesis

Thu, 23/05/2024 - 12:00
Dev Cell. 2024 May 20:S1534-5807(24)00298-3. doi: 10.1016/j.devcel.2024.04.022. Online ahead of print.ABSTRACTThe transcription factor EHF is highly expressed in the lactating mammary gland, but its role in mammary development and tumorigenesis is not fully understood. Utilizing a mouse model of Ehf deletion, herein, we demonstrate that loss of Ehf impairs mammary lobuloalveolar differentiation at late pregnancy, indicated by significantly reduced levels of milk genes and milk lipids, fewer differentiated alveolar cells, and an accumulation of alveolar progenitor cells. Further, deletion of Ehf increased proliferative capacity and attenuated prolactin-induced alveolar differentiation in mammary organoids. Ehf deletion also increased tumor incidence in the MMTV-PyMT mammary tumor model and increased the proliferative capacity of mammary tumor organoids, while low EHF expression was associated with higher tumor grade and poorer outcome in luminal A and basal human breast cancers. Collectively, these findings establish EHF as a non-redundant regulator of mammary alveolar differentiation and a putative suppressor of mammary tumorigenesis.PMID:38781975 | DOI:10.1016/j.devcel.2024.04.022

Interventional effects of Pueraria oral liquid on T2DM rats and metabolomics analysis

Thu, 23/05/2024 - 12:00
Biomed Pharmacother. 2024 May 22;175:116780. doi: 10.1016/j.biopha.2024.116780. Online ahead of print.ABSTRACTPueraria lobata, commonly known as kudzu, is a medicinal and food plant widely used in the food, health food, and pharmaceutical industries. It has clinical pharmacological effects, including hypoglycemic, antiinflammatory, and antioxidant effects. However, its mechanism of hypoglycemic effect on type 2 diabetes mellitus (T2DM) has not yet been elucidated. In this study, we prepared a Pueraria lobata oral liquid (POL) and conducted a comparative study in a T2DM rat model to evaluate the hypoglycemic effect of different doses of Pueraria lobata oral liquid. Our objective was to investigate the hypoglycemic effect of Puerarin on T2DM rats and understand its mechanism from the perspective of metabolomics. In this study, we assessed the hypoglycemic effect of POL through measurements of FBG, fasting glucose tolerance test, plasma lipids, and liver injury levels. Furthermore, we examined the mechanism of action of POL using hepatic metabolomics. The study's findings demonstrated that POL intervention led to improvements in weight loss, blood glucose, insulin, and lipid levels in T2DM rats, while also providing a protective effect on the liver. Finally, POL significantly affected the types and amounts of hepatic metabolites enriched in metabolic pathways, providing an important basis for revealing the molecular mechanism of Pueraria lobata intervention in T2DM rats. These findings indicate that POL may regulate insulin levels, reduce liver damage, and improve metabolic uptake in the liver. This provides direction for new applications and research on Pueraria lobata to prevent or improve T2DM.PMID:38781864 | DOI:10.1016/j.biopha.2024.116780

Soil-dwelling grub larvae of Protaetia brevitarsis biodegrade polystyrene: Responses of gut microbiome and host metabolism

Thu, 23/05/2024 - 12:00
Sci Total Environ. 2024 May 21;934:173399. doi: 10.1016/j.scitotenv.2024.173399. Online ahead of print.ABSTRACTPlastic pollution poses a significant threat to terrestrial ecosystems, yet the potential for soil fauna to contribute to plastic biodegradation remains largely unexplored. In this study, we reveal that soil-dwelling grubs, Protaetia brevitarsis larvae, can effectively biodegrade polystyrene (PS) plastics. Over a period of 4 weeks, these grubs achieved a remarkable 61.5 % reduction in PS foam mass. This biodegradation was confirmed by the depolymerization of ingested PS, formation of oxidative functional groups, noticeable chemical modifications, and an increase of δ13C of residual PS in frass. Additionally, antibiotic treatment to suppress gut microbes led to variations in the biodegradation process. PS ingestion induced a significant shift in the gut microbiome, promoting the growth of degradation-related bacteria such as Promicromonosporaceae, Bacillaceae, and Paenibacillaceae. Furthermore, the digestion of plastic triggered extensive metabolomic reprogramming of grubs' intestines, enhancing redox capabilities and facilitating PS biodegradation. These results indicate that responsive adaptation of both the gut microbiome and the host's intestinal metabolism contributes to PS degradation. Collectively, these findings demonstrate P. brevitarsis larvae's capability to alleviate soil plastic pollution, and highlight the potential of researching soil fauna further for sustainable plastic waste management solutions.PMID:38781836 | DOI:10.1016/j.scitotenv.2024.173399

Shexiang Baoxin Pill enriches Lactobacillus to regulate purine metabolism in patients with stable coronary artery disease

Thu, 23/05/2024 - 12:00
Phytomedicine. 2024 May 22;130:155727. doi: 10.1016/j.phymed.2024.155727. Online ahead of print.ABSTRACTBACKGROUND: It has been clinically confirmed that the Shexiang Baoxin Pill (SBP) dramatically reduces the frequency of angina in patients with stable coronary artery disease (SCAD). However, potential therapeutic mechanism of SBP has not been fully explored.PURPOSE: The study explored the therapeutic mechanism of SBP in the treatment of SCAD patients.METHODS: We examined the serum metabolic profiles of patients with SCAD following SBP treatment. A rat model of acute myocardial infarction (AMI) was established, and the potential therapeutic mechanism of SBP was explored using metabolomics, transcriptomics, and 16S rRNA sequencing.RESULTS: SBP decreased inosine production and improved purine metabolic disorders in patients with SCAD and in animal models of AMI. Inosine was implicated as a potential biomarker for SBP efficacy. Furthermore, SBP inhibited the expression of genes involved in purine metabolism, which are closely associated with thrombosis, inflammation, and platelet function. The regulation of purine metabolism by SBP was associated with the enrichment of Lactobacillus. Finally, the effects of SBP on inosine production and vascular function could be transmitted through the transplantation of fecal microbiota.CONCLUSION: Our study reveals a novel mechanism by which SBP regulates purine metabolism by enriching Lactobacillus to exert cardioprotective effects in patients with SCAD. The data also provide previously undocumented evidence indicating that inosine is a potential biomarker for evaluating the efficacy of SBP in the treatment of SCAD.PMID:38781732 | DOI:10.1016/j.phymed.2024.155727

Bioconcentration, oxidative stress and molecular mechanism of the toxic effect of acetamiprid exposure on Xenopus laevis tadpoles

Thu, 23/05/2024 - 12:00
Aquat Toxicol. 2024 May 20;272:106965. doi: 10.1016/j.aquatox.2024.106965. Online ahead of print.ABSTRACTAcetamiprid is a neonicotinoid commonly detected in aquatic ecosystems, with residual concentrations of up to 0.41 mg/L in surface water, posing a threat to the health of nontarget aquatic organisms. However, studies on the potential toxicity and underlying mechanisms of action of acetamiprid on nontarget aquatic organisms are limited. This study investigated the acute and short-term toxicity of acetamiprid to Xenopus laevis tadpoles. A 96-h acute toxicity test determined the LC50 of acetamiprid to be 32.1 mg/L. After 28 days of exposure to 1/10 and 1/100 LC50 concentrations, tadpole samples were collected for bioconcentration elimination analysis, biochemical analyses, transcriptomics, and metabolomics studies to comprehensively evaluate the toxic effects of acetamiprid and its underlying mechanisms. The results, indicating bioconcentration factors (BCFs) < 1, suggest that acetamiprid has a low bioconcentration in tadpoles. Additionally, oxidative stress was observed in treated Xenopus laevis tadpoles. Transcriptomic and nontargeted metabolomic analyses identified 979 differentially expressed genes (DEGs) and 95 differentially metabolites in the 0.321 mg/L group. The integrated analysis revealed that disruption of purine and amino acid metabolic pathways potentially accounts for acetamiprid-induced toxic effects in tadpoles. The disruptive effects of acetamiprid on valine, leucine and isoleucine biosynthesis; and aminoacyl-tRNA biosynthesis metabolic pathways in tadpoles were validated through targeted metabolomics analysis. These findings are crucial for assessing the risk of acetamiprid to nontarget aquatic organisms.PMID:38781689 | DOI:10.1016/j.aquatox.2024.106965

Carbon-based nanomaterials as inducers of biocompounds in plants: Potential risks and perspectives

Thu, 23/05/2024 - 12:00
Plant Physiol Biochem. 2024 May 20;212:108753. doi: 10.1016/j.plaphy.2024.108753. Online ahead of print.ABSTRACTBiocompounds are metabolites synthesized by plants, with clinically proven capacity in preventing and treating degenerative diseases in humans. Carbon-based nanomaterials (CNMs) are atomic structures that assume different hybridization and shape. Due to the reactive property, CNMs can induce the synthesis of metabolites, such as biocompounds in cells and various plant species, by generating reactive oxygen species (ROS). In response, plants positively or negatively regulate the expression of various families of genes and enzymes involved in physiological and metabolomic pathways of plants, such as carbon and nitrogen metabolism, which are directly involved in plant development and growth. Likewise, ROS can modulate the expression of enzymes and genes related to the adaptation of plants to stress, such as the glutathione ascorbate cycle, the shikimic acid, and phenylpropanoid pathways, from which the largest amount of biocompounds in plants are derived. This document exposes the ability of three CNMs (fullerene, graphene, and carbon nanotubes) to positively or negatively regulate the activity of enzymes and genes involved in various plant species' primary and secondary metabolism. The mechanism of action of CNMs on the production of biocompounds and the effect of the translocation of CNMs on the growth and content of primary metabolites in plants are described. Adverse effects of CNMs on plants, prospects, and possible risks involved are also discussed. The use of CNMs as inducers of biocompounds in plants could have implications and relevance for human health, crop quality, and plant adaptation and resistance to biotic and abiotic stress.PMID:38781637 | DOI:10.1016/j.plaphy.2024.108753

Disrupting Na<sup>+</sup> ion homeostasis and Na<sup>+</sup>/K<sup>+</sup> ATPase activity in breast cancer cells directly modulates glycolysis in vitro and in vivo

Thu, 23/05/2024 - 12:00
Cancer Metab. 2024 May 24;12(1):15. doi: 10.1186/s40170-024-00343-5.ABSTRACTBACKGROUND: Glycolytic flux is regulated by the energy demands of the cell. Upregulated glycolysis in cancer cells may therefore result from increased demand for adenosine triphosphate (ATP), however it is unknown what this extra ATP turnover is used for. We hypothesise that an important contribution to the increased glycolytic flux in cancer cells results from the ATP demand of Na+/K+-ATPase (NKA) due to altered sodium ion homeostasis in cancer cells.METHODS: Live whole-cell measurements of intracellular sodium [Na+]i were performed in three human breast cancer cells (MDA-MB-231, HCC1954, MCF-7), in murine breast cancer cells (4T1), and control human epithelial cells MCF-10A using triple quantum filtered 23Na nuclear magnetic resonance (NMR) spectroscopy. Glycolytic flux was measured by 2H NMR to monitor conversion of [6,6-2H2]D-glucose to [2H]-labelled L-lactate at baseline and in response to NKA inhibition with ouabain. Intracellular [Na+]i was titrated using isotonic buffers with varying [Na+] and [K+] and introducing an artificial Na+ plasma membrane leak using the ionophore gramicidin-A. Experiments were carried out in parallel with cell viability assays, 1H NMR metabolomics of intracellular and extracellular metabolites, extracellular flux analyses and in vivo measurements in a MDA-MB-231 human-xenograft mouse model using 2-deoxy-2-[18F]fluoroglucose (18F-FDG) positron emission tomography (PET).RESULTS: Intracellular [Na+]i was elevated in human and murine breast cancer cells compared to control MCF-10A cells. Acute inhibition of NKA by ouabain resulted in elevated [Na+]i and inhibition of glycolytic flux in all three human cancer cells which are ouabain sensitive, but not in the murine cells which are ouabain resistant. Permeabilization of cell membranes with gramicidin-A led to a titratable increase of [Na+]i in MDA-MB-231 and 4T1 cells and a Na+-dependent increase in glycolytic flux. This was attenuated with ouabain in the human cells but not in the murine cells. 18FDG PET imaging in an MDA-MB-231 human-xenograft mouse model recorded lower 18FDG tumour uptake when treated with ouabain while murine tissue uptake was unaffected.CONCLUSIONS: Glycolytic flux correlates with Na+-driven NKA activity in breast cancer cells, providing evidence for the 'centrality of the [Na+]i-NKA nexus' in the mechanistic basis of the Warburg effect.PMID:38783368 | DOI:10.1186/s40170-024-00343-5

Combined full-length transcriptomic and metabolomic analysis reveals the molecular mechanisms underlying nutrients and taste components development in Primulina juliae

Thu, 23/05/2024 - 12:00
BMC Genom Data. 2024 May 23;25(1):46. doi: 10.1186/s12863-024-01231-z.ABSTRACTBACKGROUND: Primulina juliae has recently emerged as a novel functional vegetable, boasting a significant biomass and high calcium content. Various breeding strategies have been employed to the domestication of P. juliae. However, the absence of genome and transcriptome information has hindered the research of mechanisms governing the taste and nutrients in this plant. In this study, we conducted a comprehensive analysis, combining the full-length transcriptomics and metabolomics, to unveil the molecular mechanisms responsible for the development of nutrients and taste components in P. juliae.RESULTS: We obtain a high-quality reference transcriptome of P. juliae by combing the PacBio Iso-seq and Illumina sequencing technologies. A total of 58,536 cluster consensus sequences were obtained, including 28,168 complete protein coding transcripts and 8,021 Long Non-coding RNAs. Significant differences were observed in the composition and content of compounds related to nutrients and taste, particularly flavonoids, during the leaf development. Our results showed a decrease in the content of most flavonoids as leaves develop. Malate and succinate accumulated with leaf development, while some sugar metabolites were decreased. Furthermore, we identified the different accumulation of amino acids and fatty acids, which are associated with taste traits. Moreover, our transcriptomic analysis provided a molecular basis for understanding the metabolic variations during leaf development. We identified 4,689 differentially expressed genes in the two developmental stages, and through a comprehensive transcriptome and metabolome analysis, we discovered the key structure genes and transcription factors involved in the pathways.CONCLUSIONS: This study provides a high-quality reference transcriptome and reveals molecular mechanisms associated with the development of nutrients and taste components in P. juliae. These findings will enhance our understanding of the breeding and utilization of P. juliae as a vegetable.PMID:38783179 | DOI:10.1186/s12863-024-01231-z

GCMS-ID: a webserver for identifying compounds from gas chromatography mass spectrometry experiments

Thu, 23/05/2024 - 12:00
Nucleic Acids Res. 2024 May 23:gkae425. doi: 10.1093/nar/gkae425. Online ahead of print.ABSTRACTGCMS-ID (Gas Chromatography Mass Spectrometry compound IDentifier) is a webserver designed to enable the identification of compounds from GC-MS experiments. GC-MS instruments produce both electron impact mass spectra (EI-MS) and retention index (RI) data for as few as one, to as many as hundreds of different compounds. Matching the measured EI-MS, RI or EI-MS + RI data to experimentally collected EI-MS and/or RI reference libraries allows facile compound identification. However, the number of available experimental RI and EI-MS reference spectra, especially for metabolomics or exposomics-related studies, is disappointingly small. Using machine learning to accurately predict the EI-MS spectra and/or RIs for millions of metabolomics and/or exposomics-relevant compounds could (partially) solve this spectral matching problem. This computational approach to compound identification is called in silico metabolomics. GCMS-ID brings this concept of in silico metabolomics closer to reality by intelligently integrating two of our previously published webservers: CFM-EI and RIpred. CFM-EI is an EI-MS spectral prediction webserver, and RIpred is a Kovats RI prediction webserver. We have found that GCMS-ID can accurately identify compounds from experimental RI, EI-MS or RI + EI-MS data through matching to its own large library of >1 million predicted RI/EI-MS values generated for metabolomics/exposomics-relevant compounds. GCMS-ID can also predict the RI or EI-MS spectrum from a user-submitted structure or annotate a user-submitted EI-MS spectrum. GCMS-ID is freely available at https://gcms-id.ca/.PMID:38783107 | DOI:10.1093/nar/gkae425

The gluconeogenesis enzyme PCK2 has a non-enzymatic role in proteostasis in endothelial cells

Thu, 23/05/2024 - 12:00
Commun Biol. 2024 May 23;7(1):618. doi: 10.1038/s42003-024-06186-6.ABSTRACTEndothelial cells (ECs) are highly glycolytic, but whether they generate glycolytic intermediates via gluconeogenesis (GNG) in glucose-deprived conditions remains unknown. Here, we report that glucose-deprived ECs upregulate the GNG enzyme PCK2 and rely on a PCK2-dependent truncated GNG, whereby lactate and glutamine are used for the synthesis of lower glycolytic intermediates that enter the serine and glycerophospholipid biosynthesis pathways, which can play key roles in redox homeostasis and phospholipid synthesis, respectively. Unexpectedly, however, even in normal glucose conditions, and independent of its enzymatic activity, PCK2 silencing perturbs proteostasis, beyond its traditional GNG role. Indeed, PCK2-silenced ECs have an impaired unfolded protein response, leading to accumulation of misfolded proteins, which due to defective proteasomes and impaired autophagy, results in the accumulation of protein aggregates in lysosomes and EC demise. Ultimately, loss of PCK2 in ECs impaired vessel sprouting. This study identifies a role for PCK2 in proteostasis beyond GNG.PMID:38783087 | DOI:10.1038/s42003-024-06186-6

Machine learning-based health environmental-clinical risk scores in European children

Thu, 23/05/2024 - 12:00
Commun Med (Lond). 2024 May 23;4(1):98. doi: 10.1038/s43856-024-00513-y.ABSTRACTBACKGROUND: Early life environmental stressors play an important role in the development of multiple chronic disorders. Previous studies that used environmental risk scores (ERS) to assess the cumulative impact of environmental exposures on health are limited by the diversity of exposures included, especially for early life determinants. We used machine learning methods to build early life exposome risk scores for three health outcomes using environmental, molecular, and clinical data.METHODS: In this study, we analyzed data from 1622 mother-child pairs from the HELIX European birth cohorts, using over 300 environmental, 100 child peripheral, and 18 mother-child clinical markers to compute environmental-clinical risk scores (ECRS) for child behavioral difficulties, metabolic syndrome, and lung function. ECRS were computed using LASSO, Random Forest and XGBoost. XGBoost ECRS were selected to extract local feature contributions using Shapley values and derive feature importance and interactions.RESULTS: ECRS captured 13%, 50% and 4% of the variance in mental, cardiometabolic, and respiratory health, respectively. We observed no significant differences in predictive performances between the above-mentioned methods.The most important predictive features were maternal stress, noise, and lifestyle exposures for mental health; proteome (mainly IL1B) and metabolome features for cardiometabolic health; child BMI and urine metabolites for respiratory health.CONCLUSIONS: Besides their usefulness for epidemiological research, our risk scores show great potential to capture holistic individual level non-hereditary risk associations that can inform practitioners about actionable factors of high-risk children. As in the post-genetic era personalized prevention medicine will focus more and more on modifiable factors, we believe that such integrative approaches will be instrumental in shaping future healthcare paradigms.PMID:38783062 | DOI:10.1038/s43856-024-00513-y

The integration of metabolic and proteomic data uncovers an augmentation of the sphingolipid biosynthesis pathway during T-cell differentiation

Thu, 23/05/2024 - 12:00
Commun Biol. 2024 May 23;7(1):622. doi: 10.1038/s42003-024-06339-7.ABSTRACTRecent studies have highlighted the significance of cellular metabolism in the initiation of clonal expansion and effector differentiation of T cells. Upon exposure to antigens, naïve CD4+ T cells undergo metabolic reprogramming to meet their metabolic requirements. However, only few studies have simultaneously evaluated the changes in protein and metabolite levels during T cell differentiation. Our research seeks to fill the gap by conducting a comprehensive analysis of changes in levels of metabolites, including sugars, amino acids, intermediates of the TCA cycle, fatty acids, and lipids. By integrating metabolomics and proteomics data, we discovered that the quantity and composition of cellular lipids underwent significant changes in different effector Th cell subsets. Especially, we found that the sphingolipid biosynthesis pathway was commonly activated in Th1, Th2, Th17, and iTreg cells and that inhibition of this pathway led to the suppression of Th17 and iTreg cells differentiation. Additionally, we discovered that Th17 and iTreg cells enhance glycosphingolipid metabolism, and inhibition of this pathway also results in the suppression of Th17 and iTreg cell generation. These findings demonstrate that the utility of our combined metabolomics and proteomics analysis in furthering the understanding of metabolic transition during Th cell differentiation.PMID:38783005 | DOI:10.1038/s42003-024-06339-7

In-depth organic mass cytometry reveals differential contents of 3-hydroxybutanoic acid at the single-cell level

Thu, 23/05/2024 - 12:00
Nat Commun. 2024 May 23;15(1):4387. doi: 10.1038/s41467-024-48865-2.ABSTRACTComprehensive single-cell metabolic profiling is critical for revealing phenotypic heterogeneity and elucidating the molecular mechanisms underlying biological processes. However, single-cell metabolomics remains challenging because of the limited metabolite coverage and inability to discriminate isomers. Herein, we establish a single-cell metabolomics platform for in-depth organic mass cytometry. Extended single-cell analysis time guarantees sufficient MS/MS acquisition for metabolite identification and the isomers discrimination while online sampling ensures the high-throughput of the method. The largest number of identified metabolites (approximately 600) are achieved in single cells and fine subtyping of MCF-7 cells is first demonstrated by an investigation on the differential levels of 3-hydroxybutanoic acid among clusters. Single-cell transcriptome analysis reveals differences in the expression of 3-hydroxybutanoic acid downstream antioxidative stress genes, such as metallothionein 2 (MT2A), while a fluorescence-activated cell sorting assay confirms the positive relationship between 3-hydroxybutanoic acid and target proteins; these results suggest that the heterogeneity of 3-hydroxybutanoic acid provides cancer cells with different ability to resist surrounding oxidative stress. Our method paves the way for deep single-cell metabolome profiling and investigations on the physiological and pathological processes that occur during cancer.PMID:38782922 | DOI:10.1038/s41467-024-48865-2

Pages