Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Effects of pretreatment with a combination of ultrasound and γ-aminobutyric acid on polyphenol metabolites and metabolic pathways in mung bean sprouts

Fri, 27/01/2023 - 12:00
Front Nutr. 2023 Jan 10;9:1081351. doi: 10.3389/fnut.2022.1081351. eCollection 2022.ABSTRACTBACKGROUND: Polyphenols play an important role in human nutrition, therefore, how to improve its content with innovative approach is important, and understanding the metabolic pathys is necessary. Mung beans are rich in polyphenols, which made them have physiological functions such as hypoglycemia, antioxidant, and hypotension. However, the content of polyphenols in natural mung bean is relatively low, and it needs to be increased. The methods of increasing polyphenol content in grains and beans by enrichment include physical stress, such as ultrasonic stress, hypoxia stress and ultraviolet radiation, and single exogenous substance stress, such as exogenous amino acids, exogenous sugars. But, the enrichment of polyphenols using exogenous substances in combination with physical stress is less applied. Therefore, this study innovated the use of exogenous γ-aminobutyric acid (GABA) combined with ultrasonic stress to enrich mung bean sprouts polyphenols and enhance their content. The metabolic pathways of the enrichment process were also analyzed to provide a reference for studies related to the enrichment of polyphenols.METHODS: Mung bean seeds were pretreated with a combination of ultrasound and GABA under different conditions. Single-factor test and response surface methodology were used for optimizing pretreatment conditions of mung bean. Effects of combined pretreatments on the polyphenols content and antioxidant activity of sprouted mung beans were investigated. Additionally, metabolites were identified, and metabolic pathways were analyzed using non-targeted metabolomics techniques.RESULTS: Optimal conditions of mung bean pretreatment were found to be 370 W for ultrasound power, 40 min for ultrasonication time, 10 mmol/L for GABA concentration, and 8 h for the soaking duration. Under these conditions, the predicted polyphenol content was found to be 4.52 mg GAE/g DW. The pretreatment of mung beans with a combination of ultrasound and exogenous GABA resulted in mung bean sprouts with enhanced polyphenol content and antioxidant activity compared to mung beans germinated without pretreatment. A significant increase in the content of six polyphenols [Genistein, (-)-Epigallocatechin, Epicatechin, Nobiletin, Naringenin, Biochanin A] in the pretreated and germinated mung beans was found, and six metabolic pathways (flavonoid biosynthesis, isoflavones biosynthesis, biosynthesis of phenylpropanoids, anthocyanin biosynthesis, biosynthesis of secondary metabolites, and metabolic pathways) were significantly activated.CONCLUSION: The obtained results suggest that a combination of ultrasound and exogenous GABA treatment can be used to produce mung bean sprouts with enriched polyphenols content and enhanced antioxidant activity.PMID:36704798 | PMC:PMC9873385 | DOI:10.3389/fnut.2022.1081351

Dragon fruit-kiwi fermented beverage: <em>In vitro</em> digestion, untargeted metabolome analysis and anti-aging activity in <em>Caenorhabditis elegans</em>

Fri, 27/01/2023 - 12:00
Front Nutr. 2023 Jan 10;9:1052818. doi: 10.3389/fnut.2022.1052818. eCollection 2022.ABSTRACTThe research on the development of dragon fruit and kiwi fruit through LAB-yeast compound fermentation is very limited, and there are few related fermentation products on the market. The purpose of this study was to evaluate the stability of the antioxidant capacity of fermented beverages (FB) through in vitro simulated digestion, to evaluate the changes in metabolites of juice after fermentation through untargeted metabolomics, and used Caenorhabditis elegans as a model to evaluate its anti-aging activity. The results showed that FB not only has good in vitro antioxidant activity, but also the total phenol content (TPC), total flavonoid content (TFC), ABTS scavenging ability, and hydroxyl radical scavenging ability of FB were significantly increased during gastric digestion and intestinal digestion. Metabolomics showed that the contents of phenols and flavonoids related to antioxidant increased after fermentation, and fermentation had a significant effect on organic acids and amino acids in FB. Finally, compared with the control group, although the original concentration of FB has a side-toxic effect on nematodes, the mean lifespan of C. elegans fed with 1.56% FB increased by 18.01%, SOD activity significantly increased by 96.16% and MDA content significantly decreased by 40.62%. FB has good antioxidant activity in vitro and in vivo, and the antioxidant activity is stable during the simulated digestion process.PMID:36704792 | PMC:PMC9872153 | DOI:10.3389/fnut.2022.1052818

Innovation in sweet rice wine with high antioxidant activity: <em>Eucommia ulmoides</em> leaf sweet rice wine

Fri, 27/01/2023 - 12:00
Front Nutr. 2023 Jan 10;9:1108843. doi: 10.3389/fnut.2022.1108843. eCollection 2022.ABSTRACTThe dried leaves of Eucommia ulmoides Oliv., which have a high nutritional value, are mainly used in both medicine and food. In this study, we used Eucommia ulmoides leaf superfine powder as an additive in the fermentation of glutinous rice (Semen Oryzae Glutinosae) to develop a new healthcare product, Eucommia leaf sweet rice wine. The fermentation conditions were optimized, and the nutrient value was evaluated through analyses of metabolites, functional compositions, antioxidant capacity, and antihyperglycemic, antihyperlipidemic, and antihypertensive abilities. The metabolic analysis demonstrated that Eucommia leaf sweet rice wine contained a large number of flavonoids and other metabolites. Eucommia leaf sweet rice wine had higher contents of flavonoid (729.0 ± 0.11 μg/g), free amino acids (55.0 ± 0.37 μg/g), polyphenol (150.0 ± 0.43 μg/g), and polysaccharide (0.25 ± 0.03 μg/g) than traditional sweet rice wine, with increases of 14.7, 2.6, 6.8, and 6.3 times, respectively. In addition, an analysis of antioxidant capacity in vitro revealed that Eucommia leaf sweet rice wine had a high level of activity in scavenging 2, 2-diphenyl-1-picrylhydrazyl (DPPH), superoxide anion, and hydroxyl radicals, as well as in reducing iron, indicating that it was a strong antioxidant. Furthermore, Eucommia leaf sweet rice wine had a high cholate binding capacity and could significantly inhibit α-amylase, α-glucosidase, and angiotensin-converting enzyme (ACE) activity. In conclusion, this study developed a new application of Eucommia leaf in sweet rice wine fermentation and brewed Eucommia leaf sweet rice wine with strong antioxidant activity and positive antihypertensive, antihyperglycemic, and antihyperlipidemic effects in vitro. This study suggests new opportunities for the wider use of Eucommia ulmoides leaves and adds variety to sweet rice wine.PMID:36704789 | PMC:PMC9871602 | DOI:10.3389/fnut.2022.1108843

Transcriptomics and metabolomics reveal tolerance new mechanism of rice roots to Al stress

Fri, 27/01/2023 - 12:00
Front Genet. 2023 Jan 10;13:1063984. doi: 10.3389/fgene.2022.1063984. eCollection 2022.ABSTRACTThe prevalence of soluble aluminum (Al) ions is one of the major limitations to crop production worldwide on acid soils. Therefore, understanding the Al tolerance mechanism of rice and applying Al tolerance functional genes in sensitive plants can significantly improve Al stress resistance. In this study, transcriptomics and metabolomics analyses were performed to reveal the mechanism of Al tolerance differences between two rice landraces (Al-tolerant genotype Shibanzhan (KR) and Al-sensitive genotype Hekedanuo (MR) with different Al tolerance. The results showed that DEG related to phenylpropanoid biosynthesis was highly enriched in KR and MR after Al stress, indicating that phenylpropanoid biosynthesis may be closely related to Al tolerance. E1.11.1.7 (peroxidase) was the most significant enzyme of phenylpropanoid biosynthesis in KR and MR under Al stress and is regulated by multiple genes. We further identified that two candidate genes Os02g0770800 and Os06g0521900 may be involved in the regulation of Al tolerance in rice. Our results not only reveal the resistance mechanism of rice to Al stress to some extent, but also provide a useful reference for the molecular mechanism of different effects of Al poisoning on plants.PMID:36704350 | PMC:PMC9871393 | DOI:10.3389/fgene.2022.1063984

QTL analysis of important agronomic traits and metabolites in foxtail millet (<em>Setaria italica</em>) by RIL population and widely targeted metabolome

Fri, 27/01/2023 - 12:00
Front Plant Sci. 2023 Jan 10;13:1035906. doi: 10.3389/fpls.2022.1035906. eCollection 2022.ABSTRACTAs a bridge between genome and phenotype, metabolome is closely related to plant growth and development. However, the research on the combination of genome, metabolome and multiple agronomic traits in foxtail millet (Setaria italica) is insufficient. Here, based on the linkage analysis of 3,452 metabolites via with high-quality genetic linkage maps, we detected a total of 1,049 metabolic quantitative trait loci (mQTLs) distributed in 11 hotspots, and 28 metabolite-related candidate genes were mined from 14 mQTLs. In addition, 136 single-environment phenotypic QTL (pQTLs) related to 63 phenotypes were identified by linkage analysis, and there were 12 hotspots on these pQTLs. We futher dissected 39 candidate genes related to agronomic traits through metabolite-phenotype correlation and gene function analysis, including Sd1 semidwarf gene, which can affect plant height by regulating GA synthesis. Combined correlation network and QTL analysis, we found that flavonoid-lignin pathway maybe closely related to plant architecture and yield in foxtail millet. For example, the correlation coefficient between apigenin 7-rutinoside and stem diameter reached 0.98, and they were co-located at 41.33-44.15 Mb of chromosome 5, further gene function analysis revealed that 5 flavonoid pathway genes, as well as Sd1, were located in this interval . Therefore, the correlation and co-localization between flavonoid-lignins and plant architecture may be due to the close linkage of their regulatory genes in millet. Besides, we also found that a combination of genomic and metabolomic for BLUP analysis can better predict plant agronomic traits than genomic or metabolomic data, independently. In conclusion, the combined analysis of mQTL and pQTL in millet have linked genetic, metabolic and agronomic traits, and is of great significance for metabolite-related molecular assisted breeding.PMID:36704173 | PMC:PMC9872001 | DOI:10.3389/fpls.2022.1035906

Transcriptomics integrated with widely targeted metabolomics reveals the cold resistance mechanism in <em>Hevea brasiliensis</em>

Fri, 27/01/2023 - 12:00
Front Plant Sci. 2023 Jan 10;13:1092411. doi: 10.3389/fpls.2022.1092411. eCollection 2022.ABSTRACTThe rubber tree is the primary source of natural rubber and is mainly cultivated in Southeast Asian countries. Low temperature is the major abiotic stress affecting the yield of the rubber tree. Therefore, uncovering the cold resistance mechanism in the rubber tree is necessary. The present study used RNA-sequencing technology and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to analyze the transcriptomic and metabolomic changes in two rubber tree clones with different cold resistance capacities (temperature-sensitive Reyan 8-79 and cold-resistant Yunyan 77-4) at 0 h, 2 h, 6 h, and 20 h of exposure to 4°C. Independent analysis of the transcriptome and metabolitome showed that under prolonged low-temperature treatment, Yunyan 77-4 expressed more genes involved in regulating enzyme activity, changing cell permeability, and synthesizing significant metabolites, such as flavonoids and amino acids, than Reyan 8-79. The KEGG annotation and enrichment analysis identified arginine metabolism and biosynthesis of flavonoids as the major pathway associated with cold resistance. Integrated transcriptome and metabolome analysis showed that the increase in the expression of genes modulated flavonoid biosynthesis, arginine biosynthesis, and anthocyanins biosynthesis, resulting in higher levels of metabolites, such as naringenin chalcone, apigenin, dihydroquercetin, cyanidin 3-glucoside, L-arginosuccinate, N-acetyl-ornithine, ornithine, and N-acetyl-glutamate, in Yunyan 77-4 than in Reyan 8-79 after prolonged low-temperature treatment. Phylogenetic analysis identified the genes, such as CHS (gene356) and F3H (gene33147) of flavonoid biosynthesis and NAGS (gene16028, gene33765), ArgC (gene2487), and ASS (gene6161) of arginine biosynthesis were the key genes involved in the cold resistant of rubber tree. Thus, the present study provides novel insights into how rubber clones resist cold and is a valuable reference for cold-resistance breeding.PMID:36704172 | PMC:PMC9871781 | DOI:10.3389/fpls.2022.1092411

A non-targeted metabolomics analysis identifies wound-induced oxylipins in <em>Physcomitrium patens</em>

Fri, 27/01/2023 - 12:00
Front Plant Sci. 2023 Jan 10;13:1085915. doi: 10.3389/fpls.2022.1085915. eCollection 2022.ABSTRACTPlant oxylipins are a class of lipid-derived signaling molecules being involved in the regulation of various biotic and abiotic stress responses. A major class of oxylipins are the circular derivatives to which 12-oxo-phytodienoic acid (OPDA) and its metabolite jasmonic acid (JA) belong. While OPDA and its shorter chain homologue dinor-OPDA (dnOPDA) seem to be ubiquitously found in land plants ranging from bryophytes to angiosperms, the occurrence of JA and its derivatives is still under discussion. The bryophyte Physcomitrium patens has received increased scientific interest as a non-vascular plant model organism over the last decade. Therefore, we followed the metabolism upon wounding by metabolite fingerprinting with the aim to identify jasmonates as well as novel oxylipins in P. patens. A non-targeted metabolomics approach was used to reconstruct the metabolic pathways for the synthesis of oxylipins, derived from roughanic, linoleic, α-linolenic, and arachidonic acid in wild type, the oxylipin-deficient mutants of Ppaos1 and Ppaos2, the mutants of Ppdes being deficient in all fatty acids harboring a Δ6-double bond and the C20-fatty acid-deficient mutants of Ppelo. Beside of OPDA, iso-OPDA, dnOPDA, and iso-dnOPDA, three additional C18-compounds and a metabolite being isobaric to JA were identified to accumulate after wounding. These findings can now serve as foundation for future research in determining, which compound(s) will serve as native ligand(s) for the oxylipin-receptor COI1 in P. patens.PMID:36704156 | PMC:PMC9871578 | DOI:10.3389/fpls.2022.1085915

Editorial: Untapped metabolic diversity in legume-characteristic pathways

Fri, 27/01/2023 - 12:00
Front Plant Sci. 2023 Jan 10;13:1117833. doi: 10.3389/fpls.2022.1117833. eCollection 2022.NO ABSTRACTPMID:36704153 | PMC:PMC9872555 | DOI:10.3389/fpls.2022.1117833

Validation of carbon isotopologue distribution measurements by GC-MS and application to <sup>13</sup>C-metabolic flux analysis of the tricarboxylic acid cycle in <em>Brassica napus</em> leaves

Fri, 27/01/2023 - 12:00
Front Plant Sci. 2023 Jan 10;13:885051. doi: 10.3389/fpls.2022.885051. eCollection 2022.ABSTRACTThe estimation of metabolic fluxes in photosynthetic organisms represents an important challenge that has gained interest over the last decade with the development of 13C-Metabolic Flux Analysis at isotopically non-stationary steady-state. This approach requires a high level of accuracy for the measurement of Carbon Isotopologue Distribution in plant metabolites. But this accuracy has still not been evaluated at the isotopologue level for GC-MS, leading to uncertainties for the metabolic fluxes calculated based on these fragments. Here, we developed a workflow to validate the measurements of CIDs from plant metabolites with GC-MS by producing tailor-made E. coli standard extracts harboring a predictable binomial CID for some organic and amino acids. Overall, most of our TMS-derivatives mass fragments were validated with these standards and at natural isotope abundance in plant matrices. Then, we applied this validated MS method to investigate the light/dark regulation of plant TCA cycle by incorporating U-13C-pyruvate to Brassica napus leaf discs. We took advantage of pathway-specific isotopologues/isotopomers observed between two and six hours of labeling to show that the TCA cycle can operate in a cyclic manner under both light and dark conditions. Interestingly, this forward cyclic flux mode has a nearly four-fold higher contribution for pyruvate-to-citrate and pyruvate-to-malate fluxes than the phosphoenolpyruvate carboxylase (PEPc) flux reassimilating carbon derived from some mitochondrial enzymes. The contribution of stored citrate to the mitochondrial TCA cycle activity was also questioned based on dynamics of 13C-enrichment in citrate, glutamate and succinate and variations of citrate total amounts under light and dark conditions. Interestingly, there was a light-dependent 13C-incorporation into glycine and serine showing that decarboxylations from pyruvate dehydrogenase complex and TCA cycle enzymes were actively reassimilated and could represent up to 5% to net photosynthesis.PMID:36704152 | PMC:PMC9871494 | DOI:10.3389/fpls.2022.885051

Applications of spatially resolved omics in the field of endocrine tumors

Fri, 27/01/2023 - 12:00
Front Endocrinol (Lausanne). 2023 Jan 10;13:993081. doi: 10.3389/fendo.2022.993081. eCollection 2022.ABSTRACTEndocrine tumors derive from endocrine cells with high heterogeneity in function, structure and embryology, and are characteristic of a marked diversity and tissue heterogeneity. There are still challenges in analyzing the molecular alternations within the heterogeneous microenvironment for endocrine tumors. Recently, several proteomic, lipidomic and metabolomic platforms have been applied to the analysis of endocrine tumors to explore the cellular and molecular mechanisms of tumor genesis, progression and metastasis. In this review, we provide a comprehensive overview of spatially resolved proteomics, lipidomics and metabolomics guided by mass spectrometry imaging and spatially resolved microproteomics directed by microextraction and tandem mass spectrometry. In this regard, we will discuss different mass spectrometry imaging techniques, including secondary ion mass spectrometry, matrix-assisted laser desorption/ionization and desorption electrospray ionization. Additionally, we will highlight microextraction approaches such as laser capture microdissection and liquid microjunction extraction. With these methods, proteins can be extracted precisely from specific regions of the endocrine tumor. Finally, we compare applications of proteomic, lipidomic and metabolomic platforms in the field of endocrine tumors and outline their potentials in elucidating cellular and molecular processes involved in endocrine tumors.PMID:36704039 | PMC:PMC9873308 | DOI:10.3389/fendo.2022.993081

Corrigendum: Investigating the effects of Liushen Capsules (LS) on the metabolome of seasonal influenza: A randomized clinical trial

Fri, 27/01/2023 - 12:00
Front Pharmacol. 2023 Jan 4;13:1036927. doi: 10.3389/fphar.2022.1036927. eCollection 2022.ABSTRACT[This corrects the article DOI: 10.3389/fphar.2022.968182.].PMID:36703733 | PMC:PMC9872719 | DOI:10.3389/fphar.2022.1036927

Metabolomic mechanism and pharmacodynamic material basis of Buxue Yimu pills in the treatment of anaemia in women of reproductive age

Fri, 27/01/2023 - 12:00
Front Pharmacol. 2023 Jan 10;13:962850. doi: 10.3389/fphar.2022.962850. eCollection 2022.ABSTRACTObjective: To explore the pharmacological basis and mechanism of Buxue Yimu pills (BYP) in the treatment of anaemia in women from the perspective of metabolomics and network analysis. Materials and Methods: Forty-six women of reproductive age with haemoglobin 70-110 g/L were recruited. Blood samples were collected before and after 4 weeks of oral BYP treatment to assess the changes in haemoglobin, coagulation function, and iron metabolism indices. An integrated analysis of metabolomics (liquid chromatography mass spectrometry) and network analysis was performed to identify the potential pharmacodynamic mechanisms of BYP. Results: After BYP treatment, the haemoglobin level of patients significantly increased from 93.67 ± 9.77 g/L to 109.28 ± 12.62 g/L (p < 0.01), while no significant changes were found in iron metabolism and coagulation-related indicators. A total of 22 differential metabolites were identified after metabolomics analysis, which were mainly related to the inhibition of inflammation and oxidative stress. Integrating pharmacodynamics and metabolomics, a network of drug-active components-targets-metabolic pathways-metabolomics was established. Acetylcholinesterase, phospholipase A2 group IIA, and phospholipase A2 group IVA may be the most promising therapeutic targets. Conclusion: BYP can inhibit inflammation and oxidative stress as well as promote haematopoiesis, potentially improving anaemia.PMID:36703727 | PMC:PMC9871362 | DOI:10.3389/fphar.2022.962850

Secretomes derived from osteogenically differentiated jaw periosteal cells inhibit phenotypic and functional maturation of CD14<sup>+</sup> monocyte-derived dendritic cells

Thu, 26/01/2023 - 12:00
Front Immunol. 2023 Jan 9;13:1024509. doi: 10.3389/fimmu.2022.1024509. eCollection 2022.ABSTRACTThe jaw periosteal tissue is generally recognized as a suitable source for the isolation of mesenchymal stem cells (MSCs). In previous studies we showed evidence that two- and three-dimensionally cultured jaw periosteum-derived MSCs (JPCs) are able to induce a more immature phenotype of dendritic cells (DCs). To further expand our knowledge of JPCs' immunoregulative function, we investigated the effects of JPC secretomes derived from undifferentiated (CO) or osteogenically differentiated cells (treated with or without dexamethasone: OB+/-D) on CD14+ monocyte-derived DCs (MoDCs). We detected a remarkably reduced formation of MoDC homotypic clusters under the influence of secretomes from osteogenically induced JPCs. Further, significantly decreased numbers of CD83+ cells, up-regulated CD209 and down-regulated CD80, CD86 and CD197 expression levels were detected on the surface of MoDCs. Whereas secretomes from JPCs osteogenically stimulated with dexamethasone significantly enhanced FITC-dextran uptake capacity of MoDCs, the increase by secretomes of JPCs treated without dexamethasone did not reach significance. The analysis of mixed lymphocyte reactions revealed that OB+/-D secretomes were able to significantly reduce the numbers of proliferating CD14- peripheral blood mononuclear cells (PBMCs) and of proliferating CD4+ T cells. The OB-D secretome significantly promoted the expansion of regulatory CD25+ T cells. Regarding gene expression of MoDCs, remarkably up-regulated mRNA expression of CD209, HLA-DRA, CSF3, IL10 and IL8 was detected when DCs were cultured in the presence of OB+/-D secretomes. At the same time, secretomes seemed to have an impact in the down-regulation of IFNγ and IL12B gene expression. At protein level, OB+/-D secretomes significantly up-regulated IL-10 and IDO (indoleamine-pyrrole 2,3-dioxygenase) levels whereas IL-12/IL-23p40 levels were down-regulated in supernatants of MoDCs when cultured under the presence of OB+/-D secretomes. Taken together, while secretomes from untreated JPCs had only little effects on the process of maturation of MoDCs, secretomes derived from osteogenically induced JPCs were able to inhibit the phenotypic and functional maturation of MoDCs.PMID:36700194 | PMC:PMC9868599 | DOI:10.3389/fimmu.2022.1024509

Short-term feeding of defatted bovine colostrum mitigates inflammation in the gut via changes in metabolites and microbiota in a chicken animal model

Thu, 26/01/2023 - 12:00
Anim Microbiome. 2023 Jan 26;5(1):6. doi: 10.1186/s42523-023-00225-z.ABSTRACTBACKGROUND: Nondrug supplement strategies to improve gut health have largely focused on the effects of individual compounds to improve one aspect of gut homeostasis. However, there is no comprehensive assessment of the reproducible effects of oral, short-term, low-level colostrum supplementation on gut inflammation status that are specific to the ileum. Herein, a chicken animal model highly responsive to even mild gut inflammatory stimuli was employed to compare the outcomes of feeding a standard diet (CON) to those of CON supplemented with a centrifuge-defatted bovine colostrum (BC) or a nonfat dried milk (NFDM) control on the efficiency of nutrient use, ileal morphology, gut nitro-oxidative inflammation status, metabolites, and the composition of the microbiota.RESULTS: A repeated design, iterative multiple regression model was developed to analyze how BC affected ileal digesta-associated anti-inflammatory metabolite abundance coincident with observed changes in the ileal microbiome, mitigation of epithelial inflammation, and ileal surface morphology. An improved whole body nutrient use efficiency in the BC group (v CON and NFDM) coincided with the observed increased ileum absorptive surface and reduced epithelial cell content of tyrosine-nitrated protein (NT, biomarker of nitro-oxidative inflammatory stress). Metabolome analysis revealed that anti-inflammatory metabolites were significantly greater in abundance in BC-fed animals. BC also had a beneficial BC impact on microbiota, particularly in promoting the presence of the bacterial types associated with eubiosis and the segmented filamentous bacteria, Candidatus Arthromitus.CONCLUSION: The data suggest that an anti-inflammatory environment in the ileum was more evident in BC than in the other feeding groups and associated with an increased content of statistically definable groups of anti-inflammatory metabolites that appear to functionally link the observed interactions between the host's improved gut health with an observed increase in whole body nutrient use efficiency, beneficial changes in the microbiome and immunometabolism.PMID:36703224 | DOI:10.1186/s42523-023-00225-z

Combined metabolic activators improve cognitive functions in Alzheimer's disease patients: a randomised, double-blinded, placebo-controlled phase-II trial

Thu, 26/01/2023 - 12:00
Transl Neurodegener. 2023 Jan 26;12(1):4. doi: 10.1186/s40035-023-00336-2.ABSTRACTBACKGROUND: Alzheimer's disease (AD) is associated with metabolic abnormalities linked to critical elements of neurodegeneration. We recently administered combined metabolic activators (CMA) to the AD rat model and observed that CMA improves the AD-associated histological parameters in the animals. CMA promotes mitochondrial fatty acid uptake from the cytosol, facilitates fatty acid oxidation in the mitochondria, and alleviates oxidative stress.METHODS: Here, we designed a randomised, double-blinded, placebo-controlled phase-II clinical trial and studied the effect of CMA administration on the global metabolism of AD patients. One-dose CMA included 12.35 g L-serine (61.75%), 1 g nicotinamide riboside (5%), 2.55 g N-acetyl-L-cysteine (12.75%), and 3.73 g L-carnitine tartrate (18.65%). AD patients received one dose of CMA or placebo daily during the first 28 days and twice daily between day 28 and day 84. The primary endpoint was the difference in the cognitive function and daily living activity scores between the placebo and the treatment arms. The secondary aim of this study was to evaluate the safety and tolerability of CMA. A comprehensive plasma metabolome and proteome analysis was also performed to evaluate the efficacy of the CMA in AD patients.RESULTS: We showed a significant decrease of AD Assessment Scale-cognitive subscale (ADAS-Cog) score on day 84 vs day 0 (P = 0.00001, 29% improvement) in the CMA group. Moreover, there was a significant decline (P = 0.0073) in ADAS-Cog scores (improvement of cognitive functions) in the CMA compared to the placebo group in patients with higher ADAS-Cog scores. Improved cognitive functions in AD patients were supported by the relevant alterations in the hippocampal volumes and cortical thickness based on imaging analysis. Moreover, the plasma levels of proteins and metabolites associated with NAD + and glutathione metabolism were significantly improved after CMA treatment.CONCLUSION: Our results indicate that treatment of AD patients with CMA can lead to enhanced cognitive functions and improved clinical parameters associated with phenomics, metabolomics, proteomics and imaging analysis. Trial registration ClinicalTrials.gov NCT04044131 Registered 17 July 2019, https://clinicaltrials.gov/ct2/show/NCT04044131.PMID:36703196 | DOI:10.1186/s40035-023-00336-2

Urine-based multi-omic comparative analysis of COVID-19 and bacterial sepsis-induced ARDS

Thu, 26/01/2023 - 12:00
Mol Med. 2023 Jan 26;29(1):13. doi: 10.1186/s10020-023-00609-6.ABSTRACTBACKGROUND: Acute respiratory distress syndrome (ARDS), a life-threatening condition during critical illness, is a common complication of COVID-19. It can originate from various disease etiologies, including severe infections, major injury, or inhalation of irritants. ARDS poses substantial clinical challenges due to a lack of etiology-specific therapies, multisystem involvement, and heterogeneous, poor patient outcomes. A molecular comparison of ARDS groups holds the potential to reveal common and distinct mechanisms underlying ARDS pathogenesis.METHODS: We performed a comparative analysis of urine-based metabolomics and proteomics profiles from COVID-19 ARDS patients (n = 42) and bacterial sepsis-induced ARDS patients (n = 17). To this end, we used two different approaches, first we compared the molecular omics profiles between ARDS groups, and second, we correlated clinical manifestations within each group with the omics profiles.RESULTS: The comparison of the two ARDS etiologies identified 150 metabolites and 70 proteins that were differentially abundant between the two groups. Based on these findings, we interrogated the interplay of cell adhesion/extracellular matrix molecules, inflammation, and mitochondrial dysfunction in ARDS pathogenesis through a multi-omic network approach. Moreover, we identified a proteomic signature associated with mortality in COVID-19 ARDS patients, which contained several proteins that had previously been implicated in clinical manifestations frequently linked with ARDS pathogenesis.CONCLUSION: In summary, our results provide evidence for significant molecular differences in ARDS patients from different etiologies and a potential synergy of extracellular matrix molecules, inflammation, and mitochondrial dysfunction in ARDS pathogenesis. The proteomic mortality signature should be further investigated in future studies to develop prediction models for COVID-19 patient outcomes.PMID:36703108 | DOI:10.1186/s10020-023-00609-6

Photodriven Chemical Synthesis by Whole-Cell-Based Biohybrid Systems: From System Construction to Mechanism Study

Thu, 26/01/2023 - 12:00
ACS Appl Mater Interfaces. 2023 Jan 26. doi: 10.1021/acsami.2c19528. Online ahead of print.ABSTRACTBy simulating natural photosynthesis, the desirable high-value chemical products and clean fuels can be sustainably generated with solar energy. Whole-cell-based photosensitized biohybrid system, which innovatively couples the excellent light-harvesting capacity of semiconductor materials with the efficient catalytic ability of intracellular biocatalysts, is an appealing interdisciplinary creature to realize photodriven chemical synthesis. In this review, we summarize the constructed whole-cell-based biohybrid systems in different application fields, including carbon dioxide fixation, nitrogen fixation, hydrogen production, and other chemical synthesis. Moreover, we elaborate the charge transfer mechanism studies of representative biohybrids, which can help to deepen the current understanding of the synergistic process between photosensitizers and microorganisms, and provide schemes for building novel biohybrids with less electron transfer resistance, advanced productive efficiency, and functional diversity. Further exploration in this field has the prospect of making a breakthrough on the biotic-abiotic interface that will provide opportunities for multidisciplinary research.PMID:36702806 | DOI:10.1021/acsami.2c19528

The effect of regulating MCU expression on experimental ischemic brain injury

Thu, 26/01/2023 - 12:00
Exp Neurol. 2023 Jan 23:114329. doi: 10.1016/j.expneurol.2023.114329. Online ahead of print.ABSTRACTMitochondrial calcium uniporter (MCU) is a critical channel for Ca2+ influx into mitochondria. The present study aimed to determine if MCU knockdown has beneficial effects on ischemic brain injury and to explore the underlying mechanisms. The present study demonstrated that MCU knockdown but not total knockout (KO) attenuated ischemia infarction volume and primary cortical neuronal cells' ischemic damage. MCU knockdown maintained mitochondrial ultrastructure, alleviated calcium overload, and reduced mitochondrial apoptosis. Moreover, MCU knockdown regulated the changes of MICU1 and MICU2 after cerebral infarction, while no changes were observed in other mitochondrial calcium handling proteins. Based on metabolomics, MCU knockdown reversed middle cerebral artery occlusion (MCAO)-induced up-regulated phosphoenolpyruvate and down-regulated GDP to protect energy metabolism after cerebral infarction. Furthermore, a total of 87 and 245 differentially expressed genes (DEGs) were detected by transcriptome sequencing among WT mice, MCU KO mice and MCU knockdown mice in the MCAO model, respectively. Then, NR4A1 was identified as one of the DEGs in different MCU expressions in vivo ischemia stroke model via transcriptomic screening and genetic validation. Furthermore, MCU knockdown downregulated the ischemia-induced upregulation of NR4A1 expression. Together, this is the further evidence that the MCU knockdown exerts a protective role after cerebral infarction by promoting calcium homeostasis, inhibiting mitochondrial apoptosis and protecting energy metabolism.PMID:36702427 | DOI:10.1016/j.expneurol.2023.114329

Targeted metabolomics analysis identified the role of FOXA1 in the change in glutamate-glutamine metabolic pattern of BaP malignantly transformed 16HBE cells

Thu, 26/01/2023 - 12:00
Toxicol Appl Pharmacol. 2023 Jan 23:116402. doi: 10.1016/j.taap.2023.116402. Online ahead of print.ABSTRACTThe carcinogenic mechanism of benzo[a]pyrene (BaP) is far from being elucidated. FOXA1 has been confirmed to play an oncogenic role in BaP-transformed cell THBEc1. To explore the changes in amino acid metabolic patterns, especially glutamate-glutamine (Glu-Gln) metabolic pattern caused by BaP-induced transformation and the possible role FOXA1 might play in it, we compared amino acid metabolic characteristics between THBEc1 cells and control 16HBE cells using a targeted metabolomics method and determined the effects of FOXA1 knockout on the amino acid metabolic pattern using FOXA1 knockout cell THBEc1-ΔFOXA1-c34. The amino acid metabolic patterns of THBEc1 and 16HBE cells were different, which was manifested by the differential consumption of 18 amino acids and the difference in the intracellular content of 21 amino acids. The consumption and intracellular content of Glu and Gln are different between the two types of cells, accompanied by upregulation of FOXA1, GLUL, SLC1A3, SLC1A4, SLC1A5 and SLC6A14, and downregulation of FOXA2 and GPT2 in THBEc1 cells. FOXA1 knockout changed the consumption of 19 amino acids and the intracellular content of 21 amino acids and reversed the metabolic pattern of Glu and the changes in FOXA2, GLUL, SLC1A3 and SLC6A14 in THBEc1 cells. Additionally, FOXA1 knockout inhibited cell proliferation and further increased the dependence of THBEc1 cells on Glu. In conclusion, FOXA1 knockout partially reversed the change in Glu-Gln metabolism caused by BaP-induced transformation by upregulating the expression of GLUL and SLC1A3. Our findings provide a clue for the possible role of FOXA1 in amino acid metabolism regulation.PMID:36702312 | DOI:10.1016/j.taap.2023.116402

Catechins prevent obesity-induced kidney damage by modulating PPARγ/CD36 pathway and gut-kidney axis in rats

Thu, 26/01/2023 - 12:00
Life Sci. 2023 Jan 23:121437. doi: 10.1016/j.lfs.2023.121437. Online ahead of print.ABSTRACTObesity is an epidemic and a growing public health concern worldwide. It is one of the significant risk factors for developing chronic kidney disease. In the present study, we evaluated the preventive effect of green tea catechins (GTC) against obesity-induced kidney damage and revealed the underlying molecular mechanism of action. Various green tea catechins were quantified in the catechins-rich fraction using HPLC. In vitro, the palmitic and oleic acid-treated NRK-52E cells showed reduced fat accumulation and modulated the expressions of PPARγ, CD36, and TGFβ after GTC treatment. In vivo, rats were fed with a high-fat diet (HFD), and the effect of GTC was assessed at 150 and 300 mg/kg body weight doses. HFD-fed rats showed a significant reduction in weight gain and improved serum creatinine, urea, and urine microalbumin levels after GTC treatment. The improved adipokines and insulin levels in GTC treated groups indicated the insulin-sensitizing effect. Histopathology revealed reduced degenerative changes, fibrous tissue deposition, and mesangial matrix proliferation in GTC treated groups. GTC treatment also downregulated the gene expressions of lipogenic and inflammatory factors and improved the altered expressions of CD36 and PPARγ in the kidney tissue. Further, GTC prevented gut dysbiosis in rats by promoting healthy microbes like Akkermansia muciniphila and Lactobacillus reuteri. Faecal metabolome revealed reduced saturated fatty acids, and improved amino acid levels in the GTC treated groups, which help to maintain gut health and metabolism. Overall, GTC prevented obesity-induced kidney damage by modulating PPARγ/CD36 signaling and maintaining gut health in rats.PMID:36702203 | DOI:10.1016/j.lfs.2023.121437

Pages