Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Modulating phenylalanine metabolism by L. acidophilus alleviates alcohol-related liver disease through enhancing intestinal barrier function

Sat, 04/02/2023 - 12:00
Cell Biosci. 2023 Feb 4;13(1):24. doi: 10.1186/s13578-023-00974-z.ABSTRACTBACKGROUND: Impaired metabolic functions of gut microbiota have been demonstrated in alcohol-related liver disease (ALD), but little is known about changes in phenylalanine metabolism.METHODS: Bacterial genomics and fecal metabolomics analysis were used to recognize the changes of phenylalanine metabolism and its relationship with intestinal flora. Intestinal barrier function was detected by intestinal alkaline phosphatase (IAP) activity, levels of tight junction protein expression, colonic inflammation and levels of serum LPS. Lactobacillus acidophilus was chosen to correct phenylalanine metabolism of ALD mice by redundancy analysis and Pearson correlation analysis.RESULTS: Using 16S rRNA sequencing and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) methods, we identified elevated levels of phenylalanine and its' metabolites in the gut of alcohol-fed mice compared to control mice and were negatively correlated with the abundance of Lactobacillus, which mainly metabolized phenylalanine. The intestinal phenylalanine level was positively correlated with the colon inflammatory factors TNF-α and IL-6, and negatively correlated with ZO-1 and Occludin. While intestinal alkaline phosphatase (IAP) activity was negatively correlated with the colon inflammatory factors TNF-α, IL-6 and MCP-1, and positively correlated with ZO-1 and Occludin. Increased phenylalanine inhibited IAP activity, blocked LPS dephosphorylation, increased colonic inflammation and bacterial translocation. Phenylalanine supplementation aggravated alcohol-induced liver injury and intestinal barrier dysfunction. Among the 37 Lactobacillus species, the abundance of Lactobacillus acidophilus was most significantly decreased in ALD mice. Supplementation with L. acidophilus recovered phenylalanine metabolism and protected mice from alcohol-induced steatohepatitis.CONCLUSIONS: Recovery of phenylalanine metabolism through the oral supplementation of L. acidophilus boosted intestinal barrier integrity and ameliorated experimental ALD.PMID:36739426 | DOI:10.1186/s13578-023-00974-z

Metabolomic profiling in kidney cells treated with a sodium glucose-cotransporter 2 inhibitor

Sat, 04/02/2023 - 12:00
Sci Rep. 2023 Feb 4;13(1):2026. doi: 10.1038/s41598-023-28850-3.ABSTRACTWe aimed to determine the metabolomic profile of kidney cells under high glucose conditions and following sodium-glucose cotransporter 2 (SGLT2) inhibitor treatment. Targeted metabolomics using the Absolute IDQ-p180 kit was applied to quantify metabolites in kidney cells stimulated with high glucose (25 and 50 mM) and treated with SGLT2 inhibitor, dapagliflozin (2 µM). Primary cultured human tubular epithelial cells and podocytes were used to identify the metabolomic profile in high glucose conditions following dapagliflozin treatment. The levels of asparagine, PC ae C34:1, and PC ae C36:2 were elevated in tubular epithelial cells stimulated with 50 mM glucose and were significantly decreased after 2 µM dapagliflozin treatment. The level of PC aa C32:0 was significantly decreased after 50 mM glucose treatment compared with the control, and its level was significantly increased after dapagliflozin treatment in podocytes. The metabolism of glutathione, asparagine and proline was significantly changed in tubular epithelial cells under high-glucose stimulation. And the pathway analysis showed that aminoacyl-tRNA biosynthesis, arginine and proline metabolism, glutathione metabolism, valine, leucine and isoleucine biosynthesis, phenylalanine, tyrosine, and tryptophan biosynthesis, beta-alanine metabolism, phenylalanine metabolism, arginine biosynthesis, alanine, aspartate and glutamate metabolism, glycine, serine and threonine metabolism were altered in tubular epithelial cells after dapagliflozin treatment following 50 mM glucose compared to those treated with 50 mM glucose.PMID:36739309 | DOI:10.1038/s41598-023-28850-3

Circulating citric acid cycle metabolites and risk of cardiovascular disease in the PREDIMED study

Sat, 04/02/2023 - 12:00
Nutr Metab Cardiovasc Dis. 2023 Jan 12:S0939-4753(23)00007-8. doi: 10.1016/j.numecd.2023.01.002. Online ahead of print.ABSTRACTBACKGROUND AND AIM: Plasma citric acid cycle (CAC) metabolites might be likely related to cardiovascular disease (CVD). However, studies assessing the longitudinal associations between circulating CAC-related metabolites and CVD risk are lacking. The aim of this study was to evaluate the association of baseline and 1-year levels of plasma CAC-related metabolites with CVD incidence (a composite of myocardial infarction, stroke or cardiovascular death), and their interaction with Mediterranean diet interventions.METHODS AND RESULTS: Case-cohort study from the PREDIMED trial involving participants aged 55-80 years at high cardiovascular risk, allocated to MedDiets or control diet. A subcohort of 791 participants was selected at baseline, and a total of 231 cases were identified after a median follow-up of 4.8 years. Nine plasma CAC-related metabolites (pyruvate, lactate, citrate, aconitate, isocitrate, 2-hydroxyglutarate, fumarate, malate and succinate) were measured using liquid chromatography-tandem mass spectrometry. Weighted Cox multiple regression was used to calculate hazard ratios (HRs). Baseline fasting plasma levels of 3 metabolites were associated with higher CVD risk, with HRs (for each standard deviation, 1-SD) of 1.46 (95%CI:1.20-1.78) for 2-hydroxyglutarate, 1.33 (95%CI:1.12-1.58) for fumarate and 1.47 (95%CI:1.21-1.78) for malate (p of linear trend <0.001 for all). A higher risk of CVD was also found for a 1-SD increment of a combined score of these 3 metabolites (HR = 1.60; 95%CI: 1.32-1.94, p trend <0.001). This result was replicated using plasma measurements after one-year. No interactions were detected with the nutritional intervention.CONCLUSION: Plasma 2-hydroxyglutarate, fumarate and malate levels were prospectively associated with increased cardiovascular risk.CLINICAL TRIAL NUMBER: ISRCTN35739639.PMID:36739229 | DOI:10.1016/j.numecd.2023.01.002

Phytotoxicity of microplastics to the floating plant Spirodela polyrhiza (L.): Plant functional traits and metabolomics

Sat, 04/02/2023 - 12:00
Environ Pollut. 2023 Feb 2:121199. doi: 10.1016/j.envpol.2023.121199. Online ahead of print.ABSTRACTFreshwater ecosystems are gradually becoming sinks for terrestrial microplastics (MPs), posing a potential ecological risk. Although the effects of MPs on plankton and aquatic animals in freshwater ecosystems have been given increasing attention, the phytotoxicity of MPs to the metabolism of aquatic plants remains unclear. Here, the model aquatic plant Spirodela polyrhiza (L.) Schleid. (S. polyrhiza) was exposed to polyvinyl chloride (PVC; 0, 10, 100 and 1000 mg/L) MPs, and changes in the plant functional traits and physiological metabolism were monitored. The results showed that the high dose of PVC MPs decreased the adventitious root elongation ratio by 41.68% and leaf multiplication ratio by 61.03% of S. polyrhiza, and resulted in the decrease in anthocyanin and nitrogen contents to 63.45% and 84.21% of the control group, respectively. Moreover, the widely targeted metabolomics analysis results showed 37 differential metabolites in the low-dose treatment and 119 differential metabolites in the high-dose treatment. PVC MPs interfered with organic matter accumulation by affecting carbon metabolism, nitrogen metabolism, amino acid metabolism and lipid metabolism, and S. polyrhiza resists PVC MP stress by regulating the synthesis and metabolism of secondary metabolites. PVC MPs had concentration-related toxicological effects on plant functional traits, inhibited plant growth and reproduction, affected plant nutrient metabolism, and exhibited profound effects on the nitrogen fate of aquatic plant habitats. Overall, we systematically summarized the metabolic response mechanisms of aquatic plants to PVC MP stress, providing a new perspective for studying the effects of MPs on plant trait function and ecological risks.PMID:36738884 | DOI:10.1016/j.envpol.2023.121199

Metabolic Profiling for the Discovery of Two Rare Fusidane-type Heterodimers from the Fungal Endophyte Acremonium pilosum F47

Sat, 04/02/2023 - 12:00
Steroids. 2023 Feb 2:109188. doi: 10.1016/j.steroids.2023.109188. Online ahead of print.ABSTRACTIn our process of studying fusidane-type antibiotics, metabolomics-guided chemical investigation on the endophytic Acremonium pilosum F47 led to the isolation of two unique heterodimers, acremonidiols B and C (1 and 2) consisting of a fusidane-type triterpenoid motif and a steroid unit. Four biosynthetically related known natural products including fusidic acid (FA, 3), as well as ergosterol derivatives (4-6) were also obtained. Their structures were determined by the analyses of ESI-HRMS and NMR data. Compounds 1 and 2, as hybrid molecules comprising the fusidane triterpenoid and steroid, are rare in nature. Compared with the clinically used antibiotic FA (3), new compounds 1 and 2 showed no obvious antibiotic activity, indicating the importance of free C-21 carboxyl group for antibacterial activity.PMID:36738818 | DOI:10.1016/j.steroids.2023.109188

Multimarkers of metabolic malnutrition and inflammation and their association with mortality risk in cardiac catheterisation patients: a prospective, longitudinal, observational, cohort study

Sat, 04/02/2023 - 12:00
Lancet Healthy Longev. 2023 Feb;4(2):e72-e82. doi: 10.1016/S2666-7568(23)00001-6.ABSTRACTBACKGROUND: Complex and incompletely understood metabolic dysfunction associated with inflammation and protein-energy wasting contribute to the increased mortality risk of older patients and those with chronic organ diseases affected by cachexia, sarcopenia, malnutrition, and frailty. However, these wasting syndromes have uncertain relevance for patients with cardiovascular disease or people at lower risk. Studies are hampered by imperfect objective clinical assessment tools for these intertwined metabolic malnutrition and inflammation syndromes. We aimed to assess, in two independent cohorts of patients who underwent cardiac catheterisation, the mortality risk associated with the metabolic vulnerability index (MVX), a multimarker derived from six simultaneously measured serum biomarkers plausibly linked to these dysmetabolic syndromes.METHODS: In this prospective, longitudinal, observational study, we included patients aged ≥18 years recruited into the CATHGEN biorepository (Jan 2, 2001, to Dec 30, 2011) and the Intermountain Heart Collaborative Study (Sept 12, 2000, to Sept 21, 2006) who underwent coronary angiography and had clinical nuclear magnetic resonance metabolomic profiling done on frozen plasma obtained at catheterisation. We aggregated six mortality risk biomarkers (GlycA, small HDL, valine, leucine, isoleucine, and citrate concentrations) into sex-specific MVX multimarker scores using coefficients from predictive models for all-cause mortality in the CATHGEN cohort. We assessed associations of biomarkers and MVX with mortality in both cohorts using Cox proportional hazards models adjusted for 15 clinical covariates.FINDINGS: We included 5876 participants from the CATHGEN biorepository and 2888 from the Intermountain Heart study. Median follow-up was 6·2 years (IQR 4·4-8·9) in CATHGEN and 8·2 years (6·9-9·2) in the Intermountain Heart study. The six nuclear magnetic resonance biomarkers and MVX made strong, independent contributions to 5-year mortality risk prediction in both cohorts (hazard ratio 2·18 [95% CI 2·03-2·34] in the CATHGEN cohort and 1·67 [1·50-1·87] in the Intermountain Heart cohort). CATHGEN subgroup analyses showed similar MVX associations in men and women, older and younger individuals, for death from cardiovascular or non-cardiovascular causes, and in patients with or without multiple comorbidities.INTERPRETATION: MVX made a dominant contribution to mortality prediction in patients with cardiovascular disease and in low-risk subgroups without pre-existing disease, suggesting that metabolic malnutrition-inflammation syndromes might have a more universal role in survival than previously thought.FUNDING: Labcorp.PMID:36738747 | DOI:10.1016/S2666-7568(23)00001-6

Effect of ultrasound combined with exogenous GABA treatment on polyphenolic metabolites and antioxidant activity of mung bean during germination

Sat, 04/02/2023 - 12:00
Ultrason Sonochem. 2023 Jan 25;94:106311. doi: 10.1016/j.ultsonch.2023.106311. Online ahead of print.ABSTRACTMung bean seeds were treated by a combination of ultrasound and γ-aminobutyric acid (GABA). Effect of these treatments on the free polyphenols content, antioxidant activity, and digestibility of mung bean sprouts was evaluated. Additionally, phenolic compounds were analyzed and identified using a metabolomics approach. The combined ultrasound and GABA treatments significantly enhanced the free polyphenols and flavonoids content (P < 0.05) of mung bean sprouts depending on sprouting duration. Besides, a positive correlation (P < 0.05) was found between the polyphenols content and in vitro antioxidant activity of mung bean sprouts. Moreover, a total number of 608 metabolites were detected, and 55 polyphenol compounds were identified, including flavonoids, isoflavones, phenols, and coumarins. Also, the KEGG metabolic pathway analysis revealed 10 metabolic pathways of phenols, including flavonoid, isoflavone, and phenylpropanoid biosynthesis. Powder of 48 h sprouted mung bean released polyphenols during simulated gastric digestion and possessed antioxidant activity.PMID:36738696 | DOI:10.1016/j.ultsonch.2023.106311

Natural nanocolloids regulate the fate and phytotoxicity of hematite particles in water

Sat, 04/02/2023 - 12:00
Water Res. 2023 Jan 29;232:119678. doi: 10.1016/j.watres.2023.119678. Online ahead of print.ABSTRACTHematite (the most abundant iron oxide polymorph) is widely detected in the water environment and has attracted considerable attention. Natural nanocolloids (Ncs) exist ubiquitously in surface waters and play critical roles in biogeochemical processes. However, the influences of Ncs on the fate and phytotoxicity of hematite remain unknown. In this study, the infrared absorption spectra coupled with two-dimensional correlation spectroscopy analysis reveal that the specific binding interactions between Ncs and hematite primarily occur via hydrophilic effects and π-π interactions with an increase in the Ncs contact time. Moreover, binding with Ncs slightly promoted the aggregation rates of hematite particles in the BG-11 medium. Interestingly, Ncs remarkably mitigate the phytotoxicity (e.g., growth inhibition, oxidative stress, and mitochondrial toxicity) of nanosized and submicrosized hematite particles to Chlorella vulgaris after a 96 h exposure. The integrating metabolomic and transcriptomic analysis reveals that the regulated urea cycle, amino acids, and fatty acid-related metabolites (e.g., urea, serine, glutamate, and hexadecenoic acid) and genes (e.g., ACY1, CysC, and GLA) contribute to persistent phytotoxicity. This study provides new insights into the roles and mechanisms of natural Ncs in regulating the environmental risk of iron oxide minerals in aqueous media.PMID:36738560 | DOI:10.1016/j.watres.2023.119678

Integrative physiological, transcriptome and metabolome analysis reveals the involvement of carbon and flavonoid biosynthesis in low phosphorus tolerance in cotton

Sat, 04/02/2023 - 12:00
Plant Physiol Biochem. 2023 Jan 28;196:302-317. doi: 10.1016/j.plaphy.2023.01.042. Online ahead of print.ABSTRACTPhosphorus (P) is an essential nutrient controlling plant growth and development through the regulation of basic metabolic processes; however, the molecular details of these pathways remain largely unknown. In this study, physiological, transcriptome, and metabolome analysis were compared for two cotton genotypes with different low P tolerance under P starvation and resupply. The results showed that the glucose, fructose, sucrose, and starch contents increased by 18.2%, 20.4%, 20.2%, and 14.3% in the roots and 18.3%, 23.3%, 11.0%, and 13.6% in the shoot of Jimian169 than DES926, respectively. Moreover, the activities of enzymes related to carbon and phosphorus metabolism were higher in the roots and shoots of Jimian169 than DES926. In addition, transcriptome analysis revealed that the number of differentially expressed genes (DEGs) was higher in both roots (830) and shoots (730) under P starvation and the DEGs drastically reduced upon P resupply. The KEGG analysis indicated that DEGs were mainly enriched in phenylpropanoid biosynthesis, carbon metabolism, and photosynthesis. The metabolome analysis showed the enrichment of phenylpropanoid, organic acids and derivatives, and lipids in all the pairs at a given time point. The combined transcriptome and metabolome analysis revealed that carbon metabolism and flavonoid biosynthesis are involved in the P starvation response in cotton. Moreover, co-expression network analysis identified 3 hub genes in the roots and shoots that regulate the pathways involved in the P starvation response. This study provides the foundation for understanding the mechanisms of low P tolerance and the hub genes as a potential target for the development of low P tolerant genotypes.PMID:36738510 | DOI:10.1016/j.plaphy.2023.01.042

Berries in Microbiome-Mediated Gastrointestinal, Metabolic, and Immune Health

Sat, 04/02/2023 - 12:00
Curr Nutr Rep. 2023 Feb 4. doi: 10.1007/s13668-023-00449-0. Online ahead of print.ABSTRACTPURPOSE OF REVIEW: Current research has shown that berry-derived polymeric substrates that resist human digestion (dietary fibers and polyphenols) are extensively metabolized in the gastrointestinal tract dominated by microbiota. This review assesses current epidemiological, experimental, and clinical evidence of how berry (strawberry, blueberry, raspberry, blackberry, cranberry, black currant, and grapes) phytochemicals interact with the microbiome and shape health or metabolic risk factor outcomes.RECENT FINDINGS: There is a growing evidence that the compositional differences among complex carbohydrate fractions and classes of polyphenols define reversible shifts in microbial populations and human metabolome to promote gastrointestinal health. Interventions to prevent gastrointestinal inflammation and improve metabolic outcomes may be achieved with selection of berries that provide distinct polysaccharide substrates for selective multiplication of beneficial microbiota or oligomeric decoys for binding and elimination of the pathogens, as well as phenolic substrates that hold potential to modulate gastrointestinal mucins, reduce luminal oxygen, and release small phenolic metabolites signatures capable of ameliorating inflammatory and metabolic perturbations. These mechanisms may explain many of the differences in microbiota and host gastrointestinal responses associated with increased consumption of berries, and highlight potential opportunities to intentionally shift gut microbiome profiles or to modulate risk factors associated with better nutrition and health outcomes.PMID:36738429 | DOI:10.1007/s13668-023-00449-0

Machine learning predictive performance evaluation of conventional and fuzzy radiomics in clinical cancer imaging cohorts

Sat, 04/02/2023 - 12:00
Eur J Nucl Med Mol Imaging. 2023 Feb 4. doi: 10.1007/s00259-023-06127-1. Online ahead of print.ABSTRACTBACKGROUND: Hybrid imaging became an instrumental part of medical imaging, particularly cancer imaging processes in clinical routine. To date, several radiomic and machine learning studies investigated the feasibility of in vivo tumor characterization with variable outcomes. This study aims to investigate the effect of recently proposed fuzzy radiomics and compare its predictive performance to conventional radiomics in cancer imaging cohorts. In addition, lesion vs. lesion+surrounding fuzzy and conventional radiomic analysis was conducted.METHODS: Previously published 11C Methionine (MET) positron emission tomography (PET) glioma, 18F-FDG PET/computed tomography (CT) lung, and 68GA-PSMA-11 PET/magneto-resonance imaging (MRI) prostate cancer retrospective cohorts were included in the analysis to predict their respective clinical endpoints. Four delineation methods including manually defined reference binary (Ref-B), its smoothed, fuzzified version (Ref-F), as well as extended binary (Ext-B) and its fuzzified version (Ext-F) were incorporated to extract imaging biomarker standardization initiative (IBSI)-conform radiomic features from each cohort. Machine learning for the four delineation approaches was performed utilizing a Monte Carlo cross-validation scheme to estimate the predictive performance of the four delineation methods.RESULTS: Reference fuzzy (Ref-F) delineation outperformed its binary delineation (Ref-B) counterpart in all cohorts within a volume range of 938-354987 mm3 with relative cross-validation area under the receiver operator characteristics curve (AUC) of +4.7-10.4. Compared to Ref-B, the highest AUC performance difference was observed by the Ref-F delineation in the glioma cohort (Ref-F: 0.74 vs. Ref-B: 0.70) and in the prostate cohort by Ref-F and Ext-F (Ref-F: 0.84, Ext-F: 0.86 vs. Ref-B: 0.80). In addition, fuzzy radiomics decreased feature redundancy by approx. 20%.CONCLUSIONS: Fuzzy radiomics has the potential to increase predictive performance particularly in small lesion sizes compared to conventional binary radiomics in PET. We hypothesize that this effect is due to the ability of fuzzy radiomics to model partial volume effects and delineation uncertainties at small lesion boundaries. In addition, we consider that the lower redundancy of fuzzy radiomic features supports the identification of imaging biomarkers in future studies. Future studies shall consider systematically analyzing lesions and their surroundings with fuzzy and binary radiomics.PMID:36738311 | DOI:10.1007/s00259-023-06127-1

Screening of housekeeping genes in <em>Gelsemium elegans</em> and expression patterns of genes involved in its alkaloid biosynthesis

Sat, 04/02/2023 - 12:00
Sheng Wu Gong Cheng Xue Bao. 2023 Jan 25;39(1):286-303. doi: 10.13345/j.cjb.220345.ABSTRACTGelsemium elegans is a traditional Chinese herb of medicinal importance, with indole terpene alkaloids as its main active components. To study the expression of the most suitable housekeeping reference genes in G. elegans, the root bark, stem segments, leaves and inflorescences of four different parts of G. elegans were used as materials in this study. The expression stability of 10 candidate housekeeping reference genes (18S, GAPDH, Actin, TUA, TUB, SAND, EF-1α, UBC, UBQ, and cdc25) was assessed through real-time fluorescence quantitative PCR, GeNorm, NormFinder, BestKeeper, ΔCT, and RefFinder. The results showed that EF-1α was stably expressed in all four parts of G. elegans and was the most suitable housekeeping gene. Based on the coexpression pattern of genome, full-length transcriptome and metabolome, the key candidate targets of 18 related genes (AS, AnPRT, PRAI, IGPS, TSA, TSB, TDC, GES, G8H, 8-HGO, IS, 7-DLS, 7-DLGT, 7-DLH, LAMT, SLS, STR, and SGD) involved in the Gelsemium alkaloid biosynthesis were obtained. The expression of 18 related enzyme genes were analyzed by qRT-PCR using the housekeeping gene EF-1α as a reference. The results showed that these genes' expression and gelsenicine content trends were correlated and were likely to be involved in the biosynthesis of the Gelsemium alkaloid, gelsenicine.PMID:36738217 | DOI:10.13345/j.cjb.220345

Assessment of metabolic, mineral, and cytotoxic profile in pineapple leaves of different commercial varieties: A new eco-friendly and inexpensive source of bioactive compounds

Sat, 04/02/2023 - 12:00
Food Res Int. 2023 Feb;164:112439. doi: 10.1016/j.foodres.2022.112439. Epub 2022 Dec 31.ABSTRACTPineapple is among the most produced and consumed fruits worldwide, and consequently, its agroindustrial production/processing generates high amounts of agricultural waste, which are routinely discarded. Thus, it is crucial to seek alternatives to reuse this agricultural waste that are in high availability. Therefore, this work aims to evaluate the chemical composition of a specific residue (leaves) of seven commercial varieties of pineapples, to attribute high added value uses, and to evaluate its potential as a source of secondary metabolites and minerals. Thereby, twenty-eight metabolites were annotated by UPLC-QTOF-MSE, including amino acids, organic acids, and phenolic compounds. The following minerals were quantitatively assessed by ICP-OES: Zn (5.30-19.77 mg kg-1), Cr, Cd, Mn (50.80-113.98 mg kg-1), Cu (1.05-4.01 mg kg-1), P (1030.77-6163.63 mg kg-1) and Fe (9.06-70.17 mg kg-1). In addition, Cr and Cd (toxic materials) present concentration levels below the limit of quantification of the analytical method (LOQCr and LOQCd = 0.02 mg kg-1) for all samples. The multivariate analysis was conceived from the chemical profile, through the tools of PCA (principal component analysis) and HCA (hierarchical cluster analysis). The results show that pineapple leaves have similarities and differences concerning their chemical composition. In addition, the cytotoxicity assays of the extracts against tumor and non-tumor strains shows that the extracts were non-toxic. This fact can corroborate and enhance the prospection of new uses and applications of agroindustrial co-products from pineapple, enabling the evaluation and use in different types of industries, such as pharmacological, cosmetic, and food, in addition to the possibility of being a potential source of bioactive compounds.PMID:36738003 | DOI:10.1016/j.foodres.2022.112439

Comparative phytochemical analysis of Ferula assa-foetida with Ferula jaeschkeana and commercial oleo-gum resins using GC-MS and UHPLC-PDA-QTOF-IMS

Sat, 04/02/2023 - 12:00
Food Res Int. 2023 Feb;164:112434. doi: 10.1016/j.foodres.2022.112434. Epub 2022 Dec 31.ABSTRACTFerula assa-foetida is an important species of the genus Ferula, best known for its oleo-gum resin, mainly used as a flavoring agent. Ferula jaeschkeana is another Himalayan medicinal plant of this genus, known for its contraceptive effect but not used in food applications. This study aimed to do a detailed phytochemical analysis of F. assa-foetida growing under controlled conditions in India using GC-MS/headspace and UHPLC-PDA-QTOF-IMS. Further, a comparative analysis of F. assa-foetida was performed with F. jaeschkeana (collected from its natural habitat) and commercial samples of F. assa-foetida oleo-gum resin (collected from the local market). UHPLC-QTOF-IMS profiling of F. assa-foetida led to the identification of foetisulfide C, assafoetidnol A, gumosin, flabellilobin (A/B), and foetisulfide A. In total, 141 metabolites were identified, including vitamins, nucleosides, sulfur compounds, flavonoids, sugars derivatives, and others, using METLIN database. Serine, arginine, asparagine, isoleucine, and phenylalanine were major amino acids quantified among the samples for the nutritional aspect. Characteristic sulfurous compounds (n-propyl-sec-butyl disulfide, trans-propenyl-sec-butyl disulfide, cis-propenyl-sec-butyl disulfide, and bis[1-(methylthio)propyl] disulfide) were identified in all samples except F. jaeschkeana. PCA and cluster analysis showed a significant difference in the volatile constituents of rhizomes of both species. Metabolomics studies also revealed the association of sesquiterpenoid and triterpenoid biosynthesis, phenylpropanoid, flavon, and flavanol biosynthesis. The current study demonstrates, "why only F. assa-foetida is used in culinary applications instead of F. jaeschkeana"?PMID:36738001 | DOI:10.1016/j.foodres.2022.112434

Key metabolites and mechanistic insights in forchlorfenuron controlling kiwifruit development

Sat, 04/02/2023 - 12:00
Food Res Int. 2023 Feb;164:112412. doi: 10.1016/j.foodres.2022.112412. Epub 2022 Dec 27.ABSTRACTForchlorfenuron (CPPU) is a plant growth regulator widely applied on kiwifruit to improve yield, however, there are rarely reports on its effects on the nutrients of kiwifruits. Based on UHPLC-Q-TOF-MS, the effects of CPPU on metabolism profile and nutrient substances of two kiwifruit varieties during development were investigated by non-targeted metabolomics. A total of 115 metabolites were identified, and 29 differential metabolites were confirmed and quantified using certified reference standards. Metabolic profile indicated that CPPU promoted kiwifruit development during the main expansion stages at the molecular level, and the effects varied slightly for different varieties. In the early and middle stages of kiwifruit development, the anthocyanin, flavone and flavonol biosynthesis were down-regulated in both varieties, and flavanols biosynthesis was down-regulated only in Hayward variety. Arginine biosynthesis was down-regulated at all stages till the harvest. Although the synthesis of these nutrient substances in kiwifruits was mostly down-regulated by CPPU, the negative effects became mild at harvest time, and positively, the significant increase of sucrose and decrease of organic acids at harvest time could help to improve the taste of kiwifruits.PMID:36737992 | DOI:10.1016/j.foodres.2022.112412

Multiple metabolomics comparatively investigated the pulp breakdown of four dragon fruit cultivars during postharvest storage

Sat, 04/02/2023 - 12:00
Food Res Int. 2023 Feb;164:112410. doi: 10.1016/j.foodres.2022.112410. Epub 2022 Dec 28.ABSTRACTPulp breakdown is the main reason for the reduction of fruit quality. However, there are relatively few studies on small molecule metabolites based on the pulp breakdown of dragon fruit. In this study, four dragon fruit cultivars were comparatively analyzed during pulp breakdown. According to five firmness-related and six quality-related indicators, the pulp breakdown rates from low to high were 'Baiyulong (WP, with white pulp)', 'Dahong (RP, with red pulp)', 'Hongshuijing (CRP, with red pulp)' and 'Baishuijing (CWP, with white pulp)'. Five secondary metabolites showed cultivar-specific accumulation, and the increase of their contents during postharvest storage might be related to delaying pulp breakdown. After multiple metabolomics analysis, a total of 186 metabolites were identified, among which 14 primary metabolites, 23 volatiles, 2 hydrolyzed amino acids and 12 free amino acids were considered as key metabolites. The contents of hydrocarbons in WP and RP were much higher than that in CWP and CRP, which was negatively correlated with pulp breakdown. White pulp were rich in amino acids, while red pulp had more soluble sugars, aldehydes and terpenes. The contents of 13 key metabolites increased during pulp breakdown in all four cultivars, mainly including amino acids and alkanes. The contents and changes of those key metabolites might directly or indirectly respond to the pulp quality and resistance of dragon fruit.PMID:36737991 | DOI:10.1016/j.foodres.2022.112410

Investigation of the Quinone-quinone and Quinone-catechol products using <sup>13</sup>C labeling, UPLC-Q-TOF/MS and UPLC-Q-Exactive Orbitrap/MS

Sat, 04/02/2023 - 12:00
Food Res Int. 2023 Feb;164:112397. doi: 10.1016/j.foodres.2022.112397. Epub 2022 Dec 27.ABSTRACTQuinones are highly reactive oxidants and play an essential role in inducing quality deterioration of fruit and vegetable products. Here, a novel stable isotope-labeling approach in combination with high-resolution tandem mass spectrometry UPLC-Q-TOF/MS and UPLC-Q-Exactive Orbitrap/MS, was successfully applied in tracking quinone reaction pathways in both real wines and model reaction systems. Unexpectedly, the binding products of quinone-quinone and quinone-catechol that are not derived from either nucleophilic reaction or redox reaction were discovered and showed the significant high peak area.Self-coupling reactions of semiquinone radicals might provide a possible interpretation for the formation of quinone-quinone products, and a charge transfer reaction coupled with a complementary donor-acceptor interaction is feasibly responsible for the products with a quinone-catechol structure. These findings endow a new perspective for quinone metabolic pathway in foods.PMID:36737980 | DOI:10.1016/j.foodres.2022.112397

Wakame replacement alters the metabolic profile of wheat noodles after in vitro digestion

Sat, 04/02/2023 - 12:00
Food Res Int. 2023 Feb;164:112394. doi: 10.1016/j.foodres.2022.112394. Epub 2022 Dec 28.ABSTRACTThe development of nutritional noodles of high quality has become a new hotspot of research in the area of food science. Since wakame is edible seaweed rich in dietary fiber and proteins and rarely found in ordinary noodle, this study investigated the release of metabolites, the texture quality, and the rheological properties of wakame noodle, as well as the mechanism by which extruded wakame flours can influence noodle texture and viscoelasticity through digestion. Basically, nuclear magnetic resonance spectra were applied to identify the 46 metabolites including amino acids, saccharides, fatty acids, and other metabolites. Both PCA and OPLS-DA model showed fit goodness and good predictivity, which were assessed the increasing release of most metabolites. Structural studies discussed the effects on the enhancement of interlinkage with gluten matrix and protein matrix, which were validated via the decreasing instantaneous compliance J0 (1.64 × 10-5 to 0.16 × 10-5 Pa-1). Wakame addition best matched the physiochemical properties of noodle, in terms of chewiness (99.10 vs 122.66 g.mm), gumminess (281.98 vs. 323.44 g), and gel strength (132.65 vs 173.95 kPa•s-1). Beyond the functional characteristics it contributes benefits like reduction of diet-related diabetes. As a consequence, the creation of personalized nutritious, healthy noodles will be an innovative route from a scientific viewpoint and an application standpoint.PMID:36737976 | DOI:10.1016/j.foodres.2022.112394

Partial compression increases acidity, but decreases phenolics in jujube fruit: Evidence from targeted metabolomics

Sat, 04/02/2023 - 12:00
Food Res Int. 2023 Feb;164:112388. doi: 10.1016/j.foodres.2022.112388. Epub 2022 Dec 27.ABSTRACTJujube fruit (Ziziphus jujuba Mill.) is extremely susceptible to mechanical injury by extrusion and collision during storage, transportation and processing. In this study, we examined the morphology and endogenous metabolism of jujubes at three developmental stages after applying partial compression (PC) to mimic mechanical injury. Generally, PC did not affect the total soluble solids content, but increased the acidity and decreased the amount of phenolics in the jujube fruit. Targeted metabolomics analysis further confirmed that acid and phenolics content were differentially altered in response to PC. To our knowledge, this is the first study to characterize metabolic variations in ready-to-eat fruit that occur in response to physical damage. The results will provide insight into the understanding the consequences of mechanical injury on fruit nutrition and health benefits.PMID:36737973 | DOI:10.1016/j.foodres.2022.112388

Comparative metabolomics of flavonoids in twenty vegetables reveal their nutritional diversity and potential health benefits

Sat, 04/02/2023 - 12:00
Food Res Int. 2023 Feb;164:112384. doi: 10.1016/j.foodres.2022.112384. Epub 2022 Dec 28.ABSTRACTVegetables are rich in flavonoids and are widely consumed in our daily life. However, comprehensive information on flavonoids components in vegetable varieties and the distribution of flavonoids with health-promoting effects in different vegetables are rarely investigated. Here, we analyzed the constitution of flavonoids among 20 vegetables by widely-targeted metabolome analysis. A total of 403 flavonoids were detected and classified as flavonoid, flavonols, anthocyanins, isoflavones, flavonoid carbonoside, dihydroflavone, chalcones, flavanols, dihydroflavonol, tannin, proanthocyanidins, and other flavonoids. Interestingly, we found that the content and types of flavonoids in bean sprouts and hot pepper were relatively abundant, whereas those were lower in carrot, lettuce, and Zizania latifolia. Then, we characterized the representative flavonoids including flavonoid, flavonols, chalcones, and isoflavones, and related them to the health-promoting effects of vegetables. Finally, we examined the relevance of the flavonoids to antioxidant capacity. Both bean sprouts and hot pepper possessed higher antioxidant enzyme activity, which were responsible for their great antioxidant capacity. Our study established a database of major flavonoids components in vegetables and further provides a new hint for the selection and breeding of vegetables based on their health-promoting effects.PMID:36737968 | DOI:10.1016/j.foodres.2022.112384

Pages