Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Metabolic targets of watercress and PEITC in MCF-7 and MCF-10A cells explain differential sensitisation responses to ionising radiation.

Thu, 02/08/2018 - 14:58
Related Articles Metabolic targets of watercress and PEITC in MCF-7 and MCF-10A cells explain differential sensitisation responses to ionising radiation. Eur J Nutr. 2018 Jul 31;: Authors: Giallourou NS, Rowland IR, Rothwell SD, Packham G, Commane DM, Swann JR Abstract PURPOSE: Watercress is a rich source of phytochemicals with anticancer potential, including phenethyl isothiocyanate (PEITC). We examined the potential for watercress extracts and PEITC to increase the DNA damage caused by ionising radiation (IR) in breast cancer cells and to be protective against radiation-induced collateral damage in healthy breast cells. The metabolic events that mediate such responses were explored using metabolic profiling. METHODS: 1H nuclear magnetic resonance spectroscopy-based metabolic profiling was coupled with DNA damage-related assays (cell cycle, Comet assay, viability assays) to profile the comparative effects of watercress and PEITC in MCF-7 breast cancer cells and MCF-10A non-tumorigenic breast cells with and without exposure to IR. RESULTS: Both the watercress extract and PEITC-modulated biosynthetic pathways of lipid and protein synthesis and resulted in changes in cellular bioenergetics. Disruptions to the redox balance occurred with both treatments in the two cell lines, characterised by shifts in the abundance of glutathione. PEITC enhanced the sensitivity of the breast cancer cells to IR increasing the effectiveness of the cancer-killing process. In contrast, watercress-protected non-tumorigenic breast cells from radiation-induced damage. These effects were driven by changes in the cellular content of the antioxidant glutathione following exposure to PEITC and other phytochemicals in watercress. CONCLUSION: These findings support the potential prophylactic impact of watercress during radiotherapy. Extracted compounds from watercress and PEITC differentially modulate cellular metabolism collectively enhancing the therapeutic outcomes of radiotherapy. PMID: 30066177 [PubMed - as supplied by publisher]

Effects of Diacetyl Flavoring Exposure in Mice Metabolism.

Thu, 02/08/2018 - 14:58
Related Articles Effects of Diacetyl Flavoring Exposure in Mice Metabolism. Biomed Res Int. 2018;2018:9875319 Authors: Jedlicka LDL, Silva JDC, Balbino AM, Neto GB, Furtado DZS, da Silva HDT, Cavalcanti FBC, van der Heijden KM, Penatti CAA, Bechara EJH, Assunção NA Abstract Diacetyl is a flavoring that imparts a buttery flavor to foods, but the use or exposure to diacetyl has been related to some diseases. We investigated the effect of oral intake of diacetyl in male and female C57/Bl mice. We performed a target metabolomics assay using ultraperformance liquid chromatography paired with triple quadrupole mass spectrometry (UPLC-MS/MS) for the determination and quantification of plasmatic metabolites. We observed alterations in metabolites present in the urea and tricarboxylic acid (TCA) cycles. Peroxynitrite plasmatic levels were evaluated by a colorimetric method, final activity of superoxide dismutase (SOD) was evaluated by an enzymatic method, and mouse behavior was evaluated. Majority of the assay showed differences between control and treatment groups, as well as between genders. This may indicate the involvement of sex hormones in the regulation of a normal metabolic profile, and the implication of sex differences in metabolite disease response. PMID: 30065948 [PubMed - in process]

Integrating Genes Affecting Coronary Artery Disease in Functional Networks by Multi-OMICs Approach.

Thu, 02/08/2018 - 14:58
Related Articles Integrating Genes Affecting Coronary Artery Disease in Functional Networks by Multi-OMICs Approach. Front Cardiovasc Med. 2018;5:89 Authors: Vilne B, Schunkert H Abstract Coronary artery disease (CAD) and myocardial infarction (MI) remain among the leading causes of mortality worldwide, urgently demanding a better understanding of disease etiology, and more efficient therapeutic strategies. Genetic predisposition as well as the environment and lifestyle are thought to contribute to disease risk. It is likely that non-linear and complex interactions occur between these multiple factors, involving simultaneous pathological changes in diverse cell types, tissues, and organs, at multiple molecular levels. Recent technological advances have exponentially expanded the breadth of available -omics data, from genome, epigenome, transcriptome, proteome, metabolome to even the microbiome. Integration of multiple layers of information across several -omics domains, i.e., the so-called multi-omics approach, currently holds the promise as a path toward precision medicine. Indeed, a more meaningful interpretation of genotype-phenotype relationships and the development of successful therapeutics tailored to individual patients are urgently needed. In this review, we will summarize recent findings and applications of integrative multi-omics in elucidating the etiology of CAD/MI; with a special focus on established disease susceptibility loci sequentially identified in genome-wide association studies (GWAS) over the last 10 years. Moreover, in addition to the autosomal genome, we will also consider the genetic variation in our "second genome"-the mitochondrial genome. Finally, we will summarize the current challenges in the field and point to future research directions required in order to successfully and effectively apply these approaches for precision medicine. PMID: 30065929 [PubMed]

Biomarkers of food intake for cocoa and liquorice (products): a systematic review.

Thu, 02/08/2018 - 14:58
Related Articles Biomarkers of food intake for cocoa and liquorice (products): a systematic review. Genes Nutr. 2018;13:22 Authors: Michielsen CCJR, Almanza-Aguilera E, Brouwer-Brolsma EM, Urpi-Sarda M, Afman LA Abstract Background: To unravel true links between diet and health, it is important that dietary exposure is accurately measured. Currently, mainly self-reporting methods (e.g. food frequency questionnaires and 24-h recalls) are used to assess food intake in epidemiological studies. However, these traditional instruments are subjective measures and contain well-known biases. Especially, estimating the intake of the group of confectionary products, such as products containing cocoa and liquorice, remains a challenge. The use biomarkers of food intake (BFIs) may provide a more objective measurement. However, an overview of current candidate biomarkers and their validity is missing for both cocoa- and liquorice-containing foods. Objective: The purpose of the current study was to (1) identify currently described candidate BFIs for cocoa (products) and liquorice, (2) to evaluate the validity of these identified candidate BFIs and (3) to address further validation and/or identification work to be done. Methods: This systematic review was based on a comprehensive literature search of three databases (PubMed, Scopus and ISI web of Science), to identify candidate BFIs. Via a second search step in the Human Metabolome Database (HMDB), the Food Database (FooDB) and Phenol-Explorer, the specificity of the candidate BFIs was evaluated, followed by an evaluation of the validity of the specific candidate BFIs, via pre-defined criteria. Results: In total, 37 papers were included for cocoa and 8 papers for liquorice. For cocoa, 164 unique candidate BFIs were obtained, and for liquorice, four were identified in total. Despite the high number of identified BFIs for cocoa, none of the metabolites was specific. Therefore, the validity of these compounds was not further examined. For liquorice intake, 18-glycyrrhetinic acid (18-GA) was found to have the highest assumed validity. Conclusions: For cocoa, specific BFIs were missing, mainly because the individual BFIs were also found in foods having a similar composition, such as tea (polyphenols) or coffee (caffeine). However, a combination of individual BFIs might lead to discriminating profiles between cocoa (products) and foods with a similar composition. Therefore, studies directly comparing the consumption of cocoa to these similar products are needed, enabling efforts to find a unique profile per product. For liquorice, we identified 18-GA as a promising BFI; however, important information on its validity is missing; thus, more research is necessary. Our findings indicate a need for more studies to determine acceptable BFIs for both cocoa and liquorice. PMID: 30065791 [PubMed]

NMR Metabolomics Defining Genetic Variation in Pea Seed Metabolites.

Thu, 02/08/2018 - 14:58
Related Articles NMR Metabolomics Defining Genetic Variation in Pea Seed Metabolites. Front Plant Sci. 2018;9:1022 Authors: Ellis N, Hattori C, Cheema J, Donarski J, Charlton A, Dickinson M, Venditti G, Kaló P, Szabó Z, Kiss GB, Domoney C Abstract Nuclear magnetic resonance (NMR) spectroscopy profiling was used to provide an unbiased assessment of changes to the metabolite composition of seeds and to define genetic variation for a range of pea seed metabolites. Mature seeds from recombinant inbred lines, derived from three mapping populations for which there is substantial genetic marker linkage information, were grown in two environments/years and analyzed by non-targeted NMR. Adaptive binning of the NMR metabolite data, followed by analysis of quantitative variation among lines for individual bins, identified the main genomic regions determining this metabolic variability and the variability for selected compounds was investigated. Analysis by t-tests identified a set of bins with highly significant associations to genetic map regions, based on probability (p) values that were appreciably lower than those determined for randomized data. The correlation between bins showing high mean absolute deviation and those showing low p-values for marker association provided an indication of the extent to which the genetics of bin variation might be explained by one or a few loci. Variation in compounds related to aromatic amino acids, branched-chain amino acids, sucrose-derived metabolites, secondary metabolites and some unidentified compounds was associated with one or more genetic loci. The combined analysis shows that there are multiple loci throughout the genome that together impact on the abundance of many compounds through a network of interactions, where individual loci may affect more than one compound and vice versa. This work therefore provides a framework for the genetic analysis of the seed metabolome, and the use of genetic marker data in the breeding and selection of seeds for specific seed quality traits and compounds that have high commercial value. PMID: 30065739 [PubMed]

Health benefits and bioactive compounds of eggplant.

Thu, 02/08/2018 - 14:58
Related Articles Health benefits and bioactive compounds of eggplant. Food Chem. 2018 Dec 01;268:602-610 Authors: Gürbüz N, Uluişik S, Frary A, Frary A, Doğanlar S Abstract Eggplant is a vegetable crop that is grown around the world and can provide significant nutritive benefits thanks to its abundance of vitamins, phenolics and antioxidants. In addition, eggplant has potential pharmaceutical uses that are just now becoming recognized. As compared to other crops in the Solanaceae, few studies have investigated eggplant's metabolic profile. Metabolomics and metabolic profiling are important platforms for assessing the chemical composition of plants and breeders are increasingly concerned about the nutritional and health benefits of crops. In this review, the historical background and classification of eggplant are shortly explained; then the beneficial phytochemicals, antioxidant activity and health effects of eggplant are discussed in detail. PMID: 30064803 [PubMed - in process]

Cell wall and metabolite composition of berries of Vitis vinifera (L.) cv. Thompson Seedless with different firmness.

Thu, 02/08/2018 - 14:58
Related Articles Cell wall and metabolite composition of berries of Vitis vinifera (L.) cv. Thompson Seedless with different firmness. Food Chem. 2018 Dec 01;268:492-497 Authors: Zepeda B, Olmedo P, Ejsmentewicz T, Sepúlveda P, Balic I, Balladares C, Delgado-Rioseco J, Fuentealba C, Moreno AA, Defilippi BG, Meneses C, Pedreschi R, Campos-Vargas R Abstract Firm berries are highly appreciated by table grape consumers. Cell wall composition is one of the main factors influencing the firmness of table grape berries. Nevertheless, the biological factors driving changes in berry firmness remain unclear. In the present work, we evaluated the firmness of berries of Vitis vinifera cv. Thompson Seedless. We selected two orchards displaying contrasting berry firmness and evaluated polar metabolites and cell wall composition. Our results suggest that berries from the soft orchard exhibited a higher accumulation of sugars at veraison whereas berries from the hard orchard accumulated the same sugars at harvest plus a higher amount of glucose monosaccharide at the cell wall. Thus, this study opens new insights about a connection between metabolic and cell wall changes with fruit firmness in a table grape variety, suggesting that it is possible to use metabolomic tools to identify metabolic biomarkers associated with table grape berry firmness. PMID: 30064789 [PubMed - in process]

Mass spectrometry-based metabolomics and chemometric analysis of Pu-erh teas of various origins.

Thu, 02/08/2018 - 14:58
Related Articles Mass spectrometry-based metabolomics and chemometric analysis of Pu-erh teas of various origins. Food Chem. 2018 Dec 01;268:271-278 Authors: Wang T, Li X, Yang H, Wang F, Kong J, Qiu D, Li Z Abstract Pu-erh tea is one of the most popular tea beverages in China. Storage time, fermentation process and origin of production affect quality and price of Pu-erh teas. High resolution mass spectrometry-based metabolomics approach, NIR combined with chemometric analysis were used to profile water soluble metabolites from raw Bingdao Pu-erh teas stored for 1-10 years and teas from various production sites. Year prediction models with good rate of recognition were established using partial least squares analysis and factor analysis. 38 characteristic compounds were identified that can be used to distinguish length of storage of Pu-erh teas. 19 characteristic compounds were found that can be used to differentiate raw and ripened teas. Cluster analysis of Pu-erh teas from different sites showed correlation between geographical distribution of the sites and composition of the water extracts. The research provides guidance for discrimination of Pu-erh teas and helps establish a healthy tea market. PMID: 30064758 [PubMed - in process]

Sarcopenia and myosteatosis are accompanied by distinct biological profiles in patients with pancreatic and periampullary adenocarcinomas.

Thu, 02/08/2018 - 14:58
Related Articles Sarcopenia and myosteatosis are accompanied by distinct biological profiles in patients with pancreatic and periampullary adenocarcinomas. PLoS One. 2018;13(5):e0196235 Authors: Stretch C, Aubin JM, Mickiewicz B, Leugner D, Al-Manasra T, Tobola E, Salazar S, Sutherland FR, Ball CG, Dixon E, Vogel HJ, Damaraju S, Baracos VE, Bathe OF Abstract INTRODUCTION: Pancreatic and periampullary adenocarcinomas are associated with abnormal body composition visible on CT scans, including low muscle mass (sarcopenia) and low muscle radiodensity due to fat infiltration in muscle (myosteatosis). The biological and clinical correlates to these features are poorly understood. METHODS: Clinical characteristics and outcomes were studied in 123 patients who underwent pancreaticoduodenectomy for pancreatic or non-pancreatic periampullary adenocarcinoma and who had available preoperative CT scans. In a subgroup of patients with pancreatic cancer (n = 29), rectus abdominus muscle mRNA expression was determined by cDNA microarray and in another subgroup (n = 29) 1H-NMR spectroscopy and gas chromatography-mass spectrometry were used to characterize the serum metabolome. RESULTS: Muscle mass and radiodensity were not significantly correlated. Distinct groups were identified: sarcopenia (40.7%), myosteatosis (25.2%), both (11.4%). Fat distribution differed in these groups; sarcopenia associated with lower subcutaneous adipose tissue (P<0.0001) and myosteatosis associated with greater visceral adipose tissue (P<0.0001). Sarcopenia, myosteatosis and their combined presence associated with shorter survival, Log Rank P = 0.005, P = 0.06, and P = 0.002, respectively. In muscle, transcriptomic analysis suggested increased inflammation and decreased growth in sarcopenia and disrupted oxidative phosphorylation and lipid accumulation in myosteatosis. In the circulating metabolome, metabolites consistent with muscle catabolism associated with sarcopenia. Metabolites consistent with disordered carbohydrate metabolism were identified in both sarcopenia and myosteatosis. DISCUSSION: Muscle phenotypes differ clinically and biologically. Because these muscle phenotypes are linked to poor survival, it will be imperative to delineate their pathophysiologic mechanisms, including whether they are driven by variable tumor biology or host response. PMID: 29723245 [PubMed - indexed for MEDLINE]

Metabolomic-Guided Isolation of Bioactive Natural Products from Curvularia sp., an Endophytic Fungus of Terminalia laxiflora.

Thu, 02/08/2018 - 14:58
Related Articles Metabolomic-Guided Isolation of Bioactive Natural Products from Curvularia sp., an Endophytic Fungus of Terminalia laxiflora. Planta Med. 2018 Feb;84(3):182-190 Authors: Tawfike AF, Abbott G, Young L, Edrada-Ebel R Abstract Endophytic fungi associated with medicinal plants are a potential source of novel chemistry and biology. Metabolomic tools were successfully employed to compare the metabolite fingerprints of solid and liquid culture extracts of endophyte Curvularia sp. isolated from the leaves of Terminalia laxiflora. Natural product databases were used to dereplicate metabolites in order to determine known compounds and the presence of new natural products. Multivariate analysis highlighted the putative metabolites responsible for the bioactivity of the fungal extract and its fractions on NF-κB and the myelogenous leukemia cell line K562. Metabolomic tools and dereplication studies using high-resolution electrospray ionization mass spectrometry directed the fractionation and isolation of the bioactive components from the fungal extracts. This resulted in the isolation of N-acetylphenylalanine (1: ) and two linear peptide congeners of 1: : dipeptide N-acetylphenylalanyl-L-phenylalanine (2: ) and tripeptide N-acetylphenylalanyl-L-phenylalanyl-L-leucine (3: ). PMID: 28847019 [PubMed - indexed for MEDLINE]

A metabolomics research based on UHPLC-ESI-Q-TOF-MS coupled with metabolic pathway analysis: treatment effects of stir-frying Xanthii Fructus on allergic rhinitis in mice model.

Wed, 01/08/2018 - 14:35
Related Articles A metabolomics research based on UHPLC-ESI-Q-TOF-MS coupled with metabolic pathway analysis: treatment effects of stir-frying Xanthii Fructus on allergic rhinitis in mice model. Biomed Chromatogr. 2018 Jul 30;:e4352 Authors: Zhuang Y, Qin K, Yu B, Liu X, Cai B, Cai H Abstract Xanthii Fructus (XF), a well-known herb in traditional Chinese Medicine (TCM), has been frequently used for the treatment of allergic rhinitis in clinic, whose therapeutic metabolic mechanism, however, remained undetermined. In this work, a metabolomics research coupled with metabolic pathway analysis has been employed to screen out the potential mechanism in its effects of on allergic rhinitis effect. Specifically, the mice' serum samples from XF were analyzed based on ultra-high performance liquid chromatography equipped with electrospray ionization quadruple time-of-flight mass spectrometry detection (UHPLC-ESI-Q-TOF-MS) in both positive and negative polarity. In addition, the raw data gained from UHPLC-ESI-Q-TOF-MS were processed by principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) in order to find out remarkable metabolites. Later, 27 potential biomarkers in mouse serum were filtered from free database like HMDB. Interestingly, this study filtered the potential metabolic pathways including Glycerophospholipid metabolism and Branch-chain amino acid (BCAAs) metabolism. We hope that this paper could provide a feasible strategy for revealing the therapeutic mechanism of XF in allergic rhinitis mice model. PMID: 30062682 [PubMed - as supplied by publisher]

Molecular Epidemiology of Heart Failure: Translational Challenges and Opportunities.

Wed, 01/08/2018 - 14:35
Related Articles Molecular Epidemiology of Heart Failure: Translational Challenges and Opportunities. JACC Basic Transl Sci. 2017 Dec;2(6):757-769 Authors: Smith JG Abstract Heart failure (HF) is the end-stage of all heart disease and arguably constitutes the greatest unmet therapeutic need in cardiovascular medicine today. Classic epidemiological studies have established clinical risk factors for HF, but the cause remains poorly understood in many cases. Biochemical analyses of small case-control series and animal models have described a plethora of molecular characteristics of HF, but a single unifying pathogenic theory is lacking. Heart failure appears to result not only from cardiac overload or injury but also from a complex interplay among genetic, neurohormonal, metabolic, inflammatory, and other biochemical factors acting on the heart. Recent development of robust, high-throughput tools in molecular biology provides opportunity for deep molecular characterization of population-representative cohorts and HF cases (molecular epidemiology), including genome sequencing, profiling of myocardial gene expression and chromatin modifications, plasma composition of proteins and metabolites, and microbiomes. The integration of such detailed information holds promise for improving understanding of HF pathophysiology in humans, identification of therapeutic targets, and definition of disease subgroups beyond the current classification based on ejection fraction which may benefit from improved individual tailoring of therapy. Challenges include: 1) the need for large cohorts with deep, uniform phenotyping; 2) access to the relevant tissues, ideally with repeated sampling to capture dynamic processes; and 3) analytical issues related to integration and analysis of complex datasets. International research consortia have formed to address these challenges and combine datasets, and cohorts with up to 1 million participants are being collected. This paper describes the molecular epidemiology of HF and provides an overview of methods and tissue types and examples of published and ongoing efforts to systematically evaluate molecular determinants of HF in human populations. PMID: 30062185 [PubMed]

Simultaneous untargeted and targeted metabolomics profiling of underivatized primary metabolites in sulfur-deficient barley by ultra-high performance liquid chromatography-quadrupole/time-of-flight mass spectrometry.

Wed, 01/08/2018 - 14:35
Related Articles Simultaneous untargeted and targeted metabolomics profiling of underivatized primary metabolites in sulfur-deficient barley by ultra-high performance liquid chromatography-quadrupole/time-of-flight mass spectrometry. Plant Methods. 2018;14:62 Authors: Ghosson H, Schwarzenberg A, Jamois F, Yvin JC Abstract Background: Metabolomics based on mass spectrometry analysis are increasingly applied in diverse scientific domains, notably agronomy and plant biology, in order to understand plants' behaviors under different stress conditions. In fact, these stress conditions are able to disrupt many biosynthetic pathways that include mainly primary metabolites. Profiling and quantifying primary metabolites remain a challenging task because they are poorly retained in reverse phase columns, due to their high polarity and acid-base properties. The aim of this work is to develop a simultaneous untargeted/targeted profiling of amino acids, organic acids, sulfur metabolites, and other several metabolites. This method will be applied on sulfur depleted barley, in order to study this type of stress, which is difficult to detect at early stage. Also, this method aims to explore the impact of this stress on barley's metabolome. Results: Ultra-high performance liquid chromatography-high resolution mass spectrometry-based method was successfully applied to real samples allowing to discriminate, detect, and quantify primary metabolites in short-runs without any additional sampling step such as derivatization or ion pairing. The retention of polar metabolites was successfully achieved using modified C18 columns with high reproducibility (relative standard deviation below 10%). The quantification method showed a high sensitivity and robustness. Furthermore, high resolution mass spectrometry detection provided reliable quantification based on exact mass, eliminating potential interferences, and allowing the simultaneous untargeted metabolomics analysis. The untargeted data analysis was conducted using Progenesis QI software, performing alignment, peak picking, normalization and multivariate analysis. The simultaneous analysis provided cumulative information allowing to discriminate between two plant batches. Thus, discriminant biomarkers were identified and validated. Simultaneously, quantification confirmed coherently the relative abundance of these biomarkers. Conclusions: A fast and innovated simultaneous untargeted/targeted method has successfully been developed and applied to sulfur deficiency on barley. This work opens interesting perspectives in both fundamental and applied research. Biomarker discovery give precious indication to understand plant behavior during a nutritional deficiency. Thus, direct or indirect measurement of these compounds allows a real time fertilization management and encounter the challenges of sustainable agriculture. PMID: 30061918 [PubMed]

Histone methyltransferase Smyd1 regulates mitochondrial energetics in the heart.

Wed, 01/08/2018 - 14:35
Related Articles Histone methyltransferase Smyd1 regulates mitochondrial energetics in the heart. Proc Natl Acad Sci U S A. 2018 Jul 30;: Authors: Warren JS, Tracy CM, Miller MR, Makaju A, Szulik MW, Oka SI, Yuzyuk TN, Cox JE, Kumar A, Lozier BK, Wang L, Llana JG, Sabry AD, Cawley KM, Barton DW, Han YH, Boudina S, Fiehn O, Tucker HO, Zaitsev AV, Franklin S Abstract Smyd1, a muscle-specific histone methyltransferase, has established roles in skeletal and cardiac muscle development, but its role in the adult heart remains poorly understood. Our prior work demonstrated that cardiac-specific deletion of Smyd1 in adult mice (Smyd1-KO) leads to hypertrophy and heart failure. Here we show that down-regulation of mitochondrial energetics is an early event in these Smyd1-KO mice preceding the onset of structural abnormalities. This early impairment of mitochondrial energetics in Smyd1-KO mice is associated with a significant reduction in gene and protein expression of PGC-1α, PPARα, and RXRα, the master regulators of cardiac energetics. The effect of Smyd1 on PGC-1α was recapitulated in primary cultured rat ventricular myocytes, in which acute siRNA-mediated silencing of Smyd1 resulted in a greater than twofold decrease in PGC-1α expression without affecting that of PPARα or RXRα. In addition, enrichment of histone H3 lysine 4 trimethylation (a mark of gene activation) at the PGC-1α locus was markedly reduced in Smyd1-KO mice, and Smyd1-induced transcriptional activation of PGC-1α was confirmed by luciferase reporter assays. Functional confirmation of Smyd1's involvement showed an increase in mitochondrial respiration capacity induced by overexpression of Smyd1, which was abolished by siRNA-mediated PGC-1α knockdown. Conversely, overexpression of PGC-1α rescued transcript expression and mitochondrial respiration caused by silencing Smyd1 in cardiomyocytes. These findings provide functional evidence for a role of Smyd1, or any member of the Smyd family, in regulating cardiac energetics in the adult heart, which is mediated, at least in part, via modulating PGC-1α. PMID: 30061404 [PubMed - as supplied by publisher]

Metabolomics Biomarkers for Detection of Colorectal Neoplasms: A Systematic Review.

Wed, 01/08/2018 - 14:35
Related Articles Metabolomics Biomarkers for Detection of Colorectal Neoplasms: A Systematic Review. Cancers (Basel). 2018 Jul 27;10(8): Authors: Erben V, Bhardwaj M, Schrotz-King P, Brenner H Abstract BACKGROUND: Several approaches have been suggested to be useful in the early detection of colorectal neoplasms. Since metabolites are closely related to the phenotype and are available from different human bio-fluids, metabolomics are candidates for non-invasive early detection of colorectal neoplasms. OBJECTIVES: We aimed to summarize current knowledge on performance characteristics of metabolomics biomarkers that are potentially applicable in a screening setting for the early detection of colorectal neoplasms. DESIGN: We conducted a systematic literature search in PubMed and Web of Science and searched for biomarkers for the early detection of colorectal neoplasms in easy-to-collect human bio-fluids. Information on study design and performance characteristics for diagnostic accuracy was extracted. RESULTS: Finally, we included 41 studies in our analysis investigating biomarkers in different bio-fluids (blood, urine, and feces). Although single metabolites mostly had limited ability to distinguish people with and without colorectal neoplasms, promising results were reported for metabolite panels, especially amino acid panels in blood samples, as well as nucleosides in urine samples in several studies. However, validation of the results is limited. CONCLUSIONS: Panels of metabolites consisting of amino acids in blood and nucleosides in urinary samples might be useful biomarkers for early detection of advanced colorectal neoplasms. However, to make metabolomic biomarkers clinically applicable, future research in larger studies and external validation of the results is required. PMID: 30060469 [PubMed]

1H-NMR metabolomic profiling reveals a distinct metabolic recovery response in shoots and roots of temporarily drought-stressed sugar beets.

Wed, 01/08/2018 - 14:35
Related Articles 1H-NMR metabolomic profiling reveals a distinct metabolic recovery response in shoots and roots of temporarily drought-stressed sugar beets. PLoS One. 2018;13(5):e0196102 Authors: Wedeking R, Maucourt M, Deborde C, Moing A, Gibon Y, Goldbach HE, Wimmer MA Abstract Yield formation in regions with intermittent drought periods depends on the plant's ability to recover after cessation of the stress. The present work assessed differences in metabolic recovery of leaves and roots of drought-stressed sugar beets with high temporal resolution. Plants were subjected to drought for 13 days, and rewatered for 12 days. At one to two-day intervals, plant material was harvested for untargeted 1H-NMR metabolomic profiling, targeted analyses of hexose-phosphates, starch, amino acids, nitrate and proteins, and physiological measurements including relative water content, osmotic potential, electrolyte leakage and malondialdehyde concentrations. Drought triggered changes in primary metabolism, especially increases in amino acids in both organs, but leaves and roots responded with different dynamics to rewatering. After a transient normalization of most metabolites within 8 days, a second accumulation of amino acids in leaves might indicate a stress imprint beneficial in upcoming drought events. Repair mechanisms seemed important during initial recovery and occurred at the expense of growth for at least 12 days. These results indicate that organ specific metabolic recovery responses might be related to distinct functions and concomitant disparate stress levels in above- and belowground organs. With respect to metabolism, recovery was not simply a reversal of the stress responses. PMID: 29738573 [PubMed - indexed for MEDLINE]

Plasma metabolomic biomarkers accurately classify acute mild traumatic brain injury from controls.

Wed, 01/08/2018 - 14:35
Related Articles Plasma metabolomic biomarkers accurately classify acute mild traumatic brain injury from controls. PLoS One. 2018;13(4):e0195318 Authors: Fiandaca MS, Mapstone M, Mahmoodi A, Gross T, Macciardi F, Cheema AK, Merchant-Borna K, Bazarian J, Federoff HJ Abstract Past and recent attempts at devising objective biomarkers for traumatic brain injury (TBI) in both blood and cerebrospinal fluid have focused on abundance measures of time-dependent proteins. Similar independent determinants would be most welcome in diagnosing the most common form of TBI, mild TBI (mTBI), which remains difficult to define and confirm based solely on clinical criteria. There are currently no consensus diagnostic measures that objectively define individuals as having sustained an acute mTBI. Plasma metabolomic analyses have recently evolved to offer an alternative to proteomic analyses, offering an orthogonal diagnostic measure to what is currently available. The purpose of this study was to determine whether a developed set of metabolomic biomarkers is able to objectively classify college athletes sustaining mTBI from non-injured teammates, within 6 hours of trauma and whether such a biomarker panel could be effectively applied to an independent cohort of TBI and control subjects. A 6-metabolite panel was developed from biomarkers that had their identities confirmed using tandem mass spectrometry (MS/MS) in our Athlete cohort. These biomarkers were defined at ≤6 hours following mTBI and objectively classified mTBI athletes from teammate controls, and provided similar classification of these groups at the 2, 3, and 7 days post-mTBI. The same 6-metabolite panel, when applied to a separate, independent cohort provided statistically similar results despite major differences between the two cohorts. Our confirmed plasma biomarker panel objectively classifies acute mTBI cases from controls within 6 hours of injury in our two independent cohorts. While encouraged by our initial results, we expect future studies to expand on these initial observations. PMID: 29677216 [PubMed - indexed for MEDLINE]

Productivity, Physicochemical Changes, and Antioxidant Activity of Shiitake Culinary-Medicinal Mushroom Lentinus edodes (Agaricomycetes) Cultivated on Lignocellulosic Residues.

Wed, 01/08/2018 - 14:35
Related Articles Productivity, Physicochemical Changes, and Antioxidant Activity of Shiitake Culinary-Medicinal Mushroom Lentinus edodes (Agaricomycetes) Cultivated on Lignocellulosic Residues. Int J Med Mushrooms. 2017;19(11):1041-1052 Authors: Gaitán-Hernández R, Zavaleta MAB, Aquino-Bolaños EN Abstract The effects of substrate and strain on productivity, physicochemical characteristics, and compounds with antioxidant activity were evaluated in basidiomes of the shiitake mushroom, Lentinus edodes. Strains IE-245 and IE-256 and the substrates oak wood shavings (OW), sorghum stubble (SS), and sugar cane bagasse (SC) were used. Productivity was evaluated by measuring biological efficiency (BE), production rate (PR), and yield. Total sugars, total soluble solids, pH, titratable acidity, color parameters, total phenolics, flavonoids, ascorbic acid, and antioxidant activity of the basidiomes were measured. BE, PR and yield were higher with the combination IE-256/SS, at 103.71%, 1.32%, and 34.57%, respectively. The largest amount of total sugars (17.61 mg glucose · g-1 dry weight) was found with combination IE-256/SS. Variation was observed in basidiome color; the lowest luminosity (L*) value (darkest color) was found in the IE-256 strain on the OW substrate (L* = 30.45), whereas that of the IE-245 strain on the SC substrate was the lightest in color (L* = 57.00). The largest amounts of total phenolics were recorded in the IE-256 strain on the OW (6.50 mg gallic acid equivalents [GAE] · g-1 dry weight) and the SS substrates (5.85 mg GAE · g-1 dry weight). The best antioxidant activity was obtained with IE-256-0.80, 0.65, and 0.59 μmol Trolox equivalents · g dry weight-1-on the OW, SC, and SS substrates, respectively. Based on the values of BE, PR, and yield, IE-256/SS was the most productive. Substrate and strain, and their interactions, influenced the physicochemical characteristics of the basidiomes and the amounts of compounds with antioxidant activity they contained. PMID: 29345566 [PubMed - indexed for MEDLINE]

Unique metabolomic signature associated with hepatorenal dysfunction and mortality in cirrhosis.

Wed, 01/08/2018 - 14:35
Related Articles Unique metabolomic signature associated with hepatorenal dysfunction and mortality in cirrhosis. Transl Res. 2018 05;195:25-47 Authors: Mindikoglu AL, Opekun AR, Putluri N, Devaraj S, Sheikh-Hamad D, Vierling JM, Goss JA, Rana A, Sood GK, Jalal PK, Inker LA, Mohney RP, Tighiouart H, Christenson RH, Dowling TC, Weir MR, Seliger SL, Hutson WR, Howell CD, Raufman JP, Magder LS, Coarfa C Abstract The application of nontargeted metabolomic profiling has recently become a powerful noninvasive tool to discover new clinical biomarkers. This study aimed to identify metabolic pathways that could be exploited for prognostic and therapeutic purposes in hepatorenal dysfunction in cirrhosis. One hundred three subjects with cirrhosis had glomerular filtration rate (GFR) measured using iothalamate plasma clearance, and were followed until death, transplantation, or the last encounter. Concomitantly, plasma metabolomic profiling was performed using ultrahigh performance liquid chromatography-tandem mass spectrometry to identify preliminary metabolomic biomarker candidates. Among the 1028 metabolites identified, 34 were significantly increased in subjects with high liver and kidney disease severity compared with those with low liver and kidney disease severity. The highest average fold-change (2.39) was for 4-acetamidobutanoate. Metabolite-based enriched pathways were significantly associated with the identified metabolomic signature (P values ranged from 2.07E-06 to 0.02919). Ascorbate and aldarate metabolism, methylation, and glucuronidation were among the most significant protein-based enriched pathways associated with this metabolomic signature (P values ranged from 1.09E-18 to 7.61E-05). Erythronate had the highest association with measured GFR (R-square = 0.571, P <0.0001). Erythronate (R = 0.594, P <0.0001) and N6-carbamoylthreonyladenosine (R = 0.591, P <0.0001) showed stronger associations with measured GFR compared with creatinine (R = 0.588, P <0.0001) even after controlling for age, gender, and race. The 5 most significant metabolites that predicted mortality independent of kidney disease and demographics were S-adenosylhomocysteine (P = 0.0003), glucuronate (P = 0.0006), trans-aconitate (P = 0.0018), 3-ureidopropionate (P = 0.0021), and 3-(4-hydroxyphenyl)lactate (P = 0.0047). A unique metabolomic signature associated with hepatorenal dysfunction in cirrhosis was identified for further investigations that provide potentially important mechanistic insights into cirrhosis-altered metabolism. PMID: 29291380 [PubMed - indexed for MEDLINE]

metabolomics; +21 new citations

Tue, 31/07/2018 - 20:17
21 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results: metabolomics These pubmed results were generated on 2018/07/31PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.

Pages