Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Optimisation of surfactin yield in <em>Bacillus</em> using data-efficient active learning and high-throughput mass spectrometry

Fri, 29/03/2024 - 11:00
Comput Struct Biotechnol J. 2024 Feb 15;23:1226-1233. doi: 10.1016/j.csbj.2024.02.012. eCollection 2024 Dec.ABSTRACTIntegration of machine learning and high throughput measurements are essential to drive the next generation of the design-build-test-learn (DBTL) cycle in synthetic biology. Here, we report the use of active learning in combination with metabolomics for optimising production of surfactin, a complex lipopeptide resulting from a non-ribosomal assembly pathway. We designed a media optimisation algorithm that iteratively learns the yield landscape and steers the media composition toward maximal production. The algorithm led to a 160 % yield increase after three DBTL runs as compared to an M9 baseline. Metabolomics data helped to elucidate the underpinning biochemistry for yield improvement and revealed Pareto-like trade-offs in production of other lipopeptides from related pathways. We found positive associations between organic acids and surfactin, suggesting a key role of central carbon metabolism, as well as system-wide anisotropies in how metabolism reacts to shifts in carbon and nitrogen levels. Our framework offers a novel data-driven approach to improve yield of biological products with complex synthesis pathways that are not amenable to traditional yield optimisation strategies.PMID:38550972 | PMC:PMC10973723 | DOI:10.1016/j.csbj.2024.02.012

Precision diagnostics in children

Fri, 29/03/2024 - 11:00
Camb Prism Precis Med. 2023 Feb 3;1:e17. doi: 10.1017/pcm.2023.4. eCollection 2023.ABSTRACTMedical practice is transforming from a reactive to a pro-active and preventive discipline that is underpinned by precision medicine. The advances in technologies in such fields as genomics, proteomics, metabolomics, transcriptomics and artificial intelligence have resulted in a paradigm shift in our understanding of specific diseases in childhood, greatly enhanced by our ability to combine data from changes within cells to the impact of environmental and population changes. Diseases in children have been reclassified as we understand more about their genomic origin and their evolution. Genomic discoveries, additional 'omics' data and advances such as optical genome mapping have driven rapid improvements in the precision and speed of diagnoses of diseases in children and are now being incorporated into newborn screening, have improved targeted therapies in childhood and have supported the development of predictive biomarkers to assess therapeutic impact and determine prognosis in congenital and acquired diseases of childhood. New medical device technologies are facilitating data capture at a population level to support higher diagnostic accuracy and tailored therapies in children according to predicted population outcome, and digital ecosystems now tailor therapies and provide support for their specific needs. By capturing biological and environmental data as early as possible in childhood, we can understand factors that predict disease or maintain health and track changes across a more extensive longitudinal path. Data from multiple health and external sources over long-time periods starting from birth or even in the in utero environment will provide further clarity about how to sustain health and prevent or predict disease. In this respect, we will not only use data to diagnose disease, but precision diagnostics will aid the 'diagnosis of good health'. The principle of 'start early and change more' will thus underpin the value of applying a personalised medicine approach early in life.PMID:38550930 | PMC:PMC10953773 | DOI:10.1017/pcm.2023.4

Building a precision medicine infrastructure at a national level: The Swedish experience

Fri, 29/03/2024 - 11:00
Camb Prism Precis Med. 2023 Feb 27;1:e15. doi: 10.1017/pcm.2023.3. eCollection 2023.ABSTRACTPrecision medicine has the potential to transform healthcare by moving from one-size-fits-all to personalised treatment and care. This transition has been greatly facilitated through new high-throughput sequencing technologies that can provide the unique molecular profile of each individual patient, along with the rapid development of targeted therapies directed to the Achilles heels of each disease. To implement precision medicine approaches in healthcare, many countries have adopted national strategies and initiated genomic/precision medicine initiatives to provide equal access to all citizens. In other countries, such as Sweden, this has proven more difficult due to regionally organised healthcare. Using a bottom-up approach, key stakeholders from academia, healthcare, industry and patient organisations joined forces and formed Genomic Medicine Sweden (GMS), a national infrastructure for the implementation of precision medicine across the country. To achieve this, Genomic Medicine Centres have been established to provide regionally distributed genomic services, and a national informatics infrastructure has been built to allow secure data handling and sharing. GMS has a broad scope focusing on rare diseases, cancer, pharmacogenomics, infectious diseases and complex diseases, while also providing expertise in informatics, ethical and legal issues, health economy, industry collaboration and education. In this review, we summarise our experience in building a national infrastructure for precision medicine. We also provide key examples how precision medicine already has been successfully implemented within our focus areas. Finally, we bring up challenges and opportunities associated with precision medicine implementation, the importance of international collaboration, as well as the future perspective in the field of precision medicine.PMID:38550923 | PMC:PMC10953755 | DOI:10.1017/pcm.2023.3

Transcriptome and metabolome analysis reveals PRV XJ delgE/gI/TK protects intracranially infected mice from death by regulating the inflammation

Fri, 29/03/2024 - 11:00
Front Microbiol. 2024 Mar 14;15:1374646. doi: 10.3389/fmicb.2024.1374646. eCollection 2024.ABSTRACTPseudorabies virus can cause inflammation in the central nervous system and neurological symptoms. To further investigate the protective mechanism of PRV XJ delgE/gI/TK in the central nervous system, an intracranial PRV-infection mice model was developed. The results demonstrated that immunization with PRV XJ delgE/gI/TK successfully prevented death caused by PRV-intracranial infection. Subsequently, the brains were collected for transcriptome and metabolome analysis. GO and KEGG enrichment analysis indicated that the differentially expressed genes were primarily enriched in pathways such as TNF, NOD-like receptor, JAK-STAT, MAPK, IL-17 and apoptosis signaling. Metabolomics analysis revealed that the differential metabolites were mainly associated with pathways such as fatty acid degradation, arachidonic acid metabolism, linoleic acid metabolism and unsaturated fatty acid biosynthesis. The combined analysis of metabolites and differentially expressed genes revealed a strong correlation between the differential metabolites and TNF, PI3K, and MAPK signaling pathways. Anti-inflammatory metabolites have been shown to inhibit the inflammatory response and prevent mouse death caused by PRV infection. Notably, when glutathione was injected intracranially and dihydroartemisinin was injected intraperitoneally, complete protection against PRV-induced death in mice was observed. Moreover, PRV activates the PI3K/AKT signaling pathway. In conclusion, our study demonstrates that PRV XJ delgE/gI/TK can protects intracranially infected mice from death by regulating various metabolites with anti-inflammatory functions post-immunization.PMID:38550870 | PMC:PMC10972889 | DOI:10.3389/fmicb.2024.1374646

Plasma metabolomic profile is near-normal in people with HIV on long-term suppressive antiretroviral therapy

Fri, 29/03/2024 - 11:00
Front Cell Infect Microbiol. 2024 Mar 14;14:1340610. doi: 10.3389/fcimb.2024.1340610. eCollection 2024.ABSTRACTBACKGROUND: Combination antiretroviral therapy (ART) has transformed human immunodeficiency virus (HIV) infection in people with HIV (PWH). However, a chronic state of immune activation and inflammation is maintained despite achieving HIV suppression and satisfactory immunological recovery. We aimed to determine whether the plasma metabolomic profile of PWH on long-term suppressive ART and immunologically recovered approximates the normality by comparison with healthy controls with similar age and gender.METHODS: We carried out a cross-sectional study in 17 PWH on long-term ART (HIV-RNA <50 copies/mL, CD4+ ≥500 cells/mm3, and CD4+/CD8+ ≥1) and 19 healthy controls with similar age and gender. Metabolomics analysis was performed by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS). The statistical association analysis was performed by principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and Generalized Linear Models (GLM) with a gamma distribution (log-link). Significance levels (p-value) were corrected for multiple testing (q-value).RESULTS: PCA and PLS-DA analyses found no relevant differences between groups. Adjusted GLM showed 14 significant features (q-value<0.20), of which only three could be identified: lysophosphatidylcholine (LysoPC) (22:6) (q-value=0.148), lysophosphatidylethanolamine (LysoPE) (22:6) (q-value=0.050) and hydroperoxy-octadecatrienoic acid (HpOTrE)/dihydroperoxy-octadecatrienoic acid (DiHOTrE)/epoxy-octadecadienoic acid (EpODE) (q-value=0.136). These significant identified metabolites were directly correlated to plasma inflammatory biomarkers in PWH and negatively correlated in healthy controls.CONCLUSION: PWH on long-term ART have a metabolomic profile that is almost normal compared to healthy controls. Nevertheless, residual metabolic alterations linked to inflammatory biomarkers persist, which could favor the development of age-related comorbidities among this population.PMID:38550617 | PMC:PMC10972849 | DOI:10.3389/fcimb.2024.1340610

Effects of the epiphytic patterns on endophytes and metabolites of <em>Dendrobium nobile</em> Lindl

Fri, 29/03/2024 - 11:00
Front Plant Sci. 2024 Mar 14;15:1326998. doi: 10.3389/fpls.2024.1326998. eCollection 2024.ABSTRACTINTRODUCTION: Dendrobium is an epiphytic herb plant with neuroprotective, gastroprotective, anti-inflammatory, and immunomodulatory effects. It is often found attached to tree trunks or rocks. With the development of the dendrobium industry, numerous epiphytic patterns exist, such as crushed stone, stump, and sawdust. The study of metabolites and endophytes of D. nobile under different epiphytic patterns, which revealed the effects of epiphytic patterns on D. nobile from the perspectives of metabolomics and microbiology, is of great significance for the healthy development of D. nobile.METHODS: In the study, the D. nobile under five epiphytic patterns grown in the same environment were selected. The metabolites were investigated by widely targeted metabolomics, and the endophytes were sequenced using high-throughput sequencing methods. Then, a correlation analysis between the different metabolites and endophytes was performed.RESULTS: A total of 1,032 metabolites were annotated in D. nobile. There are more flavonoids and phenolic acids accumulated on the epiphytic pattern of Danxia stone, whereas the accumulation of lipids on the other epiphytic patterns and 16 differential metabolites was screened out. The endophyte composition of D. nobile was dominated by Proteobacteria, Actinomycetes, unidentified bacteria, Firmicutes, and Cyanobacteria. For endophytic fungi, Basidiomycota and Ascomycota were the dominant phyla of D. nobile. The relative abundance of Spirosoma, Nocardioides, and Arrhenia in the Danxia stone was significantly higher than that of other epiphytic patterns. According to correlation analysis, we found a significant correlation between differential metabolites and Spirosoma, Nocardioides, and Arrheni.DISCUSSION: This study confirmed that Dendrobium quality was affected by its epiphytic patterns and revealed its possible causes from a microbiological point of view.PMID:38550286 | PMC:PMC10972854 | DOI:10.3389/fpls.2024.1326998

Use of ultra-high performance liquid chromatography-high-resolution mass spectroscopy to profile the metabolites from the serum of patients with breast cancer

Fri, 29/03/2024 - 11:00
Oncol Lett. 2024 Mar 14;27(5):209. doi: 10.3892/ol.2024.14342. eCollection 2024 May.ABSTRACTBreast cancer (BC) is the most common type of malignancy and the leading cause of cancer-associated mortality in women worldwide. As such, assessing the metabolic changes during human breast carcinogenesis is key for developing disease prevention methods and treatment. In the present study, non-targeted metabolomics with chemometrics based on ultra-high performance liquid chromatography-high-resolution mass spectrometry were performed to assess differences in serum metabolite patterns between patients with BC and healthy individuals. A total of 3,246 metabolites in the sera of healthy controls and patients with BC were found. Kyoto Encyclopedia of Genes and Genomes pathway analysis demonstrated that arginine, proline, nicotinate, nicotinamide, caffeine and arachidonic acid metabolism, as well as fatty acid biosynthesis were significantly altered in patients with BC in comparison with controls. These results suggested that serum metabolic profiling has potential for discovering molecular biomarkers for the detection of BC. It may also further the understanding of the underlying mechanisms associated with this disease.PMID:38549802 | PMC:PMC10973928 | DOI:10.3892/ol.2024.14342

N6-methyladenosine facilitates mitochondrial fusion of colorectal cancer cells via induction of GSH synthesis and stabilization of OPA1 mRNA

Fri, 29/03/2024 - 11:00
Natl Sci Rev. 2024 Jan 29;11(3):nwae039. doi: 10.1093/nsr/nwae039. eCollection 2024 Mar.ABSTRACTMitochondria undergo fission and fusion that are critical for cell survival and cancer development, while the regulatory factors for mitochondrial dynamics remain elusive. Herein we found that RNA m6A accelerated mitochondria fusion of colorectal cancer (CRC) cells. Metabolomics analysis and function studies indicated that m6A triggered the generation of glutathione (GSH) via the upregulation of RRM2B-a p53-inducible ribonucleotide reductase subunit with anti-reactive oxygen species potential. This in turn resulted in the mitochondria fusion of CRC cells. Mechanistically, m6A methylation of A1240 at 3'UTR of RRM2B increased its mRNA stability via binding with IGF2BP2. Similarly, m6A methylation of A2212 at the coding sequence (CDS) of OPA1-an essential GTPase protein for mitochondrial inner membrane fusion-also increased mRNA stability and triggered mitochondria fusion. Targeting m6A through the methyltransferase inhibitor STM2457 or the dm6ACRISPR system significantly suppressed mitochondria fusion. In vivo and clinical data confirmed the positive roles of the m6A/mitochondrial dynamics in tumor growth and CRC progression. Collectively, m6A promoted mitochondria fusion via induction of GSH synthesis and OPA1 expression, which facilitated cancer cell growth and CRC development.PMID:38549713 | PMC:PMC10977914 | DOI:10.1093/nsr/nwae039

Redox-signalling and Redox Biomarkers in Cardiovascular Health and Disease

Fri, 29/03/2024 - 11:00
Cardiovasc Hematol Agents Med Chem. 2024 Feb 15. doi: 10.2174/0118715257282030240130095754. Online ahead of print.ABSTRACTOverproduction of reactive nitrogen and oxygen species (RNS and ROS) has been linked to the pathogenesis of diabetes, hypertension, hyperlipidemia, stroke, angina, and other cardiovascular diseases. These species are produced in part by the mitochondrial respiratory chain, NADPH oxidase, and xanthine oxidase. RNS and ROS both contribute to oxidative stress, which is necessary for the development of cardiovascular disorders. In addition to ROS species like hydroxyl ion, hydrogen peroxide, and superoxide anion, RNS species like nitric oxide, peroxynitrous acid, peroxynitrite, and nitrogen dioxide radicals have also been linked to a number of cardiovascular conditions. They promote endothelial dysfunction, vascular inflammation, lipid peroxidation, and oxidative damage, all of which contribute to the development of cardiovascular pathologies. It's crucial to understand the mechanisms that result in the production of RNS and ROS in order to identify potential therapeutic targets. Redox biomarkers serve as indicators of oxidative stress, making them crucial tools for diagnosing and predicting cardiovascular states. The advancements in proteomics, metabolomics, genomics, and transcriptomics have made the identification and detection of these small molecules possible. The following redox biomarkers are notable examples: 3-nitrotyrosine, 4-hydroxy-2-nonenal, 8- iso-prostaglandin F2, 8-hydroxy-2-deoxyguanosine, malondialdehyde, Diacron reactive oxygen metabolites, total thiol, and specific microRNAs (e.g. miRNA199, miRNA21, miRNA1254, miRNA1306-5p, miRNA26b-5p, and miRNA660-5p) are examples. Although redox biomarkers have great potential, their clinical applicability faces challenges. Redox biomarkers frequently have a short half-life and exist in small quantities in the blood, making them challenging to identify and measure. The interpretation of biomarker data may also be influenced by confounding factors and the complex interplay of various oxidative stress pathways. Therefore, in-depth validation studies and the development of sensitive and precise detection methods are needed to address these problems. In the search for redox biomarkers, cutting-edge techniques like mass spectrometry, immunoassays, and molecular diagnostics are applied. New platforms and technologies have made it possible to accurately detect and monitor redox biomarkers, which facilitates their use in clinical settings. Our expanding knowledge of RNS and ROS involvement in cardiovascular disorders has made it possible to develop redox biomarkers as diagnostic and prognostic tools. Overcoming the challenges associated with their utility and utilizing advanced detection techniques, which will improve their clinical applicability, will ultimately benefit the management and treatment of cardiovascular conditions.PMID:38549520 | DOI:10.2174/0118715257282030240130095754

l-Theanine Prevents Colonic Damage via NF-κB/MAPK Signaling Pathways Induced by a High-Fat Diet in Rats

Fri, 29/03/2024 - 11:00
Mol Nutr Food Res. 2024 Mar 29:e2300797. doi: 10.1002/mnfr.202300797. Online ahead of print.ABSTRACTSCOPE: l-Theanine (l-Thea) is an amino acid which is naturally present in tea leaves. It has been associated with possible health advantages, including obesity prevention, but the underlying molecular mechanisms have not been elucidated.METHODS AND RESULTS: A multiomics approach is utilized to examine the mechanism by which l-Thea exerts its antiobesity effects. This study reveals that l-Thea administration significantly ameliorates high-fat diet (HFD)-induced obesity in rats by improving body weight and hyperlipidemia. l-Thea mitigates HFD-induced inflammation and reverses hepatic and colonic damage, and intestinal barrier. This research verifies that the preventive effect of l-Thea on obesity in rats induced by an HFD with colitis is accomplished by suppressing the phosphorylation of important proteins in the NF-κB/mitogen-activated protein kinase (MAPK) pathways. Metabolome analysis reveals that l-Thea regulates HFD-induced metabolic disorders, specifically through modulation of steroid hormone biosynthesis. Microbiome analysis reveals that l-Thea mitigates HFD-induced dysbiosis by increasing the relative abundance of obesity-associated probiotic bacteria, including Blautia coccoides and Lactobacillus murinus, while simultaneously suppressing the abundance of pathogenic bacteria.CONCLUSIONS: l-Thea alleviates colitis generated by an HFD by restoring the integrity of the intestinal barrier, suppressing inflammation through regulation of MAPK/NF-κB signaling pathways, and enhancing microbial metabolism in colon.PMID:38549456 | DOI:10.1002/mnfr.202300797

Time series of chicken stool metagenomics and egg metabolomics in changing production systems: preliminary insights from a proof-of-concept

Fri, 29/03/2024 - 11:00
One Health Outlook. 2024 Mar 29;6(1):4. doi: 10.1186/s42522-024-00100-0.ABSTRACTBACKGROUND: Different production systems of livestock animals influence various factors, including the gut microbiota.METHODS: We investigated whether changing the conditions from barns to free-range chicken farming impacts the microbiome over the course of three weeks. We compared the stool microbiota of chicken from industrial barns after introducing them either in community or separately to a free-range environment.RESULTS: Over the six time points, 12 taxa-mostly lactobacilli-changed significantly. As expected, the former barn chicken cohort carries more resistances to common antibiotics. These, however, remained positive over the observed period. At the end of the study, we collected eggs and compared metabolomic profiles of the egg white and yolk to profiles of eggs from commercial suppliers. Here, we observed significant differences between commercial and fresh collected eggs as well as differences between the former barn chicken and free-range chicken.CONCLUSION: Our data indicate that the gut microbiota can undergo alterations over time in response to changes in production systems. These changes subsequently exert an influence on the metabolites found in the eggs. The preliminary results of our proof-of-concept study motivate larger scale observations with more individual chicken and longer observation periods.PMID:38549118 | DOI:10.1186/s42522-024-00100-0

Albumen and Yolk Plasma Peptidomics for the Identification and Quantitation of Bioactive Molecules and the Quality Control of Hen Egg Products

Fri, 29/03/2024 - 11:00
Methods Mol Biol. 2024;2758:241-254. doi: 10.1007/978-1-0716-3646-6_13.ABSTRACTHen eggs and the corresponding food products are essential components of human diet. In addition to supplying basic nutrients, they contain functional peptides that are released in vivo within the intact raw material following physiological proteolytic events affecting specific proteins or derive from technological processing of albumen and yolk fractions as a result of the dedicated use of proteases from plant and microbial sources. Besides their potential importance for functional applications, peptides released under physiological conditions in intact egg can be used as markers of product storage and deterioration. Therefore, characterization and quantitation of peptides in egg and egg-derived products can be used to implement evaluation of potential bioactivities as well as to assess food product qualitative characteristics. Here, we provide dedicated information on extraction, identification, and quantitative analysis of peptides from albumen and yolk plasma; nano-liquid chromatography-mass spectrometry combined with bioinformatic analysis of resulting raw data by different software tools allowed to assign molecules based on database searching and to evaluate their relative quantity in different samples.PMID:38549018 | DOI:10.1007/978-1-0716-3646-6_13

Comparative analysis and evaluation of wild and cultivated Radix Fici Simplicissimae using an UHPLC-Q-Orbitrap mass spectrometry-based metabolomics approach

Fri, 29/03/2024 - 11:00
Sci Rep. 2024 Mar 28;14(1):7421. doi: 10.1038/s41598-024-58078-8.ABSTRACTRadix Fici Simplicissimae (RFS) is widely studied, and is in demand for its value in medicines and food products, with increased scientific focus on its cultivation and breeding. We used ultra-high-performance liquid chromatography quadrupole-orbitrap mass spectrometry-based metabolomics to elucidate the similarities and differences in phytochemical compositions of wild Radix Fici Simplicissimae (WRFS) and cultivated Radix Fici Simplicissimae (CRFS). Untargeted metabolomic analysis was performed with multivariate statistical analysis and heat maps to identify the differences. Eighty one compounds were identified from WRFS and CRFS samples. Principal component analysis and orthogonal partial least squares discrimination analysis indicated that mass spectrometry could effectively distinguish WRFS from CRFS. Among these, 17 potential biomarkers with high metabolic contents could distinguish between the two varieties, including seven phenylpropanoids, three flavonoids, one flavonol, one alkaloid, one glycoside, and four organic acids. Notably, psoralen, apigenin, and bergapten, essential metabolites that play a substantial pharmacological role in RFS, are upregulated in WRFS. WRFS and CRFS are rich in phytochemicals and are similar in terms of the compounds they contain. These findings highlight the effects of different growth environments and drug varieties on secondary metabolite compositions and provide support for targeted breeding for improved CRFS varieties.PMID:38548824 | DOI:10.1038/s41598-024-58078-8

Smoking Primes the Metabolomic Response in Trauma

Fri, 29/03/2024 - 11:00
J Trauma Acute Care Surg. 2024 Mar 29. doi: 10.1097/TA.0000000000004318. Online ahead of print.ABSTRACTINTRODUCTION: Smoking is a public health threat due to its well described link to increased oxidative stress-related diseases including peripheral vascular disease and coronary artery disease. Tobacco use has been linked to risk of inpatient trauma morbidity including acute respiratory distress syndrome, however its mechanistic effect on comprehensive metabolic heterogeneity has yet to be examined.METHODS: Plasma was obtained on arrival from injured patients at a Level 1 Trauma Center and analyzed with modern mass spectrometry-based metabolomics. Patients were stratified by non-smoker, passive smoker and active smoker by lower, inter-quartile and upper quartile ranges of cotinine intensity peaks. Patients were sub-stratified by High Injury/High Shock (Injury Severity Score ≥ 15, Base Excess<-6) and compared to healthy controls. P-value <0.05 following FDR correction of t-test was considered significant.RESULTS: 48 patients with High Injury/High Shock (7 (15%) non-smokers, 25 (52%) passive smokers and 16 (33%) active smokers) and 95 healthy patients who served as controls (30 (32%) non-smokers, 43 (45%) passive smokers and 22 (23%) active smokers) were included. Elevated metabolites in our controls who were active smokers include enrichment in chronic inflammatory and oxidative processes. Elevated metabolites in active smokers in high injury/high shock include enrichment in the malate-aspartate shuttle, tyrosine metabolism, carnitine synthesis, and oxidation of very long-chain fatty acids.CONCLUSIONS: Smoking promotes a state of oxidative stress leading to mitochondrial dysfunction which is additive to the inflammatory milieu of trauma. Smoking is associated with impaired mitochondrial substrate utilization of long-chain fatty acids, aspartate and tyrosine all of which accentuate oxidative stress following injury. This altered expression represents an ideal target for therapies to reduce oxidative damage toward the goal of personalized treatment of trauma patients.LEVEL OF EVIDENCE: Level III, Prognostic/Epidemiological.PMID:38548690 | DOI:10.1097/TA.0000000000004318

Integrated analysis of gut metabolome, microbiome, and brain function reveal the role of gut-brain axis in longevity

Thu, 28/03/2024 - 11:00
Gut Microbes. 2024 Jan-Dec;16(1):2331434. doi: 10.1080/19490976.2024.2331434. Epub 2024 Mar 28.ABSTRACTThe role of microbiota-gut-brain axis in modulating longevity remains undetermined. Here, we performed a multiomics analysis of gut metagenomics, gut metabolomics, and brain functional near-infrared spectroscopy (fNIRS) in a cohort of 164 participants, including 83 nonagenarians (NAs) and 81 non-nonagenarians (NNAs) matched with their spouses and offspring. We found that 438 metabolites were significantly different between the two groups; among them, neuroactive compounds and anti-inflammatory substances were enriched in NAs. In addition, increased levels of neuroactive metabolites in NAs were significantly associated with NA-enriched species that had three corresponding biosynthetic potentials: Enterocloster asparagiformis, Hungatella hathewayi and Oxalobacter formigenes. Further analysis showed that the altered gut microbes and metabolites were linked to the enhanced brain connectivity in NAs, including the left dorsolateral prefrontal cortex (DLPFC)-left premotor cortex (PMC), left DLPFC-right primary motor area (M1), and right inferior frontal gyrus (IFG)-right M1. Finally, we found that neuroactive metabolites, altered microbe and enhanced brain connectivity contributed to the cognitive preservation in NAs. Our findings provide a comprehensive understanding of the microbiota-gut-brain axis in a long-lived population and insights into the establishment of a microbiome and metabolite homeostasis that can benefit human longevity and cognition by enhancing functional brain connectivity.PMID:38548676 | DOI:10.1080/19490976.2024.2331434

Divergent Gut Microbiota: Archaeal and Bacterial Signatures Unveil Unique Patterns in Colombian Cyclists Compared to Weightlifters and Non-Athletes

Thu, 28/03/2024 - 11:00
Adv Biol (Weinh). 2024 Mar 28:e2400069. doi: 10.1002/adbi.202400069. Online ahead of print.ABSTRACTEngagement in physical activity, across various sports, promotes a diverse microbiota in active individuals. This study examines the gut microbiota of Colombian athletes, specifically weightlifters (n = 16) and road cyclists (n = 13), compared to non-athletes (n = 15). Using Kruskal-Wallis tests, the physical activity level of a group of non-athletic individuals and the sports experience of a group of professional athletes is analyzed. The median age of participants is 24 years, comprising 25 men and 19 women. The microbiota is collected using fecal samples. Participants provided these samples during their pre-competitive stage, specifically during the concentration phase occurring two weeks prior to national competitions. This timing is chosen to capture the microbial composition during a period of heightened physical preparation. Questionnaire responses and microbial composition assessments identify disparities among groups. Microbial composition analysis explores core microbiome, abundance, and taxonomy using Pavian, MicrobiomeAnalyst 2.0, and GraPhlAn. ANCOM-BC2 reveals differentially abundant species. Road cyclists exhibit decreased Bacteria and increased Archaea abundance. Phylum-level variations included Planctomycetes, Acidobacteria, and Proteobacteria, while Bacteroidetes prevailed. Key families influencing gut microbiota are Bacteroidaceae, Muribaculaceae, and Selenomonadaceae. Weightlifters exhibit unique viral and archaeal community connections, while cyclists showed specialized microbial interplay influenced by endurance exercise. Correlation network analysis emphasizes distinctive microbial interactions within athlete groups, shedding light on the impact of physical activities on gut microbiota and athlete health.PMID:38548661 | DOI:10.1002/adbi.202400069

Evaluation of metabolomics-based urinary biomarker models for recognizing major depression disorder and bipolar disorder

Thu, 28/03/2024 - 11:00
J Affect Disord. 2024 Mar 26:S0165-0327(24)00537-8. doi: 10.1016/j.jad.2024.03.114. Online ahead of print.ABSTRACTBACKGROUND: Major depressive disorder (MDD) and bipolar disorder (BD) are psychiatric disorders with overlapping symptoms, leading to high rates of misdiagnosis due to the lack of biomarkers for differentiation. This study aimed to identify metabolic biomarkers in urine samples for diagnosing MDD and BD, as well as to establish unbiased differential diagnostic models.METHODS: We utilized a metabolomics approach employing ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) to analyze the metabolic profiles of urine samples from individuals with MDD (n = 50), BD (n = 12), and healthy controls (n = 50). The identification of urine metabolites was verified using MS data analysis tools and online metabolite databases.RESULTS: Two diagnostic panels consisting of a combination of metabolites and clinical indicators were identified-one for MDD and another for BD. The discriminative capacity of these panels was assessed using the area under the receiver operating characteristic (ROC) curve, yielding an Area Under the Curve (AUC) of 0.9084 for MDD and an AUC value of 0.9017 for BD.CONCLUSIONS: High-resolution mass spectrometry-based assays show promise in identifying urinary biomarkers for depressive disorders. The combination of urine metabolites and clinical indicators is effective in differentiating healthy controls from individuals with MDD and BD. The metabolic pathway indicating oxidative stress is seen to significantly contribute to depressive disorders.PMID:38548210 | DOI:10.1016/j.jad.2024.03.114

Metabolomic Profiles during Early Childhood and Risk of Food Allergies and Asthma in Multi-ethnic Children from a Prospective Birth Cohort

Thu, 28/03/2024 - 11:00
J Allergy Clin Immunol. 2024 Mar 26:S0091-6749(24)00295-1. doi: 10.1016/j.jaci.2024.02.024. Online ahead of print.ABSTRACTBACKGROUND: There are increasing numbers of metabolomic studies in food allergy (FA) and asthma, which, however, are predominantly limited by cross-sectional designs, small sample size, and being conducted in European populations.OBJECTIVE: To identify metabolites which are unique to and shared by children with FA and/or asthma in a racially diverse prospective birth cohort (the Boston Birth Cohort).METHODS: Mass spectrometry-based untargeted metabolomic profiling was performed using venous plasma collected in early childhood (N=811). FA was diagnosed based on clinical symptoms consistent with an acute hypersensitivity reaction upon food ingestion and food specific-IgE > 0.35 kU/L. Asthma was defined based on physician diagnosis. Generalized estimating equations were applied to analyze metabolomic associations with FA and asthma, adjusting for potential confounders.RESULTS: During a median follow-up of 11.8±5.2 years from birth, 78 children developed FA and 171 developed asthma. Androgenic and pregnenolone steroids were significantly associated with a lower risk of FA, especially for egg allergy. N,N,N-trimethyl-5-aminovalerate (OR=0.65, 95%CI=0.48-0.87) and 1-Oleoyl-2-arachidonoyl-sn-glycero-3-phosphoinositol (OR=0.77, 95%CI=0.66-0.90) were inversely associated with FA risk. Orotidine (OR=4.73, 95%CI=2.2-10.2) and 4-cholesten-3-one (OR=0.52, 95%CI=0.35-0.77) were the top two metabolites associated with risk of asthma, although they had no association with FA. In comparison, children with both FA and asthma exhibited an altered metabolomic profile that aligned with that of FA, including altered levels of lipids and steroids.CONCLUSION: In this U.S. multi-ethnic prospective birth cohort, unique and shared alterations in plasma metabolites during early childhood were associated with risk of developing FA, asthma, or both. These findings await further validation.PMID:38548091 | DOI:10.1016/j.jaci.2024.02.024

Urban and agricultural influences on the coastal dissolved organic matter pool in the Algoa Bay estuaries

Thu, 28/03/2024 - 11:00
Chemosphere. 2024 Mar 26:141782. doi: 10.1016/j.chemosphere.2024.141782. Online ahead of print.ABSTRACTWhile anthropogenic pollution is a major threat to aquatic ecosystem health, our knowledge of the presence of xenobiotics in coastal Dissolved Organic Matter (DOM) is still relatively poor. This is especially true for water bodies in the Global South with limited information gained mostly from targeted studies that rely on comparison with authentic standards. In recent years, non-targeted tandem mass spectrometry has emerged as a powerful tool to collectively detect and identify pollutants and biogenic DOM components in the environment, but this approach has yet to be widely utilized for monitoring ecologically important aquatic systems. In this study we compared the DOM composition of Algoa Bay, Eastern Cape, South Africa, and its two estuaries. The Swartkops Estuary is highly urbanized and severely impacted by anthropogenic pollution, while the Sundays Estuary is impacted by commercial agriculture in its catchment. We employed solid-phase extraction followed by liquid chromatography tandem mass spectrometry to annotate more than 200 pharmaceuticals, pesticides, urban xenobiotics, and natural products based on spectral matching. The identification with authentic standards confirmed the presence of methamphetamine, carbamazepine, sulfamethoxazole, N-acetylsulfamethoxazole, imazapyr, caffeine and hexa(methoxymethyl)melamine, and allowed semi-quantitative estimations for annotated xenobiotics. The Swartkops Estuary DOM composition was strongly impacted by features annotated as urban pollutants including pharmaceuticals such as melamines and antiretrovirals. By contrast, the Sundays Estuary exhibited significant enrichment of molecules annotated as agrochemicals widely used in the citrus farming industry, with predicted concentrations for some of them exceeding predicted no-effect concentrations. This study provides new insight into anthropogenic impact on the Algoa Bay system and demonstrates the utility of non-targeted tandem mass spectrometry as a sensitive tool for assessing the health of ecologically important coastal ecosystems and will serve as a valuable foundation for strategizing long-term monitoring efforts.PMID:38548083 | DOI:10.1016/j.chemosphere.2024.141782

Systematic optimization of automated phosphopeptide enrichment for high-sensitivity phosphoproteomics

Thu, 28/03/2024 - 11:00
Mol Cell Proteomics. 2024 Mar 26:100754. doi: 10.1016/j.mcpro.2024.100754. Online ahead of print.ABSTRACTImproving coverage, robustness and sensitivity is crucial for routine phosphoproteomics analysis by single-shot liquid chromatography tandem mass spectrometry (LC-MS/MS) from minimal peptide inputs. Here, we systematically optimized key experimental parameters for automated on-beads phosphoproteomics sample preparation with focus on low input samples. Assessing the number of identified phosphopeptides, enrichment efficiency, site localization scores and relative enrichment of multiply-phosphorylated peptides pinpointed critical variables influencing the resulting phosphoproteome. Optimizing glycolic acid concentration in the loading buffer, percentage of ammonium hydroxide in the elution buffer, peptide-to-beads ratio, binding time, sample and loading buffer volumes, allowed us to confidently identify >16,000 phosphopeptides in half-an-hour LC-MS/MS on an Orbitrap Exploris 480 using 30 μg of peptides as starting material. Furthermore, we evaluated how sequential enrichment can boost phosphoproteome coverage and showed that pooling fractions into a single LC-MS/MS analysis increased the depth. We also present an alternative phosphopeptide enrichment strategy based on stepwise addition of beads thereby boosting phosphoproteome coverage by 20%. Finally, we applied our optimized strategy to evaluate phosphoproteome depth with the Orbitrap Astral MS using a cell dilution series and were able to identify >32,000 phosphopeptides from 0.5 million HeLa cells in half-an-hour LC-MS/MS using narrow-window data-independent acquisition (nDIA).PMID:38548019 | DOI:10.1016/j.mcpro.2024.100754

Pages