Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

The Omics Complexity in Sepsis: The Limits of the Personalized Medicine Approach

Thu, 28/03/2024 - 11:00
J Pers Med. 2024 Feb 20;14(3):225. doi: 10.3390/jpm14030225.ABSTRACTSepsis is one of the most common causes of morbidity and mortality worldwide. Despite the remarkable advances in modern medicine throughout the last century, the mortality rates associated with sepsis have remained significantly elevated, both in high- and low-income countries. The main difficulty in the diagnosis and treatment of septic patients is the tremendous heterogeneity of this condition. The vast heterogeneity that characterizes sepsis ranges from the clinical presentation to the biological aspects of the disease. Evidence-based medicine approaches sepsis as a homogenous syndrome and does not consider the individual discrepancies between septic patients. This approach may contribute to the poor outcomes of septic patients. In recent years, personalized medicine has gained significant interest. This novel form of medicine underlines the importance of understanding the genetic, epigenetic, and molecular basis of a disease in order to provide a more tailored approach for the patient. The study of "omics", such as cytomics, genomics, epigenomics, transcriptomics, proteomics, and metabolomics, provides a deeper comprehension of the complex interactions between the host, the disease, and the environment. The aim of this review is to summarize the potential role of a personalized approach in sepsis management, considering the interactions between various "omics".PMID:38540968 | DOI:10.3390/jpm14030225

Qualitative and Quantitative Metabolite Comparison of Korean Traditional Alcoholic Beverages: <em>Takju</em>, <em>Yakju</em>, and <em>Traditional-Soju</em>

Thu, 28/03/2024 - 11:00
Foods. 2024 Mar 21;13(6):956. doi: 10.3390/foods13060956.ABSTRACTWith increasing interest in Korean foods and beverages, Korean traditional alcoholic beverages need to be studied. To characterize Korean traditional alcoholic beverages, we analyzed the metabolites of Takju, Yakju, and Traditional-Soju using 48 commercial products. We performed non-targeted metabolite profiling using gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) and identified 33 significantly discriminant metabolites, including nine organic acids, three amino acids, and seven fatty acids, in the three types of alcoholic beverage. Subsequently, we quantified the profiled metabolites in each product and compared their contents to identify alcoholic beverage type-specific metabolites. Thus, we figured out seven metabolites using receiver operating characteristic (ROC) curves. The results revealed that octadecanoic acid (limit of detection (LOD) to 168.72 mg/L), nonanoic acid (LOD to 112.54 mg/L), and octanoic acid (8.00 to 145.08 mg/L) in Takju; succinic acid (LOD to 1.90 mg/mL), heptanoic acid (LOD to 343.23 mg/L), and hexadecanoic acid (20.28 to 126.45 mg/L) in Yakju; and malonic acid (LOD to 19.13 mg/mL) in Traditional-Soju, with an area under the curve (AUC) > 0.7, are important metabolites that can distinguish the type of alcoholic beverage. Our results provide qualitative and quantitative metabolite information about Korean traditional alcoholic beverages that can be used by consumers and manufacturers.PMID:38540946 | DOI:10.3390/foods13060956

The Biotransformation and Influence on the Functional Activities of Metabolites during the Fermentation of <em>Elaeagnus moorcroftii</em> Wall.<em>ex Schlecht.</em> Juice by <em>Bifidobacterium animalis</em> subsp. <em>lactis</em> HN-3

Thu, 28/03/2024 - 11:00
Foods. 2024 Mar 19;13(6):926. doi: 10.3390/foods13060926.ABSTRACTElaeagnus moorcroftii Wall.ex Schlecht. (EWS) has extensive nutrients and functional active ingredients, which makes it an excellent potential substrate for fermentation. The improvement in the antioxidant activity of Elaeagnus moorcroftii Wall.ex Schlecht. juice (EWSJ) fermented by Bifidobacterium animalis subsp. lactis HN-3 (B.an3) could be attributed to the metabolism and biotransformation of plant-based products by the bacterial strain. To reveal the underlying mechanism, non-targeted metabolomics was applied in this study. After fermentation, the structure of downregulated carbohydrates, amino acids, fatty acids, and flavonoids was changed by Bifidobacterium biotransformation (included four reductions, three hydrolyses, four isomerizations, three deglycosidations, and five other reactions). The structure of these converted upregulated products has a higher antioxidant ability to reduce free radicals than their precursors, such as the flavonoids in the form of hydrolyzed conjugates, amino acids with multiple sulfhydryls or hydroxys, carbohydrates with reactive oxygen on benzene rings and fatty acids with unsaturated bonds, short chains, and glycosides. These findings shed light on the mechanism of the metabolism and biotransformation of EWSJ by B.an3, facilitate the study of the interaction between probiotics and fermented plant-based products, and provide a theoretical basis for the development of Bifidobacterium-fermented plant products with stronger functional activities.PMID:38540916 | DOI:10.3390/foods13060926

A Metabolomics Approach to Establish the Relationship between the Techno-Functional Properties and Metabolome of Indian Goat Yoghurt

Thu, 28/03/2024 - 11:00
Foods. 2024 Mar 17;13(6):913. doi: 10.3390/foods13060913.ABSTRACTINTRODUCTION: Goat milk has poorer fermentation characteristics due to the absence or only traces of αs1-casein, due to which goat yoghurt contains a less dense gel structure. Moreover, the fermentation characteristics of the milk vary between the breeds of the same species. Therefore, it becomes imperative to explore a few metabolites which could regulate the techno-functional properties of goat yoghurt.OBJECTIVES: This study was aimed at relating the metabolite profile of yoghurt prepared from milk of Barbari, an indigenous goat breed of India, and its techno-functional properties (firmness, whey syneresis, and flow behaviour) using multivariate data analysis and regression models.RESULTS: Goat yoghurt was prepared with two different total solids (TS) levels (12 and 16%) and cultures, namely, commercial culture comprising a thermophilic yoghurt culture (A) and NCDC-263 comprising a mixed yoghurt culture (B). Results demonstrated a significant difference (p < 0.05) in whey syneresis with the increase in the TS level. Flow behaviour of all yoghurt samples showed a decrease in viscosity with an increase in shear rate, which confirmed its non-Newtonian behaviour and shear thinning nature, whereas frequency sweep confirmed its viscoelastic nature. Firmness was the most affected under the influence of different TS and culture levels. It was higher (p < 0.05) for 16-A, followed by 16-3B, and minimum for 12-2B. GC-MS-based metabolomics of the yoghurt revealed a total of 102 metabolites, out of which 15 metabolites were differentially expressed (p < 0.05), including 2-hydroxyethyl palmitate, alpha-mannobiose, and myo-inositol. Multivariate data analysis revealed clear separation among groups using principal component analysis and several correlations using a correlation heat map. Further, regression analysis exhibited methylamine (0.669) and myo-inositol (0.947) with higher regression coefficients (R2 values) exceeding 0.6, thus demonstrating their significant influence on the techno-functional properties, mainly firmness, of the yogurt.CONCLUSION: In conclusion, A gas chromatography-based metabolomics approach could successfully establish a relationship between the metabolome and the techno-functional properties of the yoghurt.PMID:38540903 | DOI:10.3390/foods13060913

Understanding <em>Ligilactobacillus salivarius</em> from Probiotic Properties to Omics Technology: A Review

Thu, 28/03/2024 - 11:00
Foods. 2024 Mar 15;13(6):895. doi: 10.3390/foods13060895.ABSTRACTLigilactobacillus salivarius (basonym: Lactobacillus salivarius, L. salivarius) is a type of lactic acid bacteria (LAB) commonly found in the oropharyngeal-gastrointestinal tract (OGT). It has gained significant attention due to its probiotic and functional properties as well as its various health-promoting roles. L. salivarius strains exhibit strong resistance and adhesion in the OGT along with outstanding antioxidant and antimicrobial properties. Additionally, numerous L. salivarius strains have the ability to produce bacteriocins with antagonistic activity. These probiotic characteristics of L. salivarius indicate its remarkable potential in promoting favorable effects on human health. It has also been observed that L. salivarius has a positive effect on the composition of intestinal microbiota, thereby improving the metabolic profiling of intestinal microbiota, promoting a healthy and balanced internal environment. In recent years, multi-omics technologies such as genomics, transcriptomics, proteomics and metabolomics have been employed to gain a deeper understanding of the roles and mechanisms of L. salivarius associated with its functional properties. This review aims to provide an overview of the probiotic characteristics of L. salivarius, containing its specific interactions with the host microflora, as well as insights from omics studies.PMID:38540885 | DOI:10.3390/foods13060895

Metabolomics-Based Analysis on the Effect and Metabolic Response of Mycelia by Sawdust Addition from Hypsizygus marmoreus

Thu, 28/03/2024 - 11:00
Foods. 2024 Mar 13;13(6):867. doi: 10.3390/foods13060867.ABSTRACTThe composition of culture substrate is an important environmental factor that affects the growth and metabolism of Hypsizygus marmoreus, and sawdust is commonly used as the substrate for cultivating mushrooms. However, the influences of sawdust on metabolic level of H. marmoreus in mycelial growth is little reported. In this study, the effect of sawdust addition on mycelial growth rate, morphological characteristics and nutrient content of H. marmoreus was explored, and the metabolic response was analyzed based on LC-MS/MS. The results showed the mycelial growth rates and the number of mycelial clamp connections in sawdust medium A and sawdust medium B were significantly higher than that of the basic medium (Control). The mycelial morphology in sawdust medium A was denser, with higher edge trimness and stronger aerial mycelia. The contents of crude fiber, crude protein and polysaccharide of the mycelia from sawdust medium A increased by 85.15%, 90.65% and 92.61%, respectively, compared to that in the basic medium. A total of 551 metabolites were identified and obtained. The differential accumulated metabolites (DAMs) were mainly amino acids, lipids compounds and carbohydrates. It was speculated that the addition of sawdust played a vital role in promoting the cell division and, thus, the formation of clamp connections in H. marmoreus mycelia. Regarding amino acids, the metabolism of glycine, serine and ABC transporters was active with the increase in sawdust, thereby increasing the protein content. And some valuable bioactive molecules were found, such as docosahexaenoic acid (DHA). This study will lay the foundation for further research on the substance transformation and quality improvement of cultivation substrate for mushrooms.PMID:38540857 | DOI:10.3390/foods13060867

Characterization of Nanovesicles Isolated from Olive Vegetation Water

Thu, 28/03/2024 - 11:00
Foods. 2024 Mar 8;13(6):835. doi: 10.3390/foods13060835.ABSTRACTEdible plant and fruit-derived nanovesicles (NVs) are membrane-enclosed particles with round-shape morphology and signaling functions, which resemble mammalian cell-derived extracellular vesicles. These NVs can transmit cross-kingdom signals as they contain bioactive molecules and exert biological effects on mammalian cells. Their properties and stability in the gastrointestinal tract suggest NVs as a promising nutraceutical tool. In this study, we have demonstrated for the first time the presence of NVs in olive vegetation water (OVW), a waste by-product generated during olive oil production. Biophysical characterization by scanning electron microscopy, cryo-transmission electron microscopy, and nanoparticle tracking analysis revealed the presence in OVW of NVs having size and morphology similar to that of vesicles isolated from edible plants. Integrated lipidomic, metabolomic, and proteomic analyses showed that OVW-NVs carry a set of lipids, metabolites and proteins which have recognized antioxidant and anti-inflammatory activities. The nature of biomolecules identified in OVW-NVs suggests that these vesicles could exert beneficial effects on mammalian cells and could be used in the nutraceutical and food industries. The successful isolation of OVW-NVs and the characterization of their features strengthen the idea that agricultural waste might represent a source of NVs having features similar to NVs isolated from edible plants/fruits.PMID:38540825 | DOI:10.3390/foods13060835

Metabolomic Profiling Reveals the Quality Variations in Citri Reticulatae Pericarpium (Citrus reticulata Blanco cv. Chachiensis) with Different Storage Ages in Response to "Candidatus Liberibacter Asiaticus" Infection

Thu, 28/03/2024 - 11:00
Foods. 2024 Mar 8;13(6):827. doi: 10.3390/foods13060827.ABSTRACTCitri Reticulatae Pericarpium, especially the pericarp of Citrus reticulata Blanco cv. Chachiensis (PCRC), is an important edible and medicinal ingredient for health and pharmacological properties. Citrus Huanglongbing, a devastating disease that currently threatens the citrus industry worldwide, is caused by a phloem-limited alpha-proteobacterium, "Candidatus Liberibacter asiaticus" (CLas). The industry of cultivar Chachiensis has been suffering from HLB. Although HLB affected the quality of citrus fruit, whether the quality of PCRC was affected by HLB remains unclear. In this study, we compared the metabolite profiles between HLB-affected and healthy PCRC from three sources: fresh, 6-month-old, and 9-year-old PCRC, through the untargeted LC-MS method. Compared to healthy controls, various types of bioactive compounds, mainly flavonoids, terpenoids, alkaloids, coumarins, polysaccharides, and phenolic acids, accumulated in HLB-affected PCRC, especially in the HLB-affected 9-year PCRC. In particular, isorhamnetin, isoliquiritigenin, luteolin 7-O-beta-D-glucoside, limonin, geniposide, pyrimidodiazepine, scoparone, chitobiose, m-coumaric acid, malonate, and pantothenic acid, which contributed to the pharmacological activity and health care effects of PCRC, were highly accumulated in HLB-affected 9-year-old PCRC compared to the healthy control. Multibioassay analyses revealed that HLB-affected 9-year-old PCRC had a higher content of total flavonoids and total polyphenols and exhibited similar antioxidant capacity as compared to healthy controls. The results of this study provided detailed information on the quality of HLB-affected PCRC.PMID:38540817 | DOI:10.3390/foods13060827

Postbiotics of Naturally Fermented Synbiotic Mixture of Rice Water Aids in Promoting Colonocyte Health

Thu, 28/03/2024 - 11:00
Biomolecules. 2024 Mar 13;14(3):344. doi: 10.3390/biom14030344.ABSTRACTThe eubiotic state of the gut microbiota is primarily brought about by various probiotic species that colonize the gut. It is becoming very clear that the probiotic-metabolite mixtures in the gut luminal milieu is central in establishing cross-kingdom signalling networks to maintain gut-multi-organ axes health. Culturally, different fermented foods and beverages have been regional staples since ancient times, and are known to be enriched with probiotics. However, regional variations including the environment, the staple food source (prebiotics), and fermentation methods, among other factors, influence the fermenting probiotic species. Fermented rice water (FRW), an economical, easy to make, simple beverage is a rich source of synbiotics. Therefore, consumption of fermented rice water allows for the intake of a variety of region-specific live probiotics. The secondary metabolites (postbiotics) present in such symbiotic mixtures may also contribute toward maintaining normal intestinal cellular functions. In this study, we highlight that regional staples such as rice consumed in their fermented form may hold promise in alleviating gut-related diseases. Our results show that simple overnight fermentation of cooked edible rice enables the growth of probiotic bacterial species belonging to the Lactic Acid Bacteria group (Leuconostoc lactis, Weisella confusa, Weisella cibacria, Lactococcus lactis, lactococcus taiwanensis, Lactobacillus fermentum, Lactobacillus nagelii, and Lactobacillus delbrueckii ssp. indicus). Metabolomic analysis of the overnight fermented and over two-nights fermented rice water identified more than 200 postbiotic metabolites. Our results show that postbiotics contributing to energy metabolism, gut-multiorgan axes, and microbial paraprobiotics are enriched in the overnight (~10 h) fermented rice water as compared to the over two-nights fermented rice water. Functional analysis via gene expression studies for nutrient absorption (mct-1 and mct-2) and barrier integrity (occludin and zo-1) reveals significant upregulation of these genes upon FRW treatment of HT29 colon cells. This study is a first-of-its-kind to demonstrate the proof-of-principle that postbiotics of naturally fermented rice water positively modulates colonocyte health.PMID:38540763 | DOI:10.3390/biom14030344

Overexpression of <em>S30</em> Ribosomal Protein Leads to Transcriptional and Metabolic Changes That Affect Plant Development and Responses to Stress

Thu, 28/03/2024 - 11:00
Biomolecules. 2024 Mar 7;14(3):319. doi: 10.3390/biom14030319.ABSTRACTICT1 is an Arabidopsis thaliana line that overexpresses the gene encoding the S30 ribosomal subunit, leading to tolerance to exogenous indole-3-carbinol. Indole-3-carbinol (I3C) is a protective chemical formed as a breakdown of I3M in cruciferous vegetables. The overexpression of S30 in ICT1 results in transcriptional changes that prime the plant for the I3C, or biotic insult. Emerging evidence suggests that ribosomal proteins play important extra-ribosomal roles in various biochemical and developmental processes, such as transcription and stress resistance. In an attempt to elucidate the mechanism leading to I3C and stress resistance in ICT1, and using a multi-pronged approach employing transcriptomics, metabolomics, phenomics, and physiological studies, we show that overexpression of S30 leads to specific transcriptional alterations, which lead to both changes in metabolites connected to biotic and oxidative stress tolerance and, surprisingly, to photomorphogenesis.PMID:38540739 | DOI:10.3390/biom14030319

Untargeted and Oxylipin-Targeted Metabolomics Study on the Plasma Samples of Primary Open-Angle Glaucoma Patients

Thu, 28/03/2024 - 11:00
Biomolecules. 2024 Mar 5;14(3):307. doi: 10.3390/biom14030307.ABSTRACTPurpose: to determine the metabolomics profiles in the plasma samples of primary open-angle glaucoma (POAG) patients. Methods: The plasma samples from 20 POAG patients under intraocular pressure (IOP)-lowering medication treatment and 20 control subjects were subjected to the untargeted metabolomics analysis, among which 10 POAG patients and 10 control subjects were further subjected to the oxylipin-targeted metabolomics analysis by liquid chromatography-mass spectrometry analysis. The prediction accuracy of the differentially abundant metabolites was assessed by the receiver operating characteristic curves. Pathway analysis and correlation analysis on the differentially abundant metabolites and clinical and biochemical parameters were also conducted. Results: Untargeted metabolomics profiling identified 33 differentially abundant metabolites in the POAG patients, in which the metabolism of linoleic acid, α-linolenic acid, phenylalanine, and tricarboxylic acid cycle were enriched. The correlation analysis indicated that the differentially abundant metabolites were associated with central corneal thickness, peripapillary retinal nerve fiber layer thickness, visual field defects, and lymphocytes. The oxylipin-targeted metabolomics analysis identified 15-keto-Prostaglandin F2 alpha, 13,14-Dihydro-15-keto-prostaglandin D2, 11-Dehydro-thromboxane B2, 8,9-Epoxyeicosatrienoic acid, and arachidonic acid to be significantly decreased in the POAG patients and enriched in the arachidonic acid (AA) pathway. Conclusions: This study revealed that the metabolites in the arachidonic acid metabolism pathway are differentially abundant, suggesting high IOP may not be the only detrimental factor for optic nerve cell damage in this group of POAG patients. Lipid metabolism instability-mediated alterations in oxylipins and AA pathways may be important in POAG, suggesting that oxidative stress and immune-related inflammation could be valuable directions for future therapeutic strategies.PMID:38540727 | DOI:10.3390/biom14030307

Association of Altered Plasma Lipidome with Disease Severity in COVID-19 Patients

Thu, 28/03/2024 - 11:00
Biomolecules. 2024 Mar 1;14(3):296. doi: 10.3390/biom14030296.ABSTRACTThe severity of COVID-19 is linked to an imbalanced immune response. The dysregulated metabolism of small molecules and bioactive lipids has also been associated with disease severity. To promote understanding of the disease biochemistry and provide targets for intervention, we applied a range of LC-MS platforms to analyze over 100 plasma samples from patients with varying COVID-19 severity and with detailed clinical information on inflammatory responses (>30 immune markers). This is the third publication in a series, and it reports the results of comprehensive lipidome profiling using targeted LC-MS/MS. We identified 1076 lipid features across 25 subclasses, including glycerophospholipids, sterols, glycerolipids, and sphingolipids, among which 531 lipid features were dramatically changed in the plasma of intensive care unit (ICU) patients compared to patients in the ward. Patients in the ICU showed 1.3-57-fold increases in ceramides, (lyso-)glycerophospholipids, diglycerides, triglycerides, and plasmagen phosphoethanolamines, and 1.3-2-fold lower levels of a cyclic lysophosphatidic acid, sphingosine-1-phosphates, sphingomyelins, arachidonic acid-containing phospholipids, lactosylceramide, and cholesterol esters compared to patients in the ward. Specifically, phosphatidylinositols (PIs) showed strong fatty acid saturation-dependent behavior, with saturated fatty acid (SFA)- and monosaturated fatty acid (MUFA)-derived PI decreasing and polystaturated (PUFA)-derived PI increasing. We also found ~4000 significant Spearman correlations between lipids and multiple clinical markers of immune response with |R| ≥ 0.35 and FDR corrected Q < 0.05. Except for lysophosphatidic acid, lysophospholipids were positively associated with the CD4 fraction of T cells, and the cytokines IL-8 and IL-18. In contrast, sphingosine-1-phosphates were negatively correlated with innate immune markers such as CRP and IL-6. Further indications of metabolic changes in moderate COVID-19 disease were demonstrated in recovering ward patients compared to those at the start of hospitalization, where 99 lipid species were altered (6 increased by 30-62%; 93 decreased by 1.3-2.8-fold). Overall, these findings support and expand on early reports that dysregulated lipid metabolism is involved in COVID-19.PMID:38540716 | DOI:10.3390/biom14030296

Volabolomic Fingerprinting for Post-Mortem Interval Estimation: A Novel Physiological Approach

Thu, 28/03/2024 - 11:00
Biomolecules. 2024 Feb 28;14(3):286. doi: 10.3390/biom14030286.ABSTRACTDeath is a multifaceted process wherein each individual cell and tissue has a metabolic homeostasis and a time of functional cessation defined by the dying process as well as by intrinsic and extrinsic factors. Decomposition is physiologically associated with the release of different types of volatile organic compounds (VOCs), and these form volaboloma mortis. The main purpose of this study was to record the volabolomic fingerprint produced by volatile molecules during the physiological decomposition process of human tissue and muscle cells. The volatile chemical signature has important implications for an open issue in forensics and pathology, namely the estimation of the postmortem interval (PMI), which decreases in accuracy with the passage of time. Volatile metabolites emitted from human tissues and muscle cells at 0, 24, 48, and 72 h were recorded in real time with an electronic nose sensor device. The key findings were the continuous sampling of VOCs emitted from tissues and cells. These showed a common behavior as time progressed; particularly, after 48 h the distributions became dispersed, and after 72 h they became more variable. Volabolomic fingerprinting associated with time progression relevant to the study of PMIs was reconstructed. Additionally, there may be broader applications, such as in dog training procedures for detecting human remains, and perhaps even for studying scavenger and insect attractants.PMID:38540706 | DOI:10.3390/biom14030286

Metabolomic and Transcriptomic Analyses Reveal the Molecular Mechanism Underlying the Massive Accumulation of Secondary Metabolites in Fenugreek (Trigonella foenum-graecum L.) Seeds

Thu, 28/03/2024 - 11:00
Genes (Basel). 2024 Mar 7;15(3):343. doi: 10.3390/genes15030343.ABSTRACTFenugreek (Trigonella foenum-graecum L.) is a traditional medicinal plant for treating human diseases that is widely cultivated in many countries. However, the component and related metabolic pathways are still unclear. To understand the changes in expression of the component and related genes during seed development, this study employed metabolomic and transcriptomic analyses and integrative analysis to explore the metabolites and pathways involved in the growth of fenugreek. The antifungal activity of the fenugreek seeds was also analyzed. A total of 9499 metabolites were identified in the positive ion mode, and 8043 metabolites were identified in the negative ion mode. Among them, the main components were fatty acyls, prenol lipids, steroids, steroid derivatives, flavonoids, and isoflavonoids. Among these enriched pathways, the top 20 pathways were "flavone and flavonol biosynthesis", "isoflavonoid biosynthesis", and "flavonoid biosynthesis". 3,7-Di-O-methylquercetin, flavonoids, pseudobaptigenin, isoflavonoids, methylecgonine, alkaloids, and derivatives were the most significantly upregulated metabolites. There were 38,137 differentially expressed genes (DEGs) identified via transcriptomic analysis. According to the KEGG pathway enrichment analysis, 147 DEGs were significantly enriched in "flavonoid biosynthesis". Ten DEGs of the six key enzymes were found to be involved in three pathways related to flavonoid and alkaloid synthesis in fenugreek. The antifungal activity test revealed the inhibitory effect of the ethanol extract of fenugreek seeds on Alternaria tenuissima (Kunze)Wiltshire and Magnaporthe oryzae. These findings further prove that the use of botanical pesticides in fenugreek fruit has research value.PMID:38540402 | DOI:10.3390/genes15030343

Potential Impact of a Pregnant Woman's Microbiota on the Development of Fetal Heart Defects: A Review of the Literature

Thu, 28/03/2024 - 11:00
Biomedicines. 2024 Mar 14;12(3):654. doi: 10.3390/biomedicines12030654.ABSTRACTDevelopments in medicine and biology in recent decades have led to a significant increase in our knowledge of the complex interactions between the microbiota and human health. In the context of perinatal medicine and neonatology, particular attention is being paid to the potential impact of the maternal microbiota on fetal development. Among the many aspects of this relationship, the question of the impact of dysbiosis on the development of fetal heart defects is an important one. In this article, we present an analysis of recent research and scientific evidence on the relationship between a pregnant woman's microbiota and the development of fetal heart defects. We also discuss potential intervention strategies, including the role of probiotics and diet in optimising the maternal microbiota.PMID:38540267 | DOI:10.3390/biomedicines12030654

Uremic Toxins and Inflammation: Metabolic Pathways Affected in Non-Dialysis-Dependent Stage 5 Chronic Kidney Disease

Thu, 28/03/2024 - 11:00
Biomedicines. 2024 Mar 7;12(3):607. doi: 10.3390/biomedicines12030607.ABSTRACTChronic kidney disease (CKD) affects approximately 12% of the global population, posing a significant health threat. Inflammation plays a crucial role in the uremic phenotype of non-dialysis-dependent (NDD) stage 5 CKD, contributing to elevated cardiovascular and overall mortality in affected individuals. This study aimed to explore novel metabolic pathways in this population using semi-targeted metabolomics, which allowed us to quantify numerous metabolites with known identities before data acquisition through an in-house polar compound library. In a prospective observational design with 50 patients, blood samples collected before the initial hemodialysis session underwent liquid chromatography and high-resolution mass spectrometer analysis. Univariate (Mann-Whitney test) and multivariate (logistic regression with LASSO regularization) methods identified metabolomic variables associated with inflammation. Notably, adenosine-5'-phosphosulfate (APS), dimethylglycine, pyruvate, lactate, and 2-ketobutyric acid exhibited significant differences in the presence of inflammation. Cholic acid, homogentisic acid, and 2-phenylpropionic acid displayed opposing patterns. Multivariate analysis indicated increased inflammation risk with certain metabolites (N-Butyrylglycine, dimethylglycine, 2-Oxoisopentanoic acid, and pyruvate), while others (homogentisic acid, 2-Phenylpropionic acid, and 2-Methylglutaric acid) suggested decreased probability. These findings unveil potential inflammation-associated biomarkers related to defective mitochondrial fatty acid beta oxidation and branched-chain amino acid breakdown in NDD stage 5 CKD, shedding light on cellular energy production and offering insights for further clinical validation.PMID:38540220 | DOI:10.3390/biomedicines12030607

Metabolomic Profiling of Mice with Tacrolimus-Induced Nephrotoxicity: Carnitine Deficiency in Renal Tissue

Thu, 28/03/2024 - 11:00
Biomedicines. 2024 Feb 26;12(3):521. doi: 10.3390/biomedicines12030521.ABSTRACTTacrolimus (TAC)-induced chronic nephrotoxicity (TAC nephrotoxicity) has a detrimental effect on long-term kidney graft survival. However, the pathogenesis of TAC nephrotoxicity remains largely unknown. We explored it by focusing on metabolic changes in renal tissues. In this study, mice were separated into TAC and control groups (n = 5/group). TAC was administered to the TAC group (1 mg/kg/d for 28 days) subcutaneously. The control group was similarly treated with normal saline. Renal tissue metabolomes were evaluated. Renal fibrosis was observed only in the TAC group. Metabolomic analysis showed that carnitine and related metabolites were substantially lower in the TAC group than in the control group, presumably due to impaired biosynthesis and reabsorption. Low carnitine levels impair antioxidation in renal tissues and β-oxidation in mitochondria, which may lead to renal tissue damage. This metabolomic analysis revealed that carnitine deficiency in renal tissue appears to explain TAC nephrotoxicity.PMID:38540134 | DOI:10.3390/biomedicines12030521

Supervised Parametric Learning in the Identification of Composite Biomarker Signatures of Type 1 Diabetes in Integrated Parallel Multi-Omics Datasets

Thu, 28/03/2024 - 11:00
Biomedicines. 2024 Feb 22;12(3):492. doi: 10.3390/biomedicines12030492.ABSTRACTBACKGROUND: Type 1 diabetes (T1D) is a devastating autoimmune disease, and its rising prevalence in the United States and around the world presents a critical problem in public health. While some treatment options exist for patients already diagnosed, individuals considered at risk for developing T1D and who are still in the early stages of their disease pathogenesis without symptoms have no options for any preventive intervention. This is because of the uncertainty in determining their risk level and in predicting with high confidence who will progress, or not, to clinical diagnosis. Biomarkers that assess one's risk with high certainty could address this problem and will inform decisions on early intervention, especially in children where the burden of justifying treatment is high. Single omics approaches (e.g., genomics, proteomics, metabolomics, etc.) have been applied to identify T1D biomarkers based on specific disturbances in association with the disease. However, reliable early biomarkers of T1D have remained elusive to date. To overcome this, we previously showed that parallel multi-omics provides a more comprehensive picture of the disease-associated disturbances and facilitates the identification of candidate T1D biomarkers.METHODS: This paper evaluated the use of machine learning (ML) using data augmentation and supervised ML methods for the purpose of improving the identification of salient patterns in the data and the ultimate extraction of novel biomarker candidates in integrated parallel multi-omics datasets from a limited number of samples. We also examined different stages of data integration (early, intermediate, and late) to assess at which stage supervised parametric models can learn under conditions of high dimensionality and variation in feature counts across different omics. In the late integration scheme, we employed a multi-view ensemble comprising individual parametric models trained over single omics to address the computational challenges posed by the high dimensionality and variation in feature counts across the different yet integrated multi-omics datasets.RESULTS: the multi-view ensemble improves the prediction of case vs. control and finds the most success in flagging a larger consistent set of associated features when compared with chance models, which may eventually be used downstream in identifying a novel composite biomarker signature of T1D risk.CONCLUSIONS: the current work demonstrates the utility of supervised ML in exploring integrated parallel multi-omics data in the ongoing quest for early T1D biomarkers, reinforcing the hope for identifying novel composite biomarker signatures of T1D risk via ML and ultimately informing early treatment decisions in the face of the escalating global incidence of this debilitating disease.PMID:38540105 | DOI:10.3390/biomedicines12030492

Preservative Effects of Curcumin on Semen of Hu Sheep

Thu, 28/03/2024 - 11:00
Animals (Basel). 2024 Mar 19;14(6):947. doi: 10.3390/ani14060947.ABSTRACTReactive oxygen species (ROS) are important factors that lead to a decline in sperm quality during semen preservation. Excessive ROS accumulation disrupts the balance of the antioxidant system in sperm and causes lipid oxidative damage, destroying its structure and function. Curcumin is a natural plant extract that neutralizes ROS and enhances the function of endogenous antioxidant enzymes. The effect of curcumin on the preservation of sheep semen has not been reported. This study aims to determine the effects of curcumin on refrigerated sperm (4 °C) and analyze the effects of curcumin on sperm metabolism from a Chinese native sheep (Hu sheep). The results showed that adding curcumin significantly improved (p < 0.05) the viability of refrigerated sperm at an optimal concentration of 20 µmol/L, and the plasma membrane and acrosome integrity in semen were significantly improved (p < 0.05). Adding curcumin to refrigerated semen significantly increased (p < 0.05) the levels of antioxidant enzymes (T-AOC, CAT, and SOD) and significantly decreased (p < 0.05) ROS production. A total of 13,796 metabolites in sperm and 20,581 metabolites in negative groups and curcumin-supplemented groups were identified using liquid chromatography-mass spectrometry. The proportion of lipids and lipid-like molecules among all metabolites in the sperm was the highest, regardless of treatment. We identified 50 differentially expressed metabolites (DEMs) in sperm between the negative control and curcumin-treated groups. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that DEMs were mainly enriched in the calcium signaling pathway, phospholipase D signaling pathway, sphingolipid metabolism, steroid hormone biosynthesis, 2-oxocarboxylic acid metabolism, and other metabolic pathways. The findings indicate that the addition of an appropriate concentration (20 µm/L) of curcumin to sheep semen can effectively suppress reactive oxygen species (ROS) production and extend the duration of cryopreservation (4 °C) by modulating the expression of sphingosine-1-phosphate, dehydroepiandrosterone sulfate, phytosphingosine, and other metabolites of semen. This discovery offers a novel approach to enhancing the cryogenic preservation of sheep semen.PMID:38540045 | DOI:10.3390/ani14060947

Special issue: Manipulation/regulation of secondary metabolites in medicinal plants

Wed, 27/03/2024 - 11:00
Plant Physiol Biochem. 2024 Mar 21:108549. doi: 10.1016/j.plaphy.2024.108549. Online ahead of print.ABSTRACTMedicinal plants, rich sources of valuable natural products with therapeutic potential, play a pivotal role in both traditional and modern medicine. The urgency for mass production and optimized utilization of plant secondary metabolites has intensified, particularly in response to the emergence of diseases following the COVID-19 pandemic. Groundbreaking advancements in genomics and biotechnologies have ushered in a new era of research, transforming our understanding of the biosynthesis, regulation, and manipulation of bioactive molecules in medicinal plants. This special issue serves as a convergence point for a diverse array of original research articles and reviews, collectively aiming to unveil the intricate regulatory mechanisms that govern the biosynthesis of secondary metabolites in medicinal plants. The issue delves into the exploration of the impact of both abiotic and biotic factors on the regulation of plant secondary metabolites. Furthermore, it extends its focus to innovative approaches, such as molecular breeding and synthetic biology, which provide valuable insights into modifying or enhancing the production of secondary metabolites. The special issue leverages cutting-edge techniques, including genomics, metabolomics, and microbiome characterization, to facilitate understanding the multifaceted aspects of specialized metabolism in medicinal plants. As we navigate through this scientific journey, the contributions within this special issue collectively enhance our knowledge and offer potential avenues for optimizing the production of natural products in medicinal plants.PMID:38538457 | DOI:10.1016/j.plaphy.2024.108549

Pages