Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

<em>Salvia officinalis</em> L. exerts oncostatic effects in rodent and <em>in vitro</em> models of breast carcinoma

Mon, 11/03/2024 - 11:00
Front Pharmacol. 2024 Feb 23;15:1216199. doi: 10.3389/fphar.2024.1216199. eCollection 2024.ABSTRACTIntroduction: Based on extensive data from oncology research, the use of phytochemicals or plant-based nutraceuticals is considered an innovative tool for cancer management. This research aimed to analyze the oncostatic properties of Salvia officinalis L. [Lamiaceae; Salviae officinalis herba] using animal and in vitro models of breast carcinoma (BC). Methods: The effects of dietary administered S. officinalis in two concentrations (0.1%/SAL 0.1/and 1%/SAL 1/) were assessed in both syngeneic 4T1 mouse and chemically induced rat models of BC. The histopathological and molecular evaluations of rodent carcinoma specimens were performed after the autopsy. Besides, numerous in vitro analyses using two human cancer cell lines were performed. Results and Conclusion: The dominant metabolites found in S. officinalis propylene glycol extract (SPGE) were representatives of phenolics, specifically rosmarinic, protocatechuic, and salicylic acids. Furthermore, the occurrence of triterpenoids ursolic and oleanolic acid was proved in SPGE. In a mouse model, a non-significant tumor volume decrease after S. officinalis treatment was associated with a significant reduction in the mitotic activity index of 4T1 tumors by 37.5% (SAL 0.1) and 31.5% (SAL 1) vs. controls (set as a blank group with not applied salvia in the diet). In addition, salvia at higher doses significantly decreased necrosis/whole tumor area ratio by 46% when compared to control tumor samples. In a rat chemoprevention study, S. officinalis at a higher dose significantly lengthened the latency of tumors by 8.5 days and significantly improved the high/low-grade carcinomas ratio vs. controls in both doses. Analyses of the mechanisms of anticancer activities of S. officinalis included well-validated prognostic, predictive, and diagnostic biomarkers that are applied in both oncology practice and preclinical investigation. Our assessment in vivo revealed numerous significant changes after a comparison of treated vs. untreated cancer cells. In this regard, we found an overexpression in caspase-3, an increased Bax/Bcl-2 ratio, and a decrease in MDA, ALDH1, and EpCam expression. In addition, salvia reduced TGF-β serum levels in rats (decrease in IL-6 and TNF-α levels were with borderline significance). Evaluation of epigenetic modifications in rat cancer specimens in vivo revealed a decline in the lysine methylations of H3K4m3 and an increase in lysine acetylation in H4K16ac levels in treated groups. Salvia decreased the relative levels of oncogenic miR21 and tumor-suppressive miR145 (miR210, miR22, miR34a, and miR155 were not significantly altered). The methylation of ATM and PTEN promoters was decreased after S. officinalis treatment (PITX2, RASSF1, and TIMP3 promoters were not altered). Analyzing plasma metabolomics profile in tumor-bearing rats, we found reduced levels of ketoacids derived from BCAAs after salvia treatment. In vitro analyses revealed significant anti-cancer effects of SPGE extract in MCF-7 and MDA-MB-231 cell lines (cytotoxicity, caspase-3/-7, Bcl-2, Annexin V/PI, cell cycle, BrdU, and mitochondrial membrane potential). Our study demonstrates the significant chemopreventive and treatment effects of salvia haulm using animal or in vitro BC models.PMID:38464730 | PMC:PMC10921418 | DOI:10.3389/fphar.2024.1216199

A comprehensive overview of omics-based approaches to enhance biotic and abiotic stress tolerance in sweet potato

Mon, 11/03/2024 - 11:00
Hortic Res. 2024 Jan 12;11(3):uhae014. doi: 10.1093/hr/uhae014. eCollection 2024 Mar.ABSTRACTBiotic and abiotic stresses negatively affect the yield and overall plant developmental process, thus causing substantial losses in global sweet potato production. To cope with stresses, sweet potato has evolved numerous strategies to tackle ever-changing surroundings and biological and environmental conditions. The invention of modern sequencing technology and the latest data processing and analysis instruments has paved the way to integrate biological information from different approaches and helps to understand plant system biology more precisely. The advancement in omics technologies has accumulated and provided a great source of information at all levels (genome, transcript, protein, and metabolite) under stressful conditions. These latest molecular tools facilitate us to understand better the plant's responses to stress signaling and help to process/integrate the biological information encoded within the biological system of plants. This review briefly addresses utilizing the latest omics strategies for deciphering the adaptive mechanisms for sweet potatoes' biotic and abiotic stress tolerance via functional genomics, transcriptomics, proteomics, and metabolomics. This information also provides a powerful reference to understand the complex, well-coordinated stress signaling genetic regulatory networks and better comprehend the plant phenotypic responses at the cellular/molecular level under various environmental stimuli, thus accelerating the design of stress-resilient sweet potato via the latest genetic engineering approaches.PMID:38464477 | PMC:PMC10923648 | DOI:10.1093/hr/uhae014

Corrigendum: Advances and potential of omics studies for understanding the development of food allergy

Mon, 11/03/2024 - 11:00
Front Allergy. 2024 Feb 23;5:1373485. doi: 10.3389/falgy.2024.1373485. eCollection 2024.ABSTRACT[This corrects the article DOI: 10.3389/falgy.2023.1149008.].PMID:38464397 | PMC:PMC10921899 | DOI:10.3389/falgy.2024.1373485

Allergy-associated biomarkers in early life identified by Omics techniques

Mon, 11/03/2024 - 11:00
Front Allergy. 2024 Feb 23;5:1359142. doi: 10.3389/falgy.2024.1359142. eCollection 2024.ABSTRACTThe prevalence and severity of allergic diseases have increased over the last 30 years. Understanding the mechanisms responsible for these diseases is a major challenge in current allergology, as it is crucial for the transition towards precision medicine, which encompasses predictive, preventive, and personalized strategies. The urge to identify predictive biomarkers of allergy at early stages of life is crucial, especially in the context of major allergic diseases such as food allergy and atopic dermatitis. Identifying these biomarkers could enhance our understanding of the immature immune responses, improve allergy handling at early ages and pave the way for preventive and therapeutic approaches. This minireview aims to explore the relevance of three biomarker categories (proteome, microbiome, and metabolome) in early life. First, levels of some proteins emerge as potential indicators of mucosal health and metabolic status in certain allergic diseases. Second, bacterial taxonomy provides insight into the composition of the microbiota through high-throughput sequencing methods. Finally, metabolites, representing the end products of bacterial and host metabolic activity, serve as early indicators of changes in microbiota and host metabolism. This information could help to develop an extensive identification of biomarkers in AD and FA and their potential in translational personalized medicine in early life.PMID:38464396 | PMC:PMC10920277 | DOI:10.3389/falgy.2024.1359142

Genotype-based precision nutrition strategies for the prediction and clinical management of type 2 diabetes mellitus

Mon, 11/03/2024 - 11:00
World J Diabetes. 2024 Feb 15;15(2):142-153. doi: 10.4239/wjd.v15.i2.142.ABSTRACTGlobally, type 2 diabetes mellitus (T2DM) is one of the most common metabolic disorders. T2DM physiopathology is influenced by complex interrelationships between genetic, metabolic and lifestyle factors (including diet), which differ between populations and geographic regions. In fact, excessive consumptions of high fat/high sugar foods generally increase the risk of developing T2DM, whereas habitual intakes of plant-based healthy diets usually exert a protective effect. Moreover, genomic studies have allowed the characterization of sequence DNA variants across the human genome, some of which may affect gene expression and protein functions relevant for glucose homeostasis. This comprehensive literature review covers the impact of gene-diet interactions on T2DM susceptibility and disease progression, some of which have demonstrated a value as biomarkers of personal responses to certain nutritional interventions. Also, novel genotype-based dietary strategies have been developed for improving T2DM control in comparison to general lifestyle recommendations. Furthermore, progresses in other omics areas (epigenomics, metagenomics, proteomics, and metabolomics) are improving current understanding of genetic insights in T2DM clinical outcomes. Although more investigation is still needed, the analysis of the genetic make-up may help to decipher new paradigms in the pathophysiology of T2DM as well as offer further opportunities to personalize the screening, prevention, diagnosis, management, and prognosis of T2DM through precision nutrition.PMID:38464367 | PMC:PMC10921165 | DOI:10.4239/wjd.v15.i2.142

KRAS mutation-selective requirement for ACSS2 in colorectal adenoma formation

Mon, 11/03/2024 - 11:00
Res Sq [Preprint]. 2024 Feb 22:rs.3.rs-3931415. doi: 10.21203/rs.3.rs-3931415/v1.ABSTRACTOncogenic KRAS mutations are prevalent in colorectal cancer (CRC) and are associated with poor prognosis and resistance to therapy. There is a substantial diversity of KRAS mutant alleles observed in CRC. Emerging clinical and experimental analysis of common KRAS mutations suggest that each mutation differently influences the clinical properties of a disease and response to therapy. Although there is some evidence to suggest biological differences between mutant KRAS alleles, these are yet to be fully elucidated. One approach to study allelic variation involves the use of isogenic cell lines that express different endogenous Kras mutants. Here, we generated Kras isogenic Apc -/- mouse colon epithelial cell lines using CRISPR-driven genome editing by altering the original G12D Kras allele to G12V, G12R, or G13D. We utilized these cell lines to perform transcriptomic and proteomic analysis to compare different signaling properties between these mutants. Both screens indicate significant differences in pathways relating to cholesterol and lipid regulation that we validated with targeted metabolomic measurements and isotope tracing. We found that these processes are upregulated in G12V lines through increased expression of nuclear SREBP1 and higher activation of mTORC1. G12V cells showed higher expression of ACSS2 and ACSS2 inhibition sensitized G12V cells to MEK inhibition. Finally, we found that ACSS2 plays a crucial role early in the development of G12V mutant tumors, in contrast to G12D mutant tumors. These observations highlight differences between KRAS mutant cell lines in their signaling properties. Further exploration of these pathways may prove to be valuable for understanding how specific KRAS mutants function, and identification of novel therapeutic opportunities in CRC.PMID:38464238 | PMC:PMC10925460 | DOI:10.21203/rs.3.rs-3931415/v1

Genetic regulation and targeted reversal of lysosomal dysfunction and inflammatory sterol metabolism in pulmonary arterial hypertension

Mon, 11/03/2024 - 11:00
bioRxiv [Preprint]. 2024 Mar 1:2024.02.26.582142. doi: 10.1101/2024.02.26.582142.ABSTRACTVascular inflammation critically regulates endothelial cell (EC) pathophenotypes, particularly in pulmonary arterial hypertension (PAH). Dysregulation of lysosomal activity and cholesterol metabolism have known inflammatory roles in disease, but their relevance to PAH is unclear. In human pulmonary arterial ECs and in PAH, we found that inflammatory cytokine induction of the nuclear receptor coactivator 7 (NCOA7) both preserved lysosomal acidification and served as a homeostatic brake to constrain EC immunoactivation. Conversely, NCOA7 deficiency promoted lysosomal dysfunction and proinflammatory oxysterol/bile acid generation that, in turn, contributed to EC pathophenotypes. In vivo, mice deficient for Ncoa7 or exposed to the inflammatory bile acid 7α-hydroxy-3-oxo-4-cholestenoic acid (7HOCA) displayed worsened PAH. Emphasizing this mechanism in human PAH, an unbiased, metabolome-wide association study (N=2,756) identified a plasma signature of the same NCOA7-dependent oxysterols/bile acids associated with PAH mortality (P<1.1x10-6). Supporting a genetic predisposition to NCOA7 deficiency, in genome-edited, stem cell-derived ECs, the common variant intronic SNP rs11154337 in NCOA7 regulated NCOA7 expression, lysosomal activity, oxysterol/bile acid production, and EC immunoactivation. Correspondingly, SNP rs11154337 was associated with PAH severity via six-minute walk distance and mortality in discovery (N=93, P=0.0250; HR=0.44, 95% CI [0.21-0.90]) and validation (N=630, P=2x10-4; HR=0.49, 95% CI [0.34-0.71]) cohorts. Finally, utilizing computational modeling of small molecule binding to NCOA7, we predicted and synthesized a novel activator of NCOA7 that prevented EC immunoactivation and reversed indices of rodent PAH. In summary, we have established a genetic and metabolic paradigm and a novel therapeutic agent that links lysosomal biology as well as oxysterol and bile acid processes to EC inflammation and PAH pathobiology. This paradigm carries broad implications for diagnostic and therapeutic development in PAH and in other conditions dependent upon acquired and innate immune regulation of vascular disease.PMID:38464060 | PMC:PMC10925169 | DOI:10.1101/2024.02.26.582142

Analysis of metabolic differences between Jiaosu fermented from dendrobium flowers and stems based on untargeted metabolomics

Mon, 11/03/2024 - 11:00
Heliyon. 2024 Mar 2;10(5):e27061. doi: 10.1016/j.heliyon.2024.e27061. eCollection 2024 Mar 15.ABSTRACTDendrobium officinale is an important traditional Chinese medicinal herb containing bioactive polysaccharides and alkaloids. This study characterized metabolite differences between jiaosu (fermented plant product) from Dendrobium flowers versus stems using untargeted metabolomics. The jiaosu was fermented by mixed fermentation of Saccharomyces cerevisiae, Lactobacillus bulgaricus and Streptococcus thermophilus. Liquid chromatography-mass spectrometry analysis identified 476 differentially expressed metabolites between the two Jiaosu products. Key results showed downregulation of flavonoid metabolism in Dendrobium Stems Edible Plant Jiaosu (SEP) but increased flavonoid synthesis in Dendrobium Flowers Edible Plant Jiaosu (FEP), likely an antioxidant response. SEP displayed upregulation of lignin metabolites with potential antioxidant properties. The findings demonstrate significant metabolite profile differences between SEP and FEP, providing the basis for developing functional jiaosu products targeting specific health benefits.PMID:38463789 | PMC:PMC10923680 | DOI:10.1016/j.heliyon.2024.e27061

Diet-derived circulating antioxidants and risk of epilepsy: A study combining metabolomics and mendelian randomization

Mon, 11/03/2024 - 11:00
Heliyon. 2024 Feb 29;10(5):e26813. doi: 10.1016/j.heliyon.2024.e26813. eCollection 2024 Mar 15.ABSTRACTBACKGROUND: Previous studies offer inconclusive results on the association between diet-derived circulating antioxidants and epilepsy.OBJECTIVE: This study aims to assess oxidative stress presence in epilepsy patients' circulation and investigate the causal link between diet-derived circulating antioxidants and epilepsy.METHODS: Untargeted metabolomics analysis was conducted on plasma samples from 62 epileptic patients and 20 healthy individuals to evaluate oxidative stress based on metabolite alterations in epilepsy patients' circulation. Two-sample Mendelian Randomization (MR) analysis examined the causation between diet-derived circulating antioxidants (measured by absolute levels and relative metabolite concentrations) and epilepsy, utilizing the inverse-variance weighted (IVW) method as the primary outcome, with complementary MR analysis methods (MR Egger, weighted median, weighted mode, and simple mode).RESULTS: Untargeted metabolomics analysis revealed elevated circulating oxidizing metabolites (palmitic acid, oleic acid, linoleic acid, and myristic acid) and reduced reducing metabolites (glutamine) in epilepsy patients, providing robust evidence of oxidative stress. The IVW analysis indicated significantly reduced epilepsy risk (odds ratio: 0.552; 95% confidence interval: 0.335-0.905, P = 0.018) with genetically determined higher absolute circulating β-carotene. However, other diet-derived circulating antioxidants (lycopene, retinol, ascorbic acid, and selenium) and antioxidant metabolites (α-tocopherol, γ-tocopherol, ascorbic acid, and retinol) did not significantly associate with epilepsy risk. Additional MR analysis methods and heterogeneity assessments confirmed the results' robustness.CONCLUSION: This study provides compelling evidence of oxidative stress in epilepsy patients' circulation. However, the majority of diet-derived circulating antioxidants (lycopene, retinol, ascorbic acid, vitamin E, and selenium) are unlikely to causally associate with reduced epilepsy risk, except for β-carotene.PMID:38463786 | PMC:PMC10920176 | DOI:10.1016/j.heliyon.2024.e26813

The paradigm change from reactive medical services to 3PM in ischemic stroke: a holistic approach utilising tear fluid multi-omics, mitochondria as a vital biosensor and AI-based multi-professional data interpretation

Mon, 11/03/2024 - 11:00
EPMA J. 2024 Feb 27;15(1):1-23. doi: 10.1007/s13167-024-00356-6. eCollection 2024 Mar.ABSTRACTWorldwide stroke is the second leading cause of death and the third leading cause of death and disability combined. The estimated global economic burden by stroke is over US$891 billion per year. Within three decades (1990-2019), the incidence increased by 70%, deaths by 43%, prevalence by 102%, and DALYs by 143%. Of over 100 million people affected by stroke, about 76% are ischemic stroke (IS) patients recorded worldwide. Contextually, ischemic stroke moves into particular focus of multi-professional groups including researchers, healthcare industry, economists, and policy-makers. Risk factors of ischemic stroke demonstrate sufficient space for cost-effective prevention interventions in primary (suboptimal health) and secondary (clinically manifested collateral disorders contributing to stroke risks) care. These risks are interrelated. For example, sedentary lifestyle and toxic environment both cause mitochondrial stress, systemic low-grade inflammation and accelerated ageing; inflammageing is a low-grade inflammation associated with accelerated ageing and poor stroke outcomes. Stress overload, decreased mitochondrial bioenergetics and hypomagnesaemia are associated with systemic vasospasm and ischemic lesions in heart and brain of all age groups including teenagers. Imbalanced dietary patterns poor in folate but rich in red and processed meat, refined grains, and sugary beverages are associated with hyperhomocysteinaemia, systemic inflammation, small vessel disease, and increased IS risks. Ongoing 3PM research towards vulnerable groups in the population promoted by the European Association for Predictive, Preventive and Personalised Medicine (EPMA) demonstrates promising results for the holistic patient-friendly non-invasive approach utilising tear fluid-based health risk assessment, mitochondria as a vital biosensor and AI-based multi-professional data interpretation as reported here by the EPMA expert group. Collected data demonstrate that IS-relevant risks and corresponding molecular pathways are interrelated. For examples, there is an evident overlap between molecular patterns involved in IS and diabetic retinopathy as an early indicator of IS risk in diabetic patients. Just to exemplify some of them such as the 5-aminolevulinic acid/pathway, which are also characteristic for an altered mitophagy patterns, insomnia, stress regulation and modulation of microbiota-gut-brain crosstalk. Further, ceramides are considered mediators of oxidative stress and inflammation in cardiometabolic disease, negatively affecting mitochondrial respiratory chain function and fission/fusion activity, altered sleep-wake behaviour, vascular stiffness and remodelling. Xanthine/pathway regulation is involved in mitochondrial homeostasis and stress-driven anxiety-like behaviour as well as molecular mechanisms of arterial stiffness. In order to assess individual health risks, an application of machine learning (AI tool) is essential for an accurate data interpretation performed by the multiparametric analysis. Aspects presented in the paper include the needs of young populations and elderly, personalised risk assessment in primary and secondary care, cost-efficacy, application of innovative technologies and screening programmes, advanced education measures for professionals and general population-all are essential pillars for the paradigm change from reactive medical services to 3PM in the overall IS management promoted by the EPMA.PMID:38463624 | PMC:PMC10923756 | DOI:10.1007/s13167-024-00356-6

Multi-omics profiling reveal responses of three major <em>Dendrobium</em> species from different growth years to medicinal components

Mon, 11/03/2024 - 11:00
Front Plant Sci. 2024 Feb 23;15:1333989. doi: 10.3389/fpls.2024.1333989. eCollection 2024.ABSTRACTDendrobium is a perennial herb found in Asia that is known for its medicinal and ornamental properties. Studies have shown that the stem is the primary medicinal component of Dendrobium spp. To investigate the effect of the species and age of Dendrobium (in years) on the content of its medicinal components, we collected the stems of 1-to-4-year-old D. officinale, D. moniliforme, and D. huoshanense, sequenced the transcriptome, metabolome, and microbiome, and analyzed the data in a comprehensive multi-omics study. We identified 10,426 differentially expressed genes (DEGs) with 644 differentially accumulated metabolites (DAMs) from 12 comparative groups and mapped the flavonoid pathway based on DEGs and DAMs. Transcriptomic and metabolomic data indicated a general trend of the accumulation of flavonoids exhibiting pharmacological effects in the three Dendrobium species. In addition, joint metabolome and microbiome analyses showed that actinobacteria was closely associated with flavonoid synthesis with increasing age. Our findings provide novel insights into the interactions of flavonoids of Dendrobium with the transcriptome and microbiome.PMID:38463561 | PMC:PMC10920241 | DOI:10.3389/fpls.2024.1333989

Comparative transcriptome and metabolome profiles of the leaf and fruits of a Xianjinfeng litchi budding mutant and its mother plant

Mon, 11/03/2024 - 11:00
Front Genet. 2024 Feb 23;15:1360138. doi: 10.3389/fgene.2024.1360138. eCollection 2024.ABSTRACTBackground: Litchi (Litchi chinensis) is an important sub-tropical fruit in the horticulture market in China. Breeding for improved fruit characteristics is needed for satisfying consumer demands. Budding is a sustainable method for its propagation. During our ongoing breeding program, we observed a litchi mutant with flat leaves and sharp fruit peel cracking in comparison to the curled leaves and blunt fruit peel cracking fruits of the mother plant. Methods: To understand the possible molecular pathways involved, we performed a combined metabolome and transcriptome analysis. Results: We identified 1,060 metabolites in litchi leaves and fruits, of which 106 and 101 were differentially accumulated between the leaves and fruits, respectively. The mutant leaves were richer in carbohydrates, nucleotides, and phenolic acids, while the mother plant was rich in most of the amino acids and derivatives, flavonoids, lipids and organic acids and derivatives, and vitamins. Contrastingly, mutant fruits had higher levels of amino acids and derivatives, carbohydrates and derivatives, and organic acids and derivatives. However, the mother plant's fruits contained higher levels of flavonoids, scopoletin, amines, some amino acids and derivatives, benzamidine, carbohydrates and derivatives, and some organic acids and derivatives. The number of differentially expressed genes was consistent with the metabolome profiles. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway-enriched gene expressions showed consistent profiles as of metabolome analysis. Conclusion: These results provide the groundwork for breeding litchi for fruit and leaf traits that are useful for its taste and yield.PMID:38463170 | PMC:PMC10920226 | DOI:10.3389/fgene.2024.1360138

Wallace melon juice fermented with Lactobacillus alleviates dextran sulfate sodium-induced ulcerative colitis in mice through modulating gut microbiota and the metabolism

Mon, 11/03/2024 - 11:00
J Food Sci. 2024 Mar 10. doi: 10.1111/1750-3841.16973. Online ahead of print.ABSTRACTFermented foods have shown promise in preventing or treating ulcerative colitis (UC) via regulating intestinal flora and correcting metabolic disorders. However, the prevention effect of fermented Wallace melon juice (FMJ) on UC is unclear. In this study, the effects of FMJ on dextran sodium sulfate (DSS)-induced UC were investigated via 16S rRNA sequencing and non-targeted metabolomics. The results showed that FMJ was effective in alleviating the symptoms of UC, reducing histological damage and oxidative stress, decreasing the levels of pro-inflammatory cytokines. After FMJ treatment, the level of propionic acid, butyric acid, and valeric acid increased by 14.1%, 44.4%, and 52.4% compared to DSS-induced UC mice. Meanwhile, the levels of harmful bacteria such as Oscillospira, Bacteroidetes, and Erysipelotrichaceae and Clostridium decreased, while the levels of beneficial bacteria such as Akkermansia, Lactobacillus, and Bifidobacterium increased. Fecal metabolomics analysis identified 31 differential metabolites, which could regulate metabolic disorders in UC mice by controlling the primary bile acid biosynthesis, purine metabolism, and pantothenate and CoA biosynthesis pathway. Additionally, the abundances of butyric acid, bile acids, and pantothenic acid were positively correlated with Allobaculum, Bifidobacterium, and other beneficial bacteria (R2 > 0.80, p < 0.01). The results indicated that FMJ played a role in regulating the structure of intestinal flora, which in turn helped in repairing metabolic disorders and alleviated colitis inflammation.PMID:38462851 | DOI:10.1111/1750-3841.16973

Advances and Challenges in the Analysis of Boswellic Acids by Separation Methods

Mon, 11/03/2024 - 11:00
Crit Rev Anal Chem. 2024 Mar 10:1-27. doi: 10.1080/10408347.2024.2312502. Online ahead of print.ABSTRACTBoswellia resin is an exudate from the cut bark of Boswellia trees. The main constituents of pharmacological interest are boswellic acids (pentacyclic triterpenoids), namely α-boswellic acid, β-boswellic acid, 3-O-acetyl-α-boswellic acid, 3-O-acetyl-β-boswellic acid, 11-keto-β-boswellic acid, and 3-O-acetyl-11-keto-β-boswellic acid. Nowadays, dietary supplements with Boswellia serrata extract are used in the treatment of inflammatory joint diseases. Additionally, the constituents of Boswellia resin have shown potential for the treatment of other chronic inflammatory diseases and various types of cancer. Separation methods including ultra/high-performance liquid chromatography, gas chromatography, thin layer chromatography, supercritical fluid chromatography, and capillary electrochromatography coupled with UV or MS detection have been used for the determination of boswellic acids in various matrices (mostly plant material and biological samples). This review aims to provide a comprehensive summary of these separation methods, offering a critical discussion of their strengths and limitations in the analysis of boswellic acids. The knowledge of various separation methods plays a pivotal role in the quality control of herbal dietary supplements and the monitoring of the metabolism and pharmacokinetics of their constituents. The approaches based on metabolomics and network pharmacology represent new ways of fingerprinting secondary metabolites in Boswellia resin increasing the comprehensiveness of the output of these methods resulting in safer dietary supplements.PMID:38462842 | DOI:10.1080/10408347.2024.2312502

Lipopolysaccharide exacerbates depressive-like behaviors in obese rats through complement C1q-mediated synaptic elimination by microglia

Mon, 11/03/2024 - 11:00
Acta Physiol (Oxf). 2024 Mar 10:e14130. doi: 10.1111/apha.14130. Online ahead of print.ABSTRACTAIM: Prolonged high-fat diet (HFD) consumption has been shown to impair cognition and depression. The combined effects of HFD and lipopolysaccharide (LPS) administration on those outcomes have never been thoroughly investigated. This study investigated the effects of LPS, HFD consumption, and a combination of both conditions on microglial dysfunction, microglial morphological alterations, synaptic loss, cognitive dysfunction, and depressive-like behaviors.METHODS: Sixty-four male Wistar rats were fed either a normal diet (ND) or HFD for 12 weeks, followed by single dose-subcutaneous injection of either vehicle or LPS. Then, cognitive function and depressive-like behaviors were assessed. Then, rats were euthanized, and the whole brain, hippocampus, and spleen were collected for further investigation, including western blot analysis, qRT-PCR, immunofluorescence staining, and brain metabolome determination.RESULTS: HFD-fed rats developed obese characteristics. Both HFD-fed rats with vehicle and ND-fed rats with LPS increased cholesterol and serum LPS levels, which were exacerbated in HFD-fed rats with LPS. HFD consumption, but not LPS injection, caused oxidative stress, blood-brain barrier disruption, and decreased neurogenesis. Both HFD and LPS administration triggered an increase in inflammatory genes on microglia and astrocytes, increased c1q colocalization with microglia, and increased dendritic spine loss, which were exacerbated in the combined conditions. Both HFD and LPS altered neurotransmitters and disrupted brain metabolism. Interestingly, HFD consumption, but not LPS, induced cognitive decline, whereas both conditions individually induced depressive-like behaviors, which were exacerbated in the combined conditions.CONCLUSIONS: Our findings suggest that LPS aggravates metabolic disturbances, neuroinflammation, microglial synaptic engulfment, and depressive-like behaviors in obese rats.PMID:38462756 | DOI:10.1111/apha.14130

A microfluidic chip-based capillary zone electrophoresis-mass spectrometry method for measuring adenosine 5'-Triphosphate and its similar nucleotide analogues

Sun, 10/03/2024 - 11:00
Anal Chim Acta. 2024 Apr 15;1298:342400. doi: 10.1016/j.aca.2024.342400. Epub 2024 Feb 21.ABSTRACTBACKGROUND: Extracellular ATP is involved in disorders that cause inflammation of the airways and cough, thus limiting its release has therapeutic benefits. Standard luminescence-based ATP assays measure levels indirectly through enzyme degradation and do not provide a simultaneous readout for other nucleotide analogues. Conversely, mass spectrometry can provide direct ATP measurements, however, common RPLC and HILIC methods face issues because these molecules are unstable, metal-sensitive analytes which are often poorly retained. These difficulties have traditionally been overcome using passivation or ion-pairing chromatography, but these approaches can be problematic for LC systems. As a result, more effective analytical methods are needed.RESULTS: Here, we introduce a new application that uses microfluidic chip-based capillary zone electrophoresis-mass spectrometry (μCZE-MS) to measure ATP and its analogues simultaneously in biofluids. The commercially available ZipChip Interface and a High-Resolution Bare-glass microchip (ZipChip, HRB, 908 Devices Inc.) coupled to a Thermo Scientific Tribrid Orbitrap, were successfully used to separate and detect various nucleotide standards, as well as ATP, ADP, AMP, and adenosine in plasma and BALF obtained from naïve Brown Norway rats. The findings demonstrate that this approach can rapidly and directly detect ATP and its related nucleotide analogues, while also highlighting the need to preserve these molecules in biofluids with chelators like EDTA. In addition, we demonstrate that this μCZE-MS method is also suitable for detecting a variety of metabolites, revealing additional potential future applications.SIGNIFICANCE: This innovative μCZE-MS approach provides a robust new tool to directly measure ATP and other nucleotide analogues in biofluids. This can enable the study of eATP in human disease and potentially contribute to the creation of ATP-targeting therapies for airway illnesses.PMID:38462348 | DOI:10.1016/j.aca.2024.342400

Condensed tannin-induced variations in the rumen metabolome and the correlation with fermentation characteristics in goats

Sun, 10/03/2024 - 11:00
Anim Sci J. 2024 Jan-Dec;95(1):e13925. doi: 10.1111/asj.13925.ABSTRACTIn this study, we characterized the effects of CT dietary inclusion at 2% (wt/wt) dry matter on the goat rumen metabolome and fermentation characteristics. Barley (BA) and corn (CN) were separately used as basal grain for the control rations, and rations supplemented with CT were BACT and CNCT, respectively. The rations were tested using eight Japanese Shiba × Saanen goats in a replicated 4 × 4 Latin square arrangement (28 days for each period). Ruminal fluid was obtained on day 25 of each period, and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) analysis was performed. Metabolites from BACT against BA and CNCT against CN were mostly associated with purine metabolism. Moreover, BACT against BA showed intensified biosynthesis of unsaturated fatty acids, and CNCT against CN resulted in strengthened amino acid metabolism. Furthermore, strong correlations were observed between rumen NH3 -N and the copy number of total bacteria with most of the differential metabolites. The present paper provides a better understanding of the relationship between the rumen metabolome and fermentation characteristics and supports a shift in concern about using CT as a strategy to manipulate rumen metabolism.PMID:38462234 | DOI:10.1111/asj.13925

Codonopsis pilosula water extract delays D-galactose-induced aging of the brain in mice by activating autophagy and regulating metabolism

Sun, 10/03/2024 - 11:00
J Ethnopharmacol. 2024 Mar 8:118016. doi: 10.1016/j.jep.2024.118016. Online ahead of print.ABSTRACTETHNOPHARMACOLOGICAL RELEVANCE: Codonopsis pilosula (C. pilosula), also called "Dangshen" in Chinese, is derived from the roots of Codonopsis pilosula (Franch.) Nannf. (C. pilosula), Codonopsis pilosula var. Modesta (Nannf.) L.D.Shen (C. pilosula var. modesta) or Codonopsis pilosula subsp. Tangshen (Oliv.) D.Y.Hong (C. pilosula subsp. tangshen), is a well-known traditional Chinese medicine. It has been regularly used for anti-aging, strengthening the spleen and tonifying the lungs, regulating blood sugar, lowering blood pressure, strengthening the body's immune system, etc. However, the mechanism, by which, C. pilosula exerts its therapeutic effects on brain aging remains unclear.AIM OF THE STUDY: This study aimed to investigate the underlying mechanisms of the protective effects of C. pilosula water extract (CPWE) on the hippocampal tissue of D-galactose-induced aging mice.MATERIALS AND METHODS: In this research, plant taxonomy has been confirmed in the "The Plant List" database (www.theplantlist.org). First, an aging mouse model was established through the intraperitoneal injections of D-galactose solution, and low-, medium-, and high-dose CPWE were administered to mice by gavage for 42 days. Then, the learning and memory abilities of the mice were examined using the Morris water maze tests and step-down test. Hematoxylin and eosin staining was performed to visualize histopathological damage in the hippocampus. A transmission electron microscope was used to observe the ultrastructure of hippocampal neurons. Immunohistochemical staining was performed to examine the expression of glial fibrillary acidic protein (GFAP), the marker protein of astrocyte activation, and autophagy-related proteins, including microtubule-associated protein light chain 3 (LC3) and sequestosome 1 (SQSTM1)/p62, in the hippocampal tissues of mice. Moreover, targeted metabolomic analysis was performed to assess the changes in polar metabolites and short-chain fatty acids in the hippocampus.RESULTS: First, CPWE alleviated cognitive impairment and ameliorated hippocampal tissue damage in aging mice. Furthermore, CPWE markedly alleviated mitochondrial damage, restored the number of autophagosomes, and activated autophagy in the hippocampal tissue of aging mice by increasing the expression of LC3 protein and reducing the expression of p62 protein. Meanwhile, the expression levels of the brain injury marker protein GFAP decreased. Moreover, quantitative targeted metabolomic analysis revealed that CPWE intervention reversed the abnormal levels of L-asparagine, L-glutamic acid, L-glutamine, serotonin hydrochloride, succinic acid, and acetic acid in the hippocampal tissue of aging mice. CPWE also significantly regulated pathways associated with D-glutamine and D-glutamate metabolism, nitrogen metabolism, arginine biosynthesis, alanine, aspartate, and glutamate metabolisms, and aminoacyl-tRNA biosynthesis.CONCLUSIONS: CPWE could improve cognitive and pathological conditions induced by D-galactose in aging mice by activating autophagy and regulating metabolism, thereby slowing down brain aging.PMID:38462027 | DOI:10.1016/j.jep.2024.118016

Comparing massa medicata fermentata before and after charred in terms of digestive promoting effect via metabolomics and microbiome analysis

Sun, 10/03/2024 - 11:00
J Ethnopharmacol. 2024 Mar 8:117989. doi: 10.1016/j.jep.2024.117989. Online ahead of print.ABSTRACTETHNOPHARMACOLOGICAL RELEVANCE: Massa Medicata Fermentata, a fermented Chinese medicine, is produced by the fermentation of six traditional Chinese medicines. Liu Shenqu (LSQ) and charred Liu Shenqu (CLSQ) have been used for strengthening the spleen and enhancing digestion for over a thousand years, and CLSQ is commonly used in clinical practice. However, it is unclear whether there is a difference in the spleen strengthening and digestion effects between LSQ and CLSQ, as well as their mechanisms of action.AIM OF STUDY: This study aims to compare the effects of LSQ and CLSQ on the digestive function of functional dyspepsia (FD) rats and reveal their mechanisms of action.MATERIALS AND METHODS: SPF grade SD rats were randomly divided into 6 groups: control group, model group, Liu Shenqu decoction low-dosage (LSQ LD) group, Liu Shenqu decoction high-dosage (LSQ HD) group, charred Liu Shenqu decoction low-dosage (CLSQ LD) group, and charred Liu Shenqu decoction high-dosage (CLSQ HD) group. Rats were injected intraperitoneally with reserpine to create an FD model and then treated by intragastric administration. During this period, record the weight and food intake of the animals. After 18 days of treatment, specimens of the gastric antrum, spleen, and duodenum of rats were taken for pathological staining and immunohistochemical detection of Ghrelin protein expression. Enzyme linked immunosorbent assay (ELISA) was used to determine the concentration of relevant gastrointestinal hormones in serum. The 16 S rDNA sequencing method was used to evaluate the effect of cecal contents on the structure of the gut microbiota in experimental rats. Plasma metabolomics analysis was performed using ultra high performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (UPLC-QTOF-MS) to further reveal their mechanism of action.RESULTS: LSQ and CLSQ improved the pathological tissue histological structure of FD rats and increased the levels of MTL and GAS hormones in serum and the levels of ghrelin in the gastric antrum, spleen, and duodenum, while reducing VIP, CCK, and SP hormone levels. The above results showed that the therapeutic efficacy of CLSQ is better than that of LSQ. Futhermore, the mechanism of action of LSQ and CLSQ were revealed. The 16 S rDNA sequencing results showed that both LSQ and CLSQ can improve the composition and diversity of the gut microbiota. And metabolomic analysis demonstrated that 20 metabolites changed after LSQ treatment, and 16 metabolites underwent continuous changes after CLSQ treatment. Further analysis revealed that LSQ mainly intervened in the metabolic pathways of glycerol phospholipid metabolism and arginine and proline metabolism, but CLSQ mainly intervened in the metabolic pathways of ether lipid metabolism, sphingolipid metabolism, and glycerophospholipid metabolism.CONCLUSIONS: Both LSQ and CLSQ can improve functional dyspepsia in FD rats, but CLSQ has a stronger improvement effect on FD. Although their mechanisms of action are all related to regulating gastrointestinal hormone secretion, significantly improving intestinal microbiota disorders, and improving multiple metabolic pathways, but the specific gut microbiota and metabolic pathways they regulate are different.PMID:38462026 | DOI:10.1016/j.jep.2024.117989

Effect of phenolics on soil microbe distribution, plant growth, and gall formation

Sun, 10/03/2024 - 11:00
Sci Total Environ. 2024 Mar 8:171329. doi: 10.1016/j.scitotenv.2024.171329. Online ahead of print.ABSTRACTPhenolic compounds, abundant secondary metabolites in plants, profoundly influence soil ecosystems, plant growth, and interactions with herbivores. In this study, we explore the intricate relationships between phenolics, soil microbes, and gall formation in Ageratina adenophora (A. adenophora), an invasive plant species in China known for its allelopathic traits. Using metabolomic and microbial profiling, significant differences in soil microbial composition and metabolite profiles were observed between bulk and rhizosphere soil samples. Phenolics influenced bacterial communities, with distinct microbial populations enriched in each soil type. Additionally, phenolics impacted soil metabolic processes, with variations observed in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis between different soil treatments. Analysis of phenolic content in plant and soil samples revealed considerable variations, with higher concentrations observed in certain plant tissues and soil types. Bioactive phenols extracted from plant and soil samples were identified using gas chromatography/mass spectrometry (GC-MS), providing insights into the diverse chemical composition of these compounds. Furthermore, the effects of phenolics on plant growth and gall formation were investigated. Phenols exhibited both stimulatory and inhibitory effects on plant growth, with optimal concentrations promoting emergence but higher concentrations hindering growth. Gall formation was influenced by phenolic concentrations, leading to structural alterations in stem tissue and gall morphology. Histochemical analysis revealed starch and lipid accumulation in gall tissues, indicating metabolic changes induced by phenolics. The presence of phenolics disrupted tissue structures and influenced vascular bundle orientation in gall tissues. Overall, our study highlights the multifaceted roles of phenolic compounds in soil ecosystems, plant development, and gall formation, facilitating the utilization of secondary metabolites in agriculture.PMID:38462006 | DOI:10.1016/j.scitotenv.2024.171329

Pages