Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Difference in muscle metabolism caused by metabolism disorder of rainbow trout liver exposed to ammonia stress

Sun, 10/03/2024 - 11:00
Sci Total Environ. 2024 Mar 8:171576. doi: 10.1016/j.scitotenv.2024.171576. Online ahead of print.ABSTRACTAmmonia pollution is an important environmental stress factors in water eutrophication. The intrinsic effects of ammonia stress on liver toxicity and muscle quality of rainbow trout were still unclear. In this study, we focused on investigating difference in muscle metabolism caused by metabolism disorder of rainbow trout liver at exposure times of 0, 3, 6, 9 h at 30 mg/L concentrations. Liver transcriptomic analysis revealed that short-term (3 h) ammonia stress inhibited carbohydrate metabolism and glycerophospholipid production but long-term (9 h) ammonia stress inhibited the biosynthesis and degradation of fatty acids, activated pyrimidine metabolism and mismatch repair, lead to DNA strand breakage and cell death, and ultimately caused liver damage. Metabolomic analysis of muscle revealed that ammonia stress promoted the reaction of glutamic acid and ammonia to synthesize glutamine to alleviate ammonia toxicity, and long-term (9 h) ammonia stress inhibited urea cycle, hindering the alleviation of ammonia toxicity. Moreover, it accelerated the consumption of flavor amino acids such as arginine and aspartic acid, and increased the accumulation of bitter substances (xanthine) and odorous substances (histamine). These findings provide valuable insights into the potential risks and hazards of ammonia in eutrophic water bodies subject to rainbow trout.PMID:38461997 | DOI:10.1016/j.scitotenv.2024.171576

Enteric coronavirus PDCoV evokes a non-Warburg effect by hijacking pyruvic acid as a metabolic hub

Sun, 10/03/2024 - 11:00
Redox Biol. 2024 Mar 4;71:103112. doi: 10.1016/j.redox.2024.103112. Online ahead of print.ABSTRACTThe Warburg effect, also referred as aerobic glycolysis, is a common metabolic program during viral infection. Through targeted metabolomics combined with biochemical experiments and various cell models, we investigated the central carbon metabolism (CCM) profiles of cells infected with porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus with zoonotic potential. We found that PDCoV infection required glycolysis but decreased glycolytic flux, exhibiting a non-Warburg effect characterized by pyruvic acid accumulation. Mechanistically, PDCoV enhanced pyruvate kinase activity to promote pyruvic acid anabolism, a process that generates pyruvic acid with concomitant ATP production. PDCoV also hijacked pyruvic acid catabolism to increase biosynthesis of non-essential amino acids (NEAAs), suggesting that pyruvic acid is an essential hub for PDCoV to scavenge host energy and metabolites. Furthermore, PDCoV facilitated glutaminolysis to promote the synthesis of NEAA and pyrimidines for optimal proliferation. Our work supports a novel CCM model after viral infection and provides potential anti-PDCoV drug targets.PMID:38461791 | DOI:10.1016/j.redox.2024.103112

Altered metabolome and microbiome associated with compromised intestinal barrier induced hepatic lipid metabolic disorder in mice after subacute and subchronic ozone exposure

Sun, 10/03/2024 - 11:00
Environ Int. 2024 Mar 5;185:108559. doi: 10.1016/j.envint.2024.108559. Online ahead of print.ABSTRACTExposure to ozone has been associated with metabolic disorders in humans, but the underlying mechanism remains unclear. In this study, the role of the gut-liver axis and the potential mechanism behind the metabolic disorder were investigated by histological examination, microbiome and metabolome approaches in mice during the subacute (4-week) and subchronic (12-week) exposure to 0.5 ppm and 2.5 ppm ozone. Ozone exposure resulted in slowed weight gain and reduced hepatic lipid contents in a dose-dependent manner. After exposure to ozone, the number of intestinal goblet cells decreased, while the number of tuft cells increased. Tight junction protein zonula occludens-1 (ZO-1) was significantly downregulated, and the apoptosis of epithelial cells increased with compensatory proliferation, indicating a compromised chemical and physical layer of the intestinal barrier. The hepatic and cecal metabolic profiles were altered, primarily related to lipid metabolism and oxidative stress. The abundance of Muribaculaceae increased dose-dependently in both colon and cecum, and was associated with the decrease of metabolites such as bile acids, betaine, and L-carnitine, which subsequently disrupted the intestinal barrier and lipid metabolism. Overall, this study found that subacute and subchronic exposure to ozone induced metabolic disorder via disturbing the gut-liver axis, especially the intestinal barrier. These findings provide new mechanistic understanding of the health risks associated with environmental ozone exposure and other oxidative stressors.PMID:38461778 | DOI:10.1016/j.envint.2024.108559

Alterations in Cerebrospinal Fluid Urea Occur in Late Manifest Huntington's Disease

Sun, 10/03/2024 - 11:00
J Huntingtons Dis. 2024 Mar 2. doi: 10.3233/JHD-231511. Online ahead of print.ABSTRACTBACKGROUND: Huntington's disease (HD) is a neurodegenerative disorder caused by expanded cytosine-adenine-guanine (CAG) repeats in the Huntingtin gene, resulting in the production of mutant huntingtin proteins (mHTT). Previous research has identified urea as a key metabolite elevated in HD animal models and postmortem tissues of HD patients. However, the relationship between disease course and urea elevations, along with the molecular mechanisms responsible for these disturbances remain unknown.OBJECTIVE: To better understand the molecular disturbances and timing of urea cycle metabolism across different stages in HD.METHODS: We completed a global metabolomic profile of cerebrospinal fluid (CSF) from individuals who were at several stages of disease: pre-manifest (PRE), manifest (MAN), and late manifest (LATE) HD participants, and compared to controls.RESULTS: Approximately 500 metabolites were significantly altered in PRE participants compared to controls, although no significant differences in CSF urea or urea metabolites were observed. CSF urea was significantly elevated in LATE participants only. There were no changes in the urea metabolites citrulline, ornithine, and arginine.CONCLUSIONS: Overall, our study confirms that CSF elevations occur late in the HD course, and these changes may reflect accumulating deficits in cellular energy metabolism.PMID:38461512 | DOI:10.3233/JHD-231511

Effects of Phomopsidione on the Viability, Virulence, and Metabolites Profile of Methicillin-Resistant Staphylococcus aureus (MRSA)

Sun, 10/03/2024 - 11:00
Curr Microbiol. 2024 Mar 10;81(4):108. doi: 10.1007/s00284-024-03627-7.ABSTRACTMethicillin-resistant Staphylococcus aureus (MRSA) infections have become one of the most threatening multidrug-resistant pathogens. Thus, an ongoing search for anti-MRSA compounds remains an urgent need to effectively treating MRSA infections. Phomopsidione, a novel antibiotic isolated from Diaporthe fraxini, has previously demonstrated potent anti-candidal activity. The present study aimed to investigate the effects of phomopsidione on the viability, virulence, and metabolites profile of MRSA. MRSA was sensitive to phomopsidione in a concentration-dependent manner. Phomopsidione exhibited minimum inhibitory concentration and minimum bactericidal concentration of 62.5 and 500.00 µg/mL against MRSA on broth microdilution assay. The compound showed significant reduction in virulence factors production including extracellular polymeric substances quantification, catalase, and lipase. An untargeted metabolomics analysis using liquid chromatography-high resolution mass spectrometry revealed a significant difference in the metabolites profile of MRSA with 13 putatively identified discriminant metabolites. The present study suggested the potential of phomopsidione as a promising anti-MRSA agent.PMID:38461425 | DOI:10.1007/s00284-024-03627-7

Amino acid profile alteration in age-related atrial fibrillation

Sat, 09/03/2024 - 12:00
J Transl Med. 2024 Mar 9;22(1):259. doi: 10.1186/s12967-024-05028-7.ABSTRACTBACKGROUND: Amino acids (AAs) are one of the primary metabolic substrates for cardiac work. The correlation between AAs and both atrial fibrillation (AF) and aging has been documented. However, the relationship between AAs and age-related AF remains unclear.METHODS: Initially, the plasma AA levels of persistent AF patients and control subjects were assessed, and the correlations between AA levels, age, and other clinical indicators were explored. Subsequently, the age-related AF mouse model was constructed and the untargeted myocardial metabolomics was conducted to detect the level of AAs and related metabolites. Additionally, the gut microbiota composition associated with age-related AF was detected by a 16S rDNA amplicon sequencing analysis on mouse fecal samples.RESULTS: Higher circulation levels of lysine (Student's t-test, P = 0.001), tyrosine (P = 0.002), glutamic acid (P = 0.008), methionine (P = 0.008), and isoleucine (P = 0.014), while a lower level of glycine (P = 0.003) were observed in persistent AF patients. The feature AAs identified by machine learning algorithms were glutamic acid and methionine. The association between AAs and age differs between AF and control subjects. Distinct patterns of AA metabolic profiles were observed in the myocardial metabolites of aged AF mice. Aged AF mice had lower levels of Betaine, L-histidine, L-alanine, L-arginine, L-Pyroglutamic acid, and L-Citrulline compared with adult AF mice. Aged AF mice also presented a different gut microbiota pattern, and its functional prediction analysis showed AA metabolism alteration.CONCLUSION: This study provided a comprehensive network of AA disturbances in age-related AF from multiple dimensions, including plasma, myocardium, and gut microbiota. Disturbances of AAs may serve as AF biomarkers, and restoring their homeostasis may have potential benefits for the management of age-related AF.PMID:38461346 | DOI:10.1186/s12967-024-05028-7

Interindividual differences in aronia juice tolerability linked to gut microbiome and metabolome changes-secondary analysis of a randomized placebo-controlled parallel intervention trial

Sat, 09/03/2024 - 12:00
Microbiome. 2024 Mar 9;12(1):49. doi: 10.1186/s40168-024-01774-4.ABSTRACTBACKGROUND: Aronia melanocarpa is a berry rich in polyphenols known for health benefits. However, the bioavailability of polyphenols has been questioned, and the individual taste acceptance of the fruit with its specific flavor varies. We recently observed substantial differences in the tolerability of aronia juice among healthy females, with half of the individuals tolerating aronia juice without complaints. Given the importance of the gut microbiome in food digestion, we investigated in this secondary analysis of the randomized placebo-controlled parallel intervention study (ClinicalTrials.gov registration: NCT05432362) if aronia juice tolerability was associated with changes in intestinal microbiota and bacterial metabolites, seeking for potential mechanistic insights into the impact on aronia polyphenol tolerance and metabolic outcomes.RESULTS: Forty females were enrolled for this 6-week trial, receiving either 100 ml natural aronia juice (verum, V) twice daily or a polyphenol-free placebo (P) with a similar nutritional profile, followed by a 6-week washout. Within V, individuals were categorized into those who tolerated the juice well (Vt) or reported complaints (Vc). The gut microbiome diversity, as analyzed by 16S rRNA gene-based next-generation sequencing, remained unaltered in Vc but changed significantly in Vt. A MICOM-based flux balance analysis revealed pronounced differences in the 40 most predictive metabolites post-intervention. In Vc carbon-dioxide, ammonium and nine O-glycans were predicted due to a shift in microbial composition, while in Vt six bile acids were the most likely microbiota-derived metabolites. NMR metabolomics of plasma confirmed increased lipoprotein subclasses (LDL, VLDL) post-intervention, reverting after wash out. Stool samples maintained a stable metabolic profile.CONCLUSION: In linking aronia polyphenol tolerance to gut microbiota-derived metabolites, our study explores adaptive processes affecting lipoprotein profiles during high polyphenol ingestion in Vt and examines effects on mucosal gut health in response to intolerance to high polyphenol intake in Vc. Our results underpin the importance of individualized hormetic dosing for beneficial polyphenol effects, demonstrate dynamic gut microbiome responses to aronia juice, and emphasize personalized responses in polyphenol interventions.PMID:38461313 | DOI:10.1186/s40168-024-01774-4

Integration of pan-omics technologies and three-dimensional in vitro tumor models: an approach toward drug discovery and precision medicine

Sat, 09/03/2024 - 12:00
Mol Cancer. 2024 Mar 9;23(1):50. doi: 10.1186/s12943-023-01916-6.ABSTRACTDespite advancements in treatment protocols, cancer is one of the leading cause of deaths worldwide. Therefore, there is a need to identify newer and personalized therapeutic targets along with screening technologies to combat cancer. With the advent of pan-omics technologies, such as genomics, transcriptomics, proteomics, metabolomics, and lipidomics, the scientific community has witnessed an improved molecular and metabolomic understanding of various diseases, including cancer. In addition, three-dimensional (3-D) disease models have been efficiently utilized for understanding disease pathophysiology and as screening tools in drug discovery. An integrated approach utilizing pan-omics technologies and 3-D in vitro tumor models has led to improved understanding of the intricate network encompassing various signalling pathways and molecular cross-talk in solid tumors. In the present review, we underscore the current trends in omics technologies and highlight their role in understanding genotypic-phenotypic co-relation in cancer with respect to 3-D in vitro tumor models. We further discuss the challenges associated with omics technologies and provide our outlook on the future applications of these technologies in drug discovery and precision medicine for improved management of cancer.PMID:38461268 | DOI:10.1186/s12943-023-01916-6

Multi-omics analysis of the gut microbiome and metabolites associated with the psychoneurological symptom cluster in children with cancer receiving chemotherapy

Sat, 09/03/2024 - 12:00
J Transl Med. 2024 Mar 9;22(1):256. doi: 10.1186/s12967-024-05066-1.ABSTRACTBACKGROUND: Children with cancer receiving chemotherapy commonly report a cluster of psychoneurological symptoms (PNS), including pain, fatigue, anxiety, depression, and cognitive dysfunction. The role of the gut microbiome and its functional metabolites in PNS is rarely studied among children with cancer. This study investigated the associations between the gut microbiome-metabolome pathways and PNS in children with cancer across chemotherapy as compared to healthy children.METHODS: A case-control study was conducted. Cancer cases were recruited from Children's Healthcare of Atlanta and healthy controls were recruited via flyers. Participants reported PNS using the Pediatric Patient-Reported Outcomes Measurement Information System. Data for cases were collected pre-cycle two chemotherapy (T0) and post-chemotherapy (T1), whereas data for healthy controls were collected once. Gut microbiome and its metabolites were measured using fecal specimens. Gut microbiome profiling was performed using 16S rRNA V4 sequencing, and metabolome was performed using an untargeted liquid chromatography-mass spectrometry approach. A multi-omics network integration program analyzed microbiome-metabolome pathways of PNS.RESULTS: Cases (n = 21) and controls (n = 14) had mean ages of 13.2 and 13.1 years. For cases at T0, PNS were significantly associated with microbial genera (e.g., Ruminococcus, Megasphaera, and Prevotella), which were linked with carnitine shuttle (p = 0.0003), fatty acid metabolism (p = 0.001) and activation (p = 0.001), and tryptophan metabolism (p = 0.008). Megasphaera, clustered with aspartate and asparagine metabolism (p = 0.034), carnitine shuttle (p = 0.002), and tryptophan (p = 0.019), was associated with PNS for cases at T1. Gut bacteria with potential probiotic functions, along with fatty acid metabolism, tryptophan, and carnitine shuttle, were more clustered in cancer cases than the control network and this linkage with PNS needs further studies.CONCLUSIONS: Using multi-omics approaches, this study indicated specific microbiome-metabolome pathways linked with PNS in children with cancer across chemotherapy. Due to limitations such as antibiotic use in cancer cases, these findings need to be further confirmed in a larger cohort.PMID:38461265 | DOI:10.1186/s12967-024-05066-1

Milk replacer feeding once or twice a day did not change the ruminal metabolomic profile and the microbial diversity of dairy calves from birth to weaning

Sat, 09/03/2024 - 12:00
J Dairy Sci. 2024 Mar 7:S0022-0302(24)00530-7. doi: 10.3168/jds.2023-24327. Online ahead of print.ABSTRACTIn commercial dairy production systems, feeding calves once a day could be an alternative to reduce labor expenses. Several studies comparing once (OAD) versus twice (TAD) a day milk feeding systems have not evidenced differences in calf growth, rumen development, blood parameters or health scores, but impact on ruminal microbiota remains to be investigated. The objective of this study was to determine the effects of OAD or TAD on the establishment of the ruminal microbiota and its metabolic activity. Sixteen male calves (45.9 ± 5.7 kg at birth) were involved in the trial from birth to weaning (63 d). After the colostrum phase, 2 feeding programs based on a milk replacer were tested and calves were allocated to these programs on d 5. To study the establishment of the bacterial community, ruminal fluid was obtained from each calf one hour after the morning meal at 7 (d 7), 35 (d 35) and 63 (d 63) days of age. The ruminal metabolome was evaluated at a 7 d interval from d 1 to d 63. Ruminal microbiota and metabolite profiles were characterized by 16 S rRNA gene sequencing- and by H-NMR spectroscopy, respectively. Our results showed that feeding milk replacer once or twice a day did not change the ruminal microbiota and metabolites of dairy calves from birth to weaning. Microbial data showed that diversity and richness increased with age, suggesting a shift from an heterogeneous and less diverse community after birth (d 7) to a more diverse but homogeneous community at 35 and 63 d. These findings suggest that feeding milk once a day can be successfully applied to a calf feeding system without compromising microbial establishment and functions.PMID:38460877 | DOI:10.3168/jds.2023-24327

Lactobacillus paracasei ZFM54 alters the metabolomic profiles of yogurt and the co-fermented yogurt improves the gut microecology of human adults

Sat, 09/03/2024 - 12:00
J Dairy Sci. 2024 Mar 7:S0022-0302(24)00531-9. doi: 10.3168/jds.2023-24332. Online ahead of print.ABSTRACTGut microbiota imbalance could lead to various diseases, making it important to optimize the structure of flora in adults. Lactobacillus paracasei ZFM54 is a bacteriocin and folic acid producing Lactobacillus strain. Herein ZFM54 was used as the potentialy probiotic bacterium to ferment milk together with a yogurt starter. We optimized the fermentation conditions and the obtained yogurts were then subjected to volatile and non-volatile metabolome analysis, showing that ZFM54 cannot only improve the acidity, water holding capacity and live lactic acid bacteria counts, but also improve many volatile acid contents and increase some beneficial non-volatile metabolites such as N-ethyl glycine and L-Lysine, endowing the yogurt with more flavor and better function. The regulatory effects of the co-fermented yogurt on intestinal microecology of volunteers were investigated by 16S rRNA sequencing and short-chain fatty acids (SCFAs) analysis after a continuous consuming the yogurt of 2-week, showing better effect to increase the relative abundance of beneficial bacteria such as Ruminococcus and Alistipes, decrease harmful bacteria (Escherichia-Shigella and Enterobacter), and enhance the production of SCFAs (acetate, propionate and butyric acid) than the control yogurt. In conclusion, L. paracasei ZFM54 can significantly improve the health benefits of yogurt, laying the foundation for its commercial application in improving gut microbiota.PMID:38460876 | DOI:10.3168/jds.2023-24332

Insights into Q-markers of honey-fried licorice in treating spleen deficiency based on substance and energy metabolism regulation

Sat, 09/03/2024 - 12:00
Phytomedicine. 2024 Feb 27;127:155498. doi: 10.1016/j.phymed.2024.155498. Online ahead of print.ABSTRACTBACKGROUND: Honey-fried Licorice (HFL) is a dosage form of Glycyrrhizae Radix et Rhizome processed with honey, which has been recorded to exhibit better efficacy in tonifying the spleen compared to the raw product. In contrast, different processing methods of Glycyrrhizae Radix et Rhizome exhibit different efficacies and applications, but their current quality control index components remain consistent.PURPOSE: Based on the discovery and research strategy of traditional Chinese medicine decoction piece quality marker (Q-marker), this study aimed to conduct a multidimensional integration of constituents absorbed into the body and metabolomics based on the tonifying spleen and stomach effects of HFL to effectively identify the Q-marker of HFL.METHODS: In this study, a spleen deficiency rat model was established using the "exhausted swimming + poor diet" method to investigate the pharmacodynamics of tonifying the spleen and stomach by HFL. The constituents absorbed into blood was conducted using UPLC-Q-TOF/MS, correlation analysis between metabolomics and constituents absorbed into blood recognized the Q-Marker of HFL.RESULTS: The pharmacodynamic data demonstrated that HFL exhibited a significant regulatory effect on the disordered levels of PP, trypsin, chymase, PL, α-Glu, MTL, GAS, VIP, IL-2, IFN-γ, and IgA in the spleen deficiency model. Furthermore, HFL was found to improve the pathological changes in the spleen and intestine in the spleen deficiency model, highlighting its significant "tonifying spleen and stomach" effect. In the serum containing HFL, a total of 17 constituents were identified as being absorbed into the blood. Among these, 11 were prototypical components, while 6 were metabolites. Metabolomics data revealed that 9 differentially expressed metabolic markers were observed. Furthermore, the analysis of endogenous metabolic markers indicated that 10 components exhibited significant correlations with these biomarkers.CONCLUSION: The effect of "tonifying spleen and stomach" of HFL is closely related to the regulation of the material and energy metabolism pathway. The Q-Marker of HFL is glycyrrhizic acid and 18β-glycyrrhetinic acid as the main control standards and liquiritin, isoliquiritin, liquiritin, isoliquiritin, isolicorice flavonol, licorice chalcone C and Formononetin were used as auxiliary standards.PMID:38460491 | DOI:10.1016/j.phymed.2024.155498

Effects of dietary arsenic exposure on liver metabolism in mice

Sat, 09/03/2024 - 12:00
Ecotoxicol Environ Saf. 2024 Mar 8;274:116147. doi: 10.1016/j.ecoenv.2024.116147. Online ahead of print.ABSTRACTArsenic, a ubiquitous environmental toxicant with various forms and complex food matrix interactions, can reportedly exert differential effects on the liver compared to drinking water exposure. To examine its specific liver-related harms, we targeted the liver in C57BL/6 J mice (n=48, 8-week-old) fed with arsenic-contaminated food (30 mg/kg) for 60 days, mimicking the rice arsenic composition observed in real-world scenarios (iAsV: 7.3%, iAsIII: 72.7%, MMA: 1.0%, DMA: 19.0%). We then comprehensively evaluated liver histopathology, metabolic changes, and the potential role of the gut-liver axis using human hepatocellular carcinoma cells (HepG2) and microbiota/metabolite analyses. Rice arsenic exposure significantly altered hepatic lipid (fatty acids, glycerol lipids, phospholipids, sphingolipids) and metabolite (glutathione, thioneine, spermidine, inosine, indole-derivatives, etc.) profiles, disrupting 33 metabolic pathways (bile secretion, unsaturated fatty acid biosynthesis, glutathione metabolism, ferroptosis, etc.). Pathological examination revealed liver cell necrosis/apoptosis, further confirmed by ferroptosis induction in HepG2 cells. Gut microbiome analysis showed enrichment of pathogenic bacteria linked to liver diseases and depletion of beneficial strains. Fecal primary and secondary bile acids, short-chain fatty acids, and branched-chain amino acids were also elevated. Importantly, mediation analysis revealed significant correlations between gut microbiota, fecal metabolites, and liver metabolic alterations, suggesting fecal metabolites may mediate the impact of gut microbiota and liver metabolic disorders. Gut microbiota and its metabolites may play significant roles in arsenic-induced gut-liver injuries. Overall, our findings demonstrate that rice arsenic exposure triggers oxidative stress, disrupts liver metabolism, and induces ferroptosis.PMID:38460405 | DOI:10.1016/j.ecoenv.2024.116147

Dendrobium officinale regulate lipid metabolism in diabetic mouse liver via PPAR-RXR signaling pathway: Evidence from an integrated multi-omics analysis

Sat, 09/03/2024 - 12:00
Biomed Pharmacother. 2024 Mar 8;173:116395. doi: 10.1016/j.biopha.2024.116395. Online ahead of print.ABSTRACTDendrobium officinale (DEN) is recognized as a kind of functional food that can effectively ameliorate endocrine and metabolic disruptions. This study delved into the pharmacological mechanism of DEN on hepatic lipotoxicity associated with Type II diabetes mellitus (T2DM). In vivo study experiments on db/db mice indicated that DEN treatment notably enhanced liver function, decreased blood lipid levels, and improved insulin sensitivity. Non-targeted metabolomics analysis revealed that DEN significantly ameliorated metabolism pathways, including lipoic acid, linoleic acid, bile secretion, and the alanine/aspartate/glutamate metabolism, as well as taurine and hypotaurine metabolism. Transcriptomics analysis demonstrated DEN treatment could modulate the expression of genes such as Cpt1b, Scd1, G6pc2, Fos, Adrb2, Atp2a1, Ppp1r1b, and Cyp7a1. Furthermore, Proteomics analysis indicated that the beneficial effect of DEN on lipid metabolism was linked to pathways like AMPK and PPAR signaling. The integrative analysis of multi-omics revealed that the PPAR-RXR signaling was critical to the therapeutic effect of DEN on T2DM-induced fatty liver. Additionally, in vitro study on AML-12 cells confirmed that DEN counteract PA-induced lipid accumulation by activating the PPAR-RXR pathway. Overall, these findings suggested that DEN exhibited the potential to mitigate T2DM-induced hepatic lipo-toxicity and manage lipid imbalances in T2DM.PMID:38460364 | DOI:10.1016/j.biopha.2024.116395

Abnormal energy metabolism, oxidative stress, and polyunsaturated fatty acid metabolism in depressed adolescents associated with childhood maltreatment: A targeted metabolite analysis

Sat, 09/03/2024 - 12:00
Psychiatry Res. 2024 Feb 16;335:115795. doi: 10.1016/j.psychres.2024.115795. Online ahead of print.ABSTRACTThe purpose of this study was to explore the metabolomic differences between Major depressive disorder (MDD) and healthy individuals among adolescents and the association between childhood maltreatment (CM) and differentially abundant metabolites. The exploratory study included 40 first-episode drug-naïve adolescents with MDD and 20 healthy volunteers. We used the Beck Depression Inventory (BDI-13) to assess the severity of depression and the Childhood Trauma Questionnaire (CTQ) to assess the presence of childhood maltreatment. The plasma samples from all participants were collected for targeted metabolomics analysis using ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC‒MS/MS) methods. Spearman correlation was applied to analyse the correlations between clinical variables and metabolites. We found 11 increased metabolites and 37 decreased metabolites that differed between adolescents with MDD and healthy individuals. Pathway enrichment analysis of differentially abundant metabolites showed abnormalities in energy metabolism and oxidative stress in MDD. Importantly, we found that creatine, valine, isoleucine, glutamic acid and pyroglutamic acid were negatively correlated with the BDI-13, while isocitric acid, fatty acid and acylcarnitine were negatively associated with CTQ, and 4-hydroxyproline was positively related to CTQ in adolescents with MDD. These studies provide new ideas for the pathogenesis and potential treatment of adolescents with MDD.PMID:38460351 | DOI:10.1016/j.psychres.2024.115795

Metabolomic profiling reveals biomarkers for diverse flesh colors in jelly fungi (Auricularia cornea)

Sat, 09/03/2024 - 12:00
Food Chem. 2024 Mar 8;446:138906. doi: 10.1016/j.foodchem.2024.138906. Online ahead of print.ABSTRACTAuricularia cornea has garnered attention due to its nutrition, culinary applications, and promising commercial prospects. However, there is little information available regarding the metabolic profiling of various colors strains. In this study, 642 metabolites across 64 classes were identified by LC-MS/MS to understand the metabolic variations between white, pink and dark brown strains. Notably, prenol lipids, carboxylic acids and fatty acyls accounted for 46.8 % of the total. Comparative analysis revealed 17 shared differential metabolites (DMs) among them. ACP vs ACW exhibited 17 unique metabolites, including d-arginine and maleic acid, etc. ACP vs ACB showed 5 unique metabolites, with only PS(18:1(9Z)/0:0) demonstrating up-regulation. ACB vs ACW showed 8 unique metabolites, including 4-hydroxymandelic acid and 5'-methylthioadenosine, etc. KEGG enrichment analysis highlighted pathway variations, and MetPA analysis identified key-pathways influencing DMs accumulation in A. cornea. This pioneering metabolomics study offers insights into A. cornea metabolic profiling, potential applications, and guides further research.PMID:38460278 | DOI:10.1016/j.foodchem.2024.138906

Effects of ocean acidification and polystyrene microplastics on the oysters Crassostrea gigas: An integrated biomarker and metabolomic approach

Sat, 09/03/2024 - 12:00
Mar Environ Res. 2024 Mar 5;196:106434. doi: 10.1016/j.marenvres.2024.106434. Online ahead of print.ABSTRACTThe adverse impacts of microplastics (MPs) or ocean acidification (OA) on mollusks have been widely reported, however, little is known about their combined effects on mollusks. The oysters Crassostrea gigas were exposed to two sizes of polystyrene MPs with 1 × 104 particles/L (small polystyrene MPs (SPS-MPs): 6 μm, large polystyrene MPs (LPS-MPs): 50-60 μm) at two pH levels (7.7 and 8.1) for 14 days. The antagonistic effects between MPs and OA on oysters were mainly observed. Single SPS-MPs exposure can induce CAT enzyme activity and LPO level in gills, while LPS-MPs exposure alone can increase PGK and PEPCK gene expression in digestive glands. Ocean acidification can increase clearance rate and inhibit antioxidant enzyme activity, whereas combined exposure of OA and SPS-MPs can affect the metabolomic profile of digestive glands. This study emphasized that the potential toxic effects of MPs under the scene of climate change should be concerned.PMID:38460223 | DOI:10.1016/j.marenvres.2024.106434

The Hydrophilic Metabolite UMP Alleviates Obesity Traits through a HIF2α-ACER2-Ceramide Signaling Axis

Sat, 09/03/2024 - 12:00
Adv Sci (Weinh). 2024 Mar 9:e2309525. doi: 10.1002/advs.202309525. Online ahead of print.ABSTRACTMetabolic abnormalities contribute to the pathogenesis of obesity and its complications. Yet, the understanding of the interactions between critical metabolic pathways that underlie obesity remains to be improved, in part owing to the lack of comprehensive metabolomics studies that reconcile data from both hydrophilic and lipophilic metabolome analyses that can lead to the identification and characterization of key signaling networks. Here, the study conducts a comprehensive metabolomics analysis, surveying lipids and hydrophilic metabolites of the plasma and omental adipose tissue of obese individuals and the plasma and epididymal adipose tissue of mice. Through these approaches, it is found that a significant accumulation of ceramide due to inhibited sphingolipid catabolism, while a significant reduction in the levels of uridine monophosphate (UMP), is critical to pyrimidine biosynthesis. Further, it is found that UMP administration restores sphingolipid homeostasis and can reduce obesity in mice by reversing obesity-induced inhibition of adipocyte hypoxia inducible factor 2a (Hif2α) and its target gene alkaline ceramidase 2 (Acer2), so as to promote ceramide catabolism and alleviate its accumulation within cells. Using adipose tissue Hif2α-specific knockout mice, the study further demonstrates that the presence of UMP can alleviate obesity through a HIF2α-ACER2-ceramide pathway, which can be a new signaling axis for obesity improvement.PMID:38460165 | DOI:10.1002/advs.202309525

Comparisons of different extraction methods and solvents for saliva samples

Sat, 09/03/2024 - 12:00
Metabolomics. 2024 Mar 9;20(2):38. doi: 10.1007/s11306-024-02105-2.ABSTRACTINTRODUCTION: Changes in the categories and concentrations of salivary metabolites may be closely related to oral, intestinal or systemic diseases. To study salivary metabolites, the first analytical step is to extract them from saliva samples as much as possible, while reducing interferences to a minimum. Frequently used extraction methods are protein precipitation (PPT), liquid-liquid extraction (LLE) and solid-phase extraction (SPE), with various organic solvents. The types and quantities of metabolites extracted with different methods may vary greatly, but few studies have systematically evaluated them.OBJECTIVES: This study aimed to select the most suitable methods and solvents for the extraction of saliva according to different analytical targets.METHODS: An untargeted metabolomics approach based on liquid chromatography-mass spectrometry was applied to obtain the raw data. The numbers of metabolites, repeatability of the data and intensities of mass spectrometry signals were used as evaluation criteria.RESULTS: PPT resulted in the highest coverage. Among the PPT solvents, acetonitrile displayed the best repeatability and the highest coverage, while acetone resulted in the best signal intensities for the extracted compounds. LLE with the mixture of chloroform and methanol was the most suitable for the extraction of small hydrophobic compounds.CONCLUSION: PPT with acetonitrile or acetone was recommended for untargeted analysis, while LLE with the mixture of chloroform and methanol was recommended for small hydrophobic compounds.PMID:38460055 | DOI:10.1007/s11306-024-02105-2

Gut metabolic changes during pregnancy reveal the importance of gastrointestinal region in sample collection

Sat, 09/03/2024 - 12:00
Metabolomics. 2024 Mar 9;20(2):40. doi: 10.1007/s11306-024-02099-x.ABSTRACTINTRODUCTION: Studies of gastrointestinal physiology and the gut microbiome often consider the influence of intestinal region on experimental endpoints. However, this same consideration is not often applied to the gut metabolome. Understanding the contribution of gut regionality may be critically important to the rapidly changing metabolic environments, such as during pregnancy.OBJECTIVES: We sought to characterize the difference in the gut metabolome in pregnant mice stratified by region-comparing the small intestine, cecum, and feces. Pre-pregnancy feces were collected to understand the influence of pregnancy on the fecal metabolome.METHODS: Feces were collected from CD-1 female mice before breeding. On gestation day (GD) 18, gut contents were collected from the small intestine, cecum, and descending colon. Metabolites were analyzed with LC-MS/MS using the Biocrates MetaboINDICATOR™ MxP® Quant 500 kit.RESULTS: Of the 104 small molecule metabolites meeting analysis criteria, we found that 84 (81%) were differentially abundant based on gut region. The most significant regional comparison observed was between the cecum and small intestines, with 52 (50%) differentially abundant metabolites. Pregnancy itself altered 41 (39.4%) fecal small molecule metabolites.CONCLUSIONS: The regional variation observed in the gut metabolome are likely due to the microbial and physiological differences between the different parts of the intestines. Additionally, pregnancy impacts the fecal metabolome, which may be due to evolving needs of both the dam and fetus.PMID:38460019 | DOI:10.1007/s11306-024-02099-x

Pages