Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Metabolomics and Molecular Networking-Guided Screening of Bacillus-Derived Bioactive Compounds Against a Highly Lethal Vibrio Species

Thu, 07/03/2024 - 12:00
Anal Chem. 2024 Mar 7. doi: 10.1021/acs.analchem.3c02958. Online ahead of print.ABSTRACTMicroorganisms are important sources of bioactive natural products. However, the complexity of microbial metabolites and the low abundance of active compounds render the isolation and purification process laborious and inefficient. During our search for active substances capable of inhibiting the newly discovered highly lethal Vibrio strain vp-HL, we found that the fermentation broth of multiple Bacillus strains exhibited antibacterial activity. However, the substances responsible for the activity remained unclear. Metabolomics, molecular networking (MN), and the Structural similarity Network Annotation Platform for Mass Spectrometry (SNAP-MS) were employed in conjunction with bioactivity screening to predict the antibacterial compounds from Bacillus strains. The analysis of fractions, and their isolation, NMR-based annotation, and bioactivity evaluation of an amicoumacin compound partially confirmed the prediction from these statistical analyses. This work presents the potential of marine Bacillus in producing active substances against Vibrio species. Additionally, it highlighted the significance and feasibility of metabolomics and MN in the dereplication of compounds and the determination of isolation targets.PMID:38452345 | DOI:10.1021/acs.analchem.3c02958

Integrative multi-modal metabolomics to early predict cognitive decline among Amyloid positive community-dwelling older adults

Thu, 07/03/2024 - 12:00
J Gerontol A Biol Sci Med Sci. 2024 Mar 7:glae077. doi: 10.1093/gerona/glae077. Online ahead of print.ABSTRACTAlzheimer's disease is strongly linked to metabolic abnormalities. We aimed to distinguish amyloid-positive people who progressed to cognitive decline from those who remained cognitively intact. We performed untargeted metabolomics of blood samples from amyloid-positive individuals, before any sign of cognitive decline, to distinguish individuals who progressed to cognitive decline from those who remained cognitively intact. A plasma-derived metabolite signature was developed from Supercritical Fluid chromatography coupled with high-resolution mass spectrometry (SFC-HRMS) and nuclear magnetic resonance (NMR) metabolomics. The two metabolomics datasets were analyzed by Data Integration Analysis for Biomarker discovery using Latent approaches for Omics studies (DIABLO), to identify a minimum set of metabolites that could describe cognitive decline status. NMR or SFC-HRMS data alone cannot predict cognitive decline. However, among the 320 metabolites identified, a statistical method that integrated the two datasets enabled identification of a minimal signature of 9 metabolites (3-hydroxybutyrate, citrate, succinate, acetone, methionine, glucose, serine, sphingomyelin d18:1/C26:0 and triglyceride C48:3) with a statistically significant ability to predict cognitive decline more than 3 years before decline. This metabolic fingerprint obtained during this exploratory study may help to predict amyloid-positive individuals who will develop cognitive decline. Due to the high prevalence of brain amyloid-positivity in older adults, identifying adults who will have cognitive decline will enable the development of personalized and early interventions.PMID:38452244 | DOI:10.1093/gerona/glae077

Differentially disrupted spinal cord and muscle energy metabolism in spinal and bulbar muscular atrophy

Thu, 07/03/2024 - 12:00
JCI Insight. 2024 Mar 5:e178048. doi: 10.1172/jci.insight.178048. Online ahead of print.ABSTRACTPrior studies showed that polyQ-expanded AR is aberrantly acetylated and that deacetylation of the mutant AR by overexpression of NAD+-dependent sirtuin 1 (SIRT1) is protective in cell models of spinal and bulbar muscular atrophy (SBMA). Based on these observations and reduced NAD+ in muscles of SBMA mouse models, we tested the therapeutic potential of NAD+ restoration in vivo by treating post-symptomatic transgenic SBMA mice with the nicotinamide adenine dinucleotide (NAD+) precursor nicotinamide riboside (NR). NR supplementation failed to alter disease progression and had no effect on increasing NAD+ or ATP content in muscle, despite producing a modest increase of NAD+ in the spinal cord of SBMA mice. Metabolite and proteomic profiles of SBMA quadriceps muscles indicated alterations in several important energy-related pathways that utilize NAD+, in addition to the NAD salvage pathway, which is critical for NAD+ regeneration for use in cellular energy production. We also observed decreased mRNA levels of Nmrk2, which encodes a key kinase responsible for NR phosphorylation, allowing its utilization by the NAD salvage pathway. Together these data suggest a model in which NAD+ levels are significantly decreased in muscles of an SBMA mouse model and intransigent to NR supplementation due to decreased levels of Nmrk2.PMID:38452174 | DOI:10.1172/jci.insight.178048

Comparison of Nutritional Diversity in Five Fresh Legumes Using Flavonoids Metabolomics and Postharvest Botrytis cinerea Defense Analysis of Peas Mediated by Sakuranetin

Thu, 07/03/2024 - 12:00
J Agric Food Chem. 2024 Mar 7. doi: 10.1021/acs.jafc.3c08968. Online ahead of print.ABSTRACTLegumes possess several bioactive nutrients, including flavonoids, and the study of the flavonoid profile of legumes is of great significance to human health. Using widely targeted metabolomics, we revealed the flavonoid profiles of five popular fresh legumes: cowpea, soybean, pea, fava bean, and kidney bean. A total of 259 flavonoids were identified, and the flavonoid accumulation patterns of the five legumes were remarkably different. In addition to analyzing common and species-specific flavonoids in the five legumes, we also generalized representative flavonoids of various subclasses. We related these to the health-promoting effects of legumes. Furthermore, legumes' total flavonoid content and antioxidant system activity were also detected. Intriguingly, sakuranetin, the sole flavonoid phytoalexin that can be induced by UV radiation, was detected only in the peas by metabolomics. Meanwhile, we found that UV treatment could significantly increase the sakuranetin content and the postharvest Botrytis cinerea resistance of pea pods. This study provides clues for the target diet, industrial development of legumes, and a new idea for the postharvest preservation of peas.PMID:38452150 | DOI:10.1021/acs.jafc.3c08968

Cis-regulatory polymorphism at fiz ecdysone oxidase contributes to polygenic evolutionary response to malnutrition in Drosophila

Thu, 07/03/2024 - 12:00
PLoS Genet. 2024 Mar 7;20(3):e1011204. doi: 10.1371/journal.pgen.1011204. Online ahead of print.ABSTRACTWe investigate the contribution of a candidate gene, fiz (fezzik), to complex polygenic adaptation to juvenile malnutrition in Drosophila melanogaster. Experimental populations maintained for >250 generations of experimental evolution to a nutritionally poor larval diet (Selected populations) evolved several-fold lower fiz expression compared to unselected Control populations. Here we show that this divergence in fiz expression is mediated by a cis-regulatory polymorphism. This polymorphism, originally sampled from a natural population in Switzerland, is distinct from a second cis-regulatory SNP previously identified in non-African D. melanogaster populations, implying that two independent cis-regulatory variants promoting high fiz expression segregate in non-African populations. Enzymatic analyses of Fiz protein expressed in E. coli demonstrate that it has ecdysone oxidase activity acting on both ecdysone and 20-hydroxyecdysone. Four of five fiz paralogs annotated to ecdysteroid metabolism also show reduced expression in Selected larvae, implying that malnutrition-driven selection favored general downregulation of ecdysone oxidases. Finally, as an independent test of the role of fiz in poor diet adaptation, we show that fiz knockdown by RNAi results in faster larval growth on the poor diet, but at the cost of greatly reduced survival. These results imply that downregulation of fiz in Selected populations was favored by selection on the nutritionally poor diet because of its role in suppressing growth in response to nutrient shortage. However, they suggest that fiz downregulation is only adaptive in combination with other changes evolved by Selected populations, which ensure that the organism can sustain the faster growth promoted by fiz downregulation.PMID:38452112 | DOI:10.1371/journal.pgen.1011204

Rice-Magnaporthe oryzae interactions in resistant and susceptible rice cultivars under panicle blast infection based on defense-related enzyme activities and metabolomics

Thu, 07/03/2024 - 12:00
PLoS One. 2024 Mar 7;19(3):e0299999. doi: 10.1371/journal.pone.0299999. eCollection 2024.ABSTRACTRice blast, caused by rice blast fungus (Magnaporthe oryzae), is a global threat to food security, with up to 50% yield losses. Panicle blast is a severe form of rice blast, and disease responses vary between cultivars with different genotypes. Reactive oxygen species (ROS)-mediated signaling reactions and the phenylpropanoid pathway are important defense mechanisms involved in recognizing and resisting against fungal infection. To understand rice-M. oryzae interactions in resistant and susceptible cultivars, we determined dynamic changes in the activities of five defense-related enzymes in resistant cultivar jingsui 18 and susceptible cultivar jinyuan 899 infected with M. oryzae from 4 to 25 days after infection. We then performed untargeted metabolomics analyses to profile the metabolomes of the cultivars under infected and non-infected conditions. Dynamic changes in the activities of five defense-related enzymes were closely related to panicle blast resistance in rice. Metabolome data analysis identified 634 differentially accumulated metabolites (DAMs) between resistant and susceptible cultivars following infection, potentially explaining differences in disease response between varieties. The most enriched DAMs were associated with lipids and lipid-like molecules, phenylpropanoids and polyketides, organoheterocyclic compounds, organic acids and derivatives, and lignans, neolignans, and related compounds. Multiple metabolic pathways are involved in resistance to panicle blast in rice, including biosynthesis of other secondary metabolites, amino acid metabolism, lipid metabolism, phenylpropanoid biosynthesis, arachidonic acid metabolism, arginine biosynthesis, tyrosine metabolism, tryptophan metabolism, tyrosine and tryptophan biosynthesis, lysine biosynthesis, and oxidative phosphorylation.PMID:38451992 | DOI:10.1371/journal.pone.0299999

tRNA epitranscriptome determines pathogenicity of the opportunistic pathogen <em>Pseudomonas aeruginosa</em>

Thu, 07/03/2024 - 12:00
Proc Natl Acad Sci U S A. 2024 Mar 12;121(11):e2312874121. doi: 10.1073/pnas.2312874121. Epub 2024 Mar 7.ABSTRACTThe success of bacterial pathogens depends on the coordinated expression of virulence determinants. Regulatory circuits that drive pathogenesis are complex, multilayered, and incompletely understood. Here, we reveal that alterations in tRNA modifications define pathogenic phenotypes in the opportunistic pathogen Pseudomonas aeruginosa. We demonstrate that the enzymatic activity of GidA leads to the introduction of a carboxymethylaminomethyl modification in selected tRNAs. Modifications at the wobble uridine base (cmnm5U34) of the anticodon drives translation of transcripts containing rare codons. Specifically, in P. aeruginosa the presence of GidA-dependent tRNA modifications modulates expression of genes encoding virulence regulators, leading to a cellular proteomic shift toward pathogenic and well-adapted physiological states. Our approach of profiling the consequences of chemical tRNA modifications is general in concept. It provides a paradigm of how environmentally driven tRNA modifications govern gene expression programs and regulate phenotypic outcomes responsible for bacterial adaption to challenging habitats prevailing in the host niche.PMID:38451943 | DOI:10.1073/pnas.2312874121

Targeting tryptophan catabolism in ovarian cancer to attenuate macrophage infiltration and PD-L1 expression

Thu, 07/03/2024 - 12:00
Cancer Res Commun. 2024 Mar 7. doi: 10.1158/2767-9764.CRC-23-0513. Online ahead of print.ABSTRACTHigh grade serous carcinoma (HGSC) of the fallopian tube, ovary and peritoneum is the most common type of ovarian cancer and is predicted to be immunogenic since the presence of tumor-infiltrating lymphocytes conveys a better prognosis. However, the efficacy of immunotherapies has been limited due to the immune-suppressed tumor microenvironment (TME). Tumor metabolism and immune-suppressive metabolites directly affect immune cell function through the depletion of nutrients and activation of immune-suppressive transcriptional programs. Tryptophan (TRP) catabolism is a contributor to HGSC disease progression. Two structurally distinct rate-limiting TRP catabolizing enzymes, Indoleamine 2,3-Dioxygenase 1 (IDO1) and Tryptophan 2,3-Dioxygenase 2 (TDO2), evolved separately to catabolize TRP. IDO1/TDO2 are aberrantly expressed in carcinomas and metabolize TRP into the immune-suppressive metabolite kynurenine (KYN), which can engage the aryl hydrocarbon receptor (AhR) to drive immunosuppressive transcriptional programs. To date, IDO inhibitors tested in clinical trials have had limited efficacy, but those inhibitors did not target TDO2, and we find that HGSC cell lines and clinical outcomes are more dependent on TDO2 than IDO1. To identify inflammatory HGSC cancers with poor prognosis, we stratified patient ascites samples by IL6 status, which correlates with poor prognosis. Metabolomics revealed that IL6 high patient samples had enriched KYN. TDO2 knockdown significantly inhibited HGSC growth and TRP catabolism. The orally available dual IDO1/TDO2 inhibitor, AT-0174, significantly inhibited tumor progression, reduced tumor-associated macrophages, and reduced expression of immune-suppressive proteins on immune and tumor cells. These studies demonstrate the importance of TDO2 and the therapeutic potential of AT-0174 to overcome an immune-suppressed TME.PMID:38451784 | DOI:10.1158/2767-9764.CRC-23-0513

Lack of SPNS1 results in accumulation of lysolipids and lysosomal storage disease in mouse models

Thu, 07/03/2024 - 12:00
JCI Insight. 2024 Mar 7:e175462. doi: 10.1172/jci.insight.175462. Online ahead of print.ABSTRACTAccumulation of sphingolipids, especially sphingosines, in the lysosomes is a key driver of several lysosomal storage diseases. The transport mechanism for sphingolipids from the lysosome remains unclear. Here, we identified SPNS1, which shares the highest homology to SPNS2 - a sphingosine-1-phosphate (S1P) transporter, functions as a transporter for lysolipids from the lysosome. We generated Spns1 knockout cells and mice and employed lipidomic and metabolomic approaches to reveal SPNS1 ligand identity. Global knockout of Spns1 caused embryonic lethality between E12.5-E13.5 and an accumulation of sphingosine, lysophosphatidylcholines (LPC) and lysophosphatidylethanolamines (LPE) in the fetal livers. Similarly, metabolomic analysis of livers from postnatal Spns1 knockout (Spns1-KO) mice presented an accumulation of sphingosines and lysoglycerophospholipids including LPC and LPE. Subsequently, biochemical assays showed that SPNS1 is required for LPC and sphingosine release from lysosomes. The accumulation of these lysolipids in the lysosomes of Spns1-KO mice affected liver functions and altered the PI3K-AKT signaling pathway. Furthermore, we identified three human siblings with a homozygous variant in the SPNS1 gene. These patients suffer from developmental delay, neurological impairment, intellectual disability, and exhibiting cerebellar hypoplasia. These results reveal a critical role of SPNS1 as a promiscuous lysolipid transporter in the lysosomes and link its physiological functions with lysosomal storage diseases.PMID:38451736 | DOI:10.1172/jci.insight.175462

Bile acid profile associated with CSF and PET biomarkers in Alzheimer's disease

Thu, 07/03/2024 - 12:00
Aging Clin Exp Res. 2024 Mar 7;36(1):62. doi: 10.1007/s40520-024-02729-3.ABSTRACTBACKGROUND: Recent studies have shown that gut microbiota can affect the development of Alzheimer's disease (AD) through various mechanisms. Bile acids (BAs), which are the final byproducts of cholesterol metabolism created through both the human body and gut microbiome, appear to be influenced by gut microbiota and may impact AD pathological characteristics such as the accumulation of tau and amyloid-β. We aimed to investigate the associations between various serum BAs and CSF biomarkers (including Aβ, total tau, and p-tau). Additionally, we sought to examine the longitudinal changes in brain Aβ and tau through PET imaging in relation to BAs profile.METHODS: The data of 828 subjects including 491 diagnosed with mild cognitive impairment (MCI), 119 patients diagnosed with AD, and 267 cognitively normal (CN) participants were obtained from ADNI. The baseline and longitudinal [18F] florbetapir and [18F] flortaucipir PET standard uptake value ratios (SUVR) measures were obtained to assess the accumulation of tau and Aβ. Moreover, baseline levels of serum BAs and CSF Aβ1-42, tau, and p-tau were used.RESULTS: After FDR correction we observed that five BAs level and relevant calculated ratios were associated with CSF p-tau and tau, three with CSF Aβ1-42. Furthermore, three BAs level and relevant calculated ratios were associated with the tau-PET rate of change, and two with the Aβ rate of change.CONCLUSION: The findings from our study suggest a correlation between altered profiles of BAs and CSF and imaging biomarkers associated with AD. These results provide supporting evidence for the link between the gut microbiome and the pathological features of AD.PMID:38451317 | DOI:10.1007/s40520-024-02729-3

Stable Isotope Tracer Technique and Network Pharmacology to Reveal Antidepressant Targets and Active Components of Xiaoyao San

Thu, 07/03/2024 - 12:00
Chem Biodivers. 2024 Mar 7:e202301736. doi: 10.1002/cbdv.202301736. Online ahead of print.ABSTRACTIn recent years, the research of mitochondrial dysfunction in depression has drawn the focus of researchers. Our research group previously found that Xiaoyao San (XYS) has improved the mitochondrial structure and the blocked tricarboxylic acid cycle (TCA cycle) in the hippocampal tissue of chronic unpredictable mild stress (CUMS) rats. However, the specific targets and active components of XYS remain unclear, and the potential to improve hippocampal mitochondrial TCA cycle disorder was also unexplored. In this research, a strategy to combine stable isotope-resolved metabolomics (SIRM), network pharmacology and transmission electron microscopy (TEM) was used to explore the potential, targets of action, and active components of XYS to improve hippocampal mitochondrial TCA cycle disorder of CUMS rats. The results of TEM showed that the ultrastructure of hippocampal mitochondria could be improved by XYS. A combination of SIRM and molecular docking showed that pyruvate carboxylase (PC), ATP citrate lyase (ACLK), glutamate dehydrogenase (GLDH), glutamate oxaloacetate transaminase (GOT) and pyruvate dehydrogenase (PDH) were targets of XYS to improve TCA cycle disorder. In addition, Troxerutin was found to be the most potential active component of XYS to improve TCA cycle disorder. The above research results can provide new insights for the development of antidepressant drugs.PMID:38451006 | DOI:10.1002/cbdv.202301736

Functional and multi-omics signatures of mitapivat efficacy upon activation of pyruvate kinase in red blood cells from patients with sickle cell disease

Thu, 07/03/2024 - 12:00
Haematologica. 2024 Mar 7. doi: 10.3324/haematol.2023.284831. Online ahead of print.ABSTRACTMitapivat, a pyruvate kinase (PK) activator, shows great potential as a sickle cell disease (SCD)- modifying therapy. Safety and efficacy of mitapivat as a long-term maintenance therapy is currently being evaluated in two open-label studies. Here we apply a comprehensive multi-omics approach to investigate the impact of activating PK on red blood cells (RBCs) from 15 SCD patients. HbSS patients were enrolled in one of the open label, extended studies (NCT04610866). Leuko-depleted RBCs obtained from fresh whole blood at baseline (visit 1, V1), prior to drug initiation and longitudinal time points over the course of the study were processed for multiomics through a stepwise extraction of metabolites, lipids and proteins. Mitapivat therapy had significant effects on the metabolome, lipidome and proteome of SCD RBCs. Mitapivat decreased 2,3-diphosphoglycerate (DPG) levels, increased adenosine triphosphate (ATP) levels, and improved hematologic and sickling parameters in patients with SCD. Agreement between omics measurements and clinical measurements confirmed the specificity of mitapivat on targeting late glycolysis, with glycolytic metabolites ranking as the top correlates to parameters of hemoglobin S (HbS) oxygen affinity (p50) and sickling kinetics (t50) during treatment. Mitapivat markedly reduced levels of proteins of mitochondrial origin within 2 weeks of initiation of drug treatment, with minimal changes in the reticulocyte counts. The first six months of treatment also witnessed transient elevation of lysophosphatidylcholines and oxylipins with depletion in free fatty acids, suggestive of an effect on membrane lipid remodeling. Multi-omics analysis of RBCs identified benefits for glycolysis, as well as activation of the Lands cycle.PMID:38450513 | DOI:10.3324/haematol.2023.284831

Integrated microbiome and metabolomics analysis reveal the relationship between plant-specialized metabolites and microbial community in Phellodendron amurense

Thu, 07/03/2024 - 12:00
Front Plant Sci. 2024 Feb 21;15:1363063. doi: 10.3389/fpls.2024.1363063. eCollection 2024.ABSTRACTPhellodendron amurense is the essential source of bisbenzylisoquinoline alkaloids (BIAs), making it a highly valued raw material in traditional Chinese medicine. The plant's root secondary metabolism is intricately linked to the microbial communities that surround it. However, the root-associated microbiomes of P. amurense, as well as the potential correlation between its bioactive compounds and these microbiomes, remain poorly understood. Here, the metabolic profiles of root, rhizosphere, and bulk soils of P. amurense revealed the dramatic differences in the relative content of plant-specialized metabolites. A total of 31, 21, and 0 specialized metabolites in P. amurense were identified in the root, rhizosphere soil, and bulk soil, respectively, with higher content of the seven major BIAs observed in the rhizosphere compared with that in the bulk soils. The composition of the bulk and rhizosphere microbiomes was noticeably distinct from that of the endospheric microbiome. The phylum Cyanobacteria accounted for over 60% of the root endosphere communities, and the α-diversity in root was the lowest. Targeted seven BIAs, namely, berberine, palmatine, magnocurarine, phellodendrine, jatrorrhizine, tetrahydropalmatine, and magnoflorine, were significantly positively correlated with Nectriaceae and Sphingobacteriaceae. This study has illuminated the intricate interaction networks between P. amurense root-associated microorganisms and their key chemical compounds, providing the theoretical foundation for discovering biological fertilizers and laying the groundwork for cultivating high-quality medicinal plants.PMID:38450408 | PMC:PMC10915045 | DOI:10.3389/fpls.2024.1363063

Metabolomics analysis reveals novel serum metabolite alterations in cancer cachexia

Thu, 07/03/2024 - 12:00
Front Oncol. 2024 Feb 20;14:1286896. doi: 10.3389/fonc.2024.1286896. eCollection 2024.ABSTRACTBACKGROUND: Cachexia is a body wasting syndrome that significantly affects well-being and prognosis of cancer patients, without effective treatment. Serum metabolites take part in pathophysiological processes of cancer cachexia, but apart from altered levels of select serum metabolites, little is known on the global changes of the overall serum metabolome, which represents a functional readout of the whole-body metabolic state. Here, we aimed to comprehensively characterize serum metabolite alterations and analyze associated pathways in cachectic cancer patients to gain new insights that could help instruct strategies for novel interventions of greater clinical benefit.METHODS: Serum was sampled from 120 metastatic cancer patients (stage UICC IV). Patients were grouped as cachectic or non-cachectic according to the criteria for cancer cachexia agreed upon international consensus (main criterium: weight loss adjusted to body mass index). Samples were pooled by cachexia phenotype and assayed using non-targeted gas chromatography-mass spectrometry (GC-MS). Normalized metabolite levels were compared using t-test (p < 0.05, adjusted for false discovery rate) and partial least squares discriminant analysis (PLS-DA). Machine-learning models were applied to identify metabolite signatures for separating cachexia states. Significant metabolites underwent MetaboAnalyst 5.0 pathway analysis.RESULTS: Comparative analyses included 78 cachectic and 42 non-cachectic patients. Cachectic patients exhibited 19 annotable, significantly elevated (including glucose and fructose) or decreased (mostly amino acids) metabolites associating with aminoacyl-tRNA, glutathione and amino acid metabolism pathways. PLS-DA showed distinct clusters (accuracy: 85.6%), and machine-learning models identified metabolic signatures for separating cachectic states (accuracy: 83.2%; area under ROC: 88.0%). We newly identified altered blood levels of erythronic acid and glucuronic acid in human cancer cachexia, potentially linked to pentose-phosphate and detoxification pathways.CONCLUSION: We found both known and yet unknown serum metabolite and metabolic pathway alterations in cachectic cancer patients that collectively support a whole-body metabolic state with impaired detoxification capability, altered glucose and fructose metabolism, and substrate supply for increased and/or distinct metabolic needs of cachexia-associated tumors. These findings together imply vulnerabilities, dependencies and targets for novel interventions that have potential to make a significant impact on future research in an important field of cancer patient care.PMID:38450189 | PMC:PMC10915872 | DOI:10.3389/fonc.2024.1286896

Electroacupuncture at ST25 corrected gut microbial dysbiosis and SNpc lipid peroxidation in Parkinson's disease rats

Thu, 07/03/2024 - 12:00
Front Microbiol. 2024 Feb 21;15:1358525. doi: 10.3389/fmicb.2024.1358525. eCollection 2024.ABSTRACTINTRODUCTION: Parkinson's disease (PD) remains one kind of a complex, progressive neurodegenerative disease. Levodopa and dopamine agonists as widely utilized PD therapeutics have not shown significant positive long-term outcomes. Emerging evidences indicate that electroacupuncture (EA) have potential effects on the therapy of nervous system disorders, particularly PD, but its specific underlying mechanism(s) remains poorly understood, leading to the great challenge of clinical application and management. Previous study has shown that acupuncture ameliorates PD motor symptoms and dopaminergic neuron damage by modulating intestinal dysbiosis, but its intermediate pathway has not been sufficiently investigated.METHODS: A rat model of PD was induced using rotenone. The therapeutic effect of EA on PD was assessed using the pole and rotarod tests and immunohistostaining for tyrosine hydroxylase (TH) in the substantia nigra (SN) of brain. The role of gut microbiota was explored using 16S rRNA gene sequencing and metabonomic analysis. PICRUSt2 analysis, lipidomic analysis, LPS and inflammatory factor assays were used for subsequent exploration and validation. Correlation analysis was used to identify the key bacteria that EA regulates lipid metabolism to improve PD.RESULTS: The present study firstly reappeared the effects of EA on protecting motor function and dopaminergic neurons and modulation of gut microbial dysbiosis in rotenone-induced PD rat model. EA improved motor dysfunction (via the pole and rotarod tests) and protected TH+ neurons in PD rats. EA increased the abundance of beneficial bacteria such as Lactobacillus, Dubosiella and Bifidobacterium and decreased the abundance of Escherichia-Shigella and Morganella belonging to Pseudomonadota, suggesting that the modulation of gut microbiota by EA improving the symptoms of PD motility via alleviating LPS-induced inflammatory response and oxidative stress, which was also validated by various aspects such as microbial gene functional analysis, fecal metabolomics analysis, LPS and inflammatory factor assays and SNpc lipidomics analysis. Moreover, correlation analyses also verified strong correlations of Escherichia-Shigella and Morganella with motor symptoms and SNpc lipid peroxidation, explicating targets and intermediate pathways through which EA improve PD exercise symptom.CONCLUSION: Our results indicate that the improvement of motor function in PD model by EA may be mediated in part by restoring the gut microbiota, which intermediate processes involve circulating endotoxins and inflammatory mediators, SNpc oxidative stress and lipid peroxidation. The gut-microbiome - brain axis may be a potential mechanism of EA treatment for the PD.PMID:38450172 | PMC:PMC10915097 | DOI:10.3389/fmicb.2024.1358525

Gut microbiota affects obesity susceptibility in mice through gut metabolites

Thu, 07/03/2024 - 12:00
Front Microbiol. 2024 Feb 21;15:1343511. doi: 10.3389/fmicb.2024.1343511. eCollection 2024.ABSTRACTINTRODUCTION: It is well-known that different populations and animals, even experimental animals with the same rearing conditions, differ in their susceptibility to obesity. The disparity in gut microbiota could potentially account for the variation in susceptibility to obesity. However, the precise impact of gut microbiota on gut metabolites and its subsequent influence on susceptibility to obesity remains uncertain.METHODS: In this study, we established obesity-prone (OP) and obesity-resistant (OR) mouse models by High Fat Diet (HFD). Fecal contents of cecum were examined using 16S rDNA sequencing and untargeted metabolomics. Correlation analysis and MIMOSA2 analysis were used to explore the association between gut microbiota and intestinal metabolites.RESULTS: After a HFD, gut microbiota and gut metabolic profiles were significantly different between OP and OR mice. Gut microbiota after a HFD may lead to changes in eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), a variety of branched fatty acid esters of hydroxy fatty acids (FAHFAs) and a variety of phospholipids to promote obesity. The bacteria g_Akkermansia (Greengene ID: 175696) may contribute to the difference in obesity susceptibility through the synthesis of glycerophosphoryl diester phosphodiesterase (glpQ) to promote choline production and the synthesis of valyl-tRNA synthetase (VARS) which promotes L-Valine degradation. In addition, gut microbiota may affect obesity and obesity susceptibility through histidine metabolism, linoleic acid metabolism and protein digestion and absorption pathways.PMID:38450171 | PMC:PMC10916699 | DOI:10.3389/fmicb.2024.1343511

Oral <em>Clostridium butyricum</em> on mice endometritis through uterine microbiome and metabolic alternations

Thu, 07/03/2024 - 12:00
Front Microbiol. 2024 Feb 21;15:1351899. doi: 10.3389/fmicb.2024.1351899. eCollection 2024.ABSTRACTEndometritis occurs frequently in humans and animals, which can negatively affect fertility and cause preterm parturition syndrome. Orally administered Clostridium butyricum, a butyrate-producing gram-positive anaerobe, exhibits anti-inflammatory effects. However, the precise mechanism by which Clostridium butyricum attenuates endometritis remains unclear. This in vivo study evaluated the anti-inflammatory effects of orally administered Clostridium butyricum on uterine tissues. In addition, we conducted uterine microbiome and lipid metabolome analyses to determine the underlying mechanisms. Female Balb/c mice were divided into the following four groups (n = 5-20): (1) mock group, (2) only operation group (mice only underwent operation to exposed uterine horns from the side), (3) control group (mice underwent the same operation with the operation group + perfusion of lipopolysaccharide solution from uterine horns), and (4) Clostridium butyricum administration group (mice underwent the same operation with the control group + oral Clostridium butyricum administration from days 0 to 9). Clostridium butyricum was administered via oral gavage. On day 10, we investigated protein expression, uterine microbiome, and lipid metabolism in uterine tissues. Consequently, orally administered Clostridium butyricum altered the uterine microbiome and induced proliferation of Lactobacillus and Limosilactobacillus species. The effects can contribute to show the anti-inflammatory effect through the interferon-β upregulation in uterine tissues. Additionally, oral Clostridium butyricum administration resulted in the upregulations of some lipid metabolites, such as ω-3 polyunsaturated fatty acid resolvin D5, in uterine tissues, and resolvin D5 showed anti-inflammatory effects. However, the orally administered Clostridium butyricum induced anti-inflammatory effect was attenuated with the deletion of G protein-coupled receptor 120 and 15-lipooxgenase inhibition. In conclusion, Clostridium butyricum in the gut has anti-inflammatory effects on uterine tissues through alterations in the uterine microbiome and lipid metabolism. This study revealed a gut-uterus axis mechanism and provided insights into the treatment and prophylaxis of endometritis.PMID:38450161 | PMC:PMC10915095 | DOI:10.3389/fmicb.2024.1351899

Dietary protein restriction regulates skeletal muscle fiber metabolic characteristics associated with the FGF21-ERK1/2 pathway

Thu, 07/03/2024 - 12:00
iScience. 2024 Feb 19;27(3):109249. doi: 10.1016/j.isci.2024.109249. eCollection 2024 Mar 15.ABSTRACTUnder conditions of dietary amino acid balance, decreasing the dietary crude protein (CP) level in pigs has a beneficial effect on meat quality. To further elucidate the mechanism, we explored the alteration of muscle fiber characteristics and key regulators related to myogenesis in the skeletal muscle of pigs fed a protein restricted diet. Compared to pigs fed a normal protein diet, dietary protein restriction significantly increased the slow-twitch muscle fiber proportion in skeletal muscle, succinic dehydrogenase (SDH) activity, the concentrations of ascorbate, biotin, palmitoleic acid, and the ratio of s-adenosylhomocysteine (SAM) to s-adenosylhomocysteine (SAH), but the fast-twitch muscle fiber proportion, lactate dehydrogenase (LDH) activity, the concentrations of ATP, glucose-6-phosphate, SAM, and SAH in skeletal muscle, and the ratio of serum triiodothyronine (T3) to tetraiodothyronine (T4) were decreased. In conclusion, we demonstrated that dietary protein restriction induced skeletal muscle fiber remodeling association the regulation of FGF21-ERK1/2-mTORC1 signaling in weaned piglets.PMID:38450157 | PMC:PMC10915561 | DOI:10.1016/j.isci.2024.109249

Plasma free fatty acid levels in cervical cancer: concurrent chemoradiotherapy improves abnormal profile

Thu, 07/03/2024 - 12:00
Front Pharmacol. 2024 Feb 21;15:1352101. doi: 10.3389/fphar.2024.1352101. eCollection 2024.ABSTRACTBackground: Epidemiology has demonstrated that plasma free fatty acids (FFAs) can prevent the development of cancer. Our study sought to evaluate the relationship between plasma (FFA) levels and cervical cancer. Methods: In recent years, metabolomics-based approaches have been recognized as an emerging tool, so we examined the plasma FFA profiles of 114 patients with cervical cancer and 151 healthy people using liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods. Results: The data results were analyzed by multifactorial binary logistic regression analysis, and it was found that palmitic acid, docosahexaenoic acid (DHA), and total ω-3 fatty acids were negatively correlated with the risk of cervical cancer; whereas tetracosanoic acid was positively correlated with the risk of cervical cancer (OR, 1.026; 95% CI, 1.013-1.040; p < 0.001). Dynamic follow-up of 40 cervical cancer patients who successfully completed CCRT revealed that most fatty acid levels tended to increase after the end of treatment, except for palmitic and stearic acid levels, which were lower than before treatment. Conclusion: Plasma FFA profiles were altered in cervical cancer patients, which may be related to abnormal fatty acid metabolism in cervical cancer. The described changes in fatty acid profiles during CCRT may be related to the good functioning of CCRT. Further studies on plasma FFA composition and its changes due to CCRT in patients with cervical cancer are warranted.PMID:38449803 | PMC:PMC10916716 | DOI:10.3389/fphar.2024.1352101

Bacterial Lactonases ZenA with Noncanonical Structural Features Hydrolyze the Mycotoxin Zearalenone

Thu, 07/03/2024 - 12:00
ACS Catal. 2024 Feb 16;14(5):3392-3410. doi: 10.1021/acscatal.4c00271. eCollection 2024 Mar 1.ABSTRACTZearalenone (ZEN) is a mycoestrogenic polyketide produced by Fusarium graminearum and other phytopathogenic members of the genus Fusarium. Contamination of cereals with ZEN is frequent, and hydrolytic detoxification with fungal lactonases has been explored. Here, we report the isolation of a bacterial strain, Rhodococcus erythropolis PFA D8-1, with ZEN hydrolyzing activity, cloning of the gene encoding α/β hydrolase ZenA encoded on the linear megaplasmid pSFRL1, and biochemical characterization of nine homologues. Furthermore, we report site-directed mutagenesis as well as structural analysis of the dimeric ZenARe of R. erythropolis and the more thermostable, tetrameric ZenAScfl of Streptomyces coelicoflavus with and without bound ligands. The X-ray crystal structures not only revealed canonical features of α/β hydrolases with a cap domain including a Ser-His-Asp catalytic triad but also unusual features including an uncommon oxyanion hole motif and a peripheral, short antiparallel β-sheet involved in tetramer interactions. Presteady-state kinetic analyses for ZenARe and ZenAScfl identified balanced rate-limiting steps of the reaction cycle, which can change depending on temperature. Some new bacterial ZEN lactonases have lower KM and higher kcat than the known fungal ZEN lactonases and may lend themselves to enzyme technology development for the degradation of ZEN in feed or food.PMID:38449531 | PMC:PMC10913051 | DOI:10.1021/acscatal.4c00271

Pages