Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Tuberostemonine may alleviates proliferation of lung fibroblasts caused by pulmonary fibrosis

Wed, 14/08/2024 - 12:00
Int J Immunopathol Pharmacol. 2024 Jan-Dec;38:3946320241274225. doi: 10.1177/03946320241274225.ABSTRACTOBJECTIVES: Tuberostemonine has several biological activity, the aim of study examined the impact of tuberostemonine on the proliferation of TGF-β1 induced cell model, and its ability to alleviate pulmonary fibrosis stimulated by bleomycin in mice.METHODS: In vitro, we assessed the effect of tuberostemonine (350, 550 and 750 µM) on the proliferation of cells stimulated by TGF-β1 (10 μg/L), as well as on parameters such as α-SMA vitality, human fibronectin, collagen, and hydroxyproline levels in cells. In vivo, we analyzed inflammation, hydroxyproline, collagen activity and metabolomics in the lungs of mice. Additionally, a comprehensive investigation into the TGF-β/smad signaling pathway was undertaken, targeting lung tissue as well as HFL cells.RESULTS: Within the confines of an in vitro setup, the tuberostemonine manifested a discerned IC50 of 1.9 mM. Furthermore, a significant reduction of over fifty percent was ascertained in the secretion levels of hydroxyproline, fibronectin, collagen type I, collagen type III and α-SMA. In vivo, tuberostemonine obviously improved the respiratory function percentage over 50% of animal model and decreased the hydroxyproline, lung inflammation and collagen deposition. A prominent decline in TGF-β/smad pathway functioning was identified within both the internal and external cellular contexts.CONCLUSIONS: Tuberostemonine is considered as a modulator to alleviate fibrosis and may become a new renovation for pulmonary fibrosis.PMID:39140804 | DOI:10.1177/03946320241274225

Effects of Early Life Exposures to the Aryl Hydrocarbon Receptor Ligand TCDF on Gut Microbiota and Host Metabolic Homeostasis in C57BL/6J Mice

Wed, 14/08/2024 - 12:00
Environ Health Perspect. 2024 Aug;132(8):87005. doi: 10.1289/EHP13356. Epub 2024 Aug 14.ABSTRACTBACKGROUND: Exposure to persistent organic pollutants (POPs) and disruptions in the gastrointestinal microbiota have been positively correlated with a predisposition to factors such as obesity, metabolic syndrome, and type 2 diabetes; however, it is unclear how the microbiome contributes to this relationship.OBJECTIVE: This study aimed to explore the association between early life exposure to a potent aryl hydrocarbon receptor (AHR) agonist and persistent disruptions in the microbiota, leading to impaired metabolic homeostasis later in life.METHODS: This study used metagenomics, nuclear magnetic resonance (NMR)- and mass spectrometry (MS)-based metabolomics, and biochemical assays to analyze the gut microbiome composition and function, as well as the physiological and metabolic effects of early life exposure to 2,3,7,8-tetrachlorodibenzofuran (TCDF) in conventional, germ-free (GF), and Ahr-null mice. The impact of TCDF on Akkermansia muciniphila (A. muciniphila) in vitro was assessed using optical density (OD 600), flow cytometry, transcriptomics, and MS-based metabolomics.RESULTS: TCDF-exposed mice exhibited lower abundances of A. muciniphila, lower levels of cecal short-chain fatty acids (SCFAs) and indole-3-lactic acid (ILA), as well as lower levels of the gut hormones glucagon-like peptide 1 (GLP-1) and peptide YY (PYY), findings suggestive of disruption in the gut microbiome community structure and function. Importantly, microbial and metabolic phenotypes associated with early life POP exposure were transferable to GF recipients in the absence of POP carry-over. In addition, AHR-independent interactions between POPs and the microbiota were observed, and they were significantly associated with growth, physiology, gene expression, and metabolic activity outcomes of A. muciniphila, supporting suppressed activity along the ILA pathway.CONCLUSIONS: These data obtained in a mouse model point to the complex effects of POPs on the host and microbiota, providing strong evidence that early life, short-term, and self-limiting POP exposure can adversely impact the microbiome, with effects persisting into later life with associated health implications. https://doi.org/10.1289/EHP13356.PMID:39140734 | DOI:10.1289/EHP13356

Insights From Omics in Lyme Disease

Wed, 14/08/2024 - 12:00
J Infect Dis. 2024 Aug 14;230(Supplement_1):S18-S26. doi: 10.1093/infdis/jiae250.ABSTRACTLyme disease is a zoonotic infection due to Ixodes tick-transmitted Borrelia burgdorferi sensu lato spirochetes and the most common vector-borne disease in the Northern Hemisphere. Despite nearly 50 years of investigation, the pathogenesis of this infection and its 2 main adverse outcomes-postinfectious Lyme arthritis and posttreatment Lyme disease syndrome-are incompletely understood. Advancement in sequencing and mass spectrometry have led to the rapid expansion of high-throughput omics technologies, including transcriptomics, metabolomics, and proteomics, which are now being applied to human diseases. This review summarizes findings of omics studies conducted on blood and tissue samples of people with acute Lyme disease and its postinfectious outcomes.PMID:39140719 | DOI:10.1093/infdis/jiae250

Blueberry extract for the treatment of ischaemic stroke through regulating the gut microbiota and kynurenine metabolism

Wed, 14/08/2024 - 12:00
Phytother Res. 2024 Aug 14. doi: 10.1002/ptr.8300. Online ahead of print.ABSTRACTAlthough the gut microbiota and kynurenine (KYN) metabolism have significant protective effects against ischaemic stroke (IS), the exact mechanism has yet to be fully elucidated. Combined serum metabolomics and 16S rRNA gene sequencing were used to reveal the differences between the gut microbiota and metabolites in rats treated with or without blueberry extract. Faecal microbiota transplantation (FMT) was employed to validate the protective role of the gut microbiota in IS. Furthermore, the interaction between Prevotella and IS was also confirmed in patients. Rats with IS experienced neurological impairments accompanied by an impaired intestinal barrier and disturbed intestinal flora, which further contributed to heightened inflammatory responses. Furthermore, Prevotella played a critical role in IS pathophysiology, and a positive correlation between Prevotella and KYN was detected. The role of KYN metabolism in IS was further demonstrated by the finding that IDO was significantly upregulated and that the use of the IDO inhibitor, attenuated KYN metabolic pathway activity and ameliorated neurological damage in rats with IS. Prevotella intervention also significantly improved stroke symptoms and decreasing KYN levels in rats with IS. FMT showed that the beneficial effects of blueberry extract on IS involve gut bacteria, especially Prevotella, which were confirmed by microbiological analyses conducted on IS patients. Moreover, blueberry extract led to significant changes in kynurenic acid levels and tryptophan and IDO levels through interactions with Prevotella. Our study demonstrates for the first time that blueberry extract could modulate "intestinal microecology-KYN metabolism" to improve IS.PMID:39140343 | DOI:10.1002/ptr.8300

Glycoside hydrolase PpGH28BG1 modulates benzaldehyde metabolism and enhances fruit aroma and immune responses in peach

Wed, 14/08/2024 - 12:00
Plant Physiol. 2024 Aug 14:kiae423. doi: 10.1093/plphys/kiae423. Online ahead of print.ABSTRACTBenzaldehyde (BAld) is one of the most widely distributed volatiles that contributes to flavor and defense in plants. Plants regulate BAld levels through various pathways, including biosynthesis from trans-cinnamic acid (free BAld), release from hydrolysis of glycoside precursors (BAld-H) via multiple enzymatic action steps, and conversion into downstream chemicals. Here, we show that BAld-H content in peach (Prunus persica) fruit is up to 100-fold higher than that of free BAld. By integrating transcriptome, metabolomic and biochemical approaches, we identified glycoside hydrolase PpGH28BG1 as being involved in the production of BAld-H through the hydrolysis of glycoside precursors. Overexpressing and silencing of PpGH28BG1 significantly altered BAld-H content in peach fruit. Transgenic tomatoes heterologously expressing PpGH28BG1 exhibited a decrease in BAld-H content and an increase in SA accumulation, while maintaining fruit weight, pigmentation, and ethylene production. These transgenic tomato fruits displayed enhanced immunity against Botrytis cinerea compared to wild type (WT). Induced expression of PpGH28BG1 and increased SA content were also observed in peach fruit when exposed to Monilinia fructicola infection. Additionally, elevated expression of PpGH28BG1 promoted fruit softening in transgenic tomatoes, resulting in a significantly increased emission of BAld compared to WT. Most untrained taste panelists preferred the transgenic tomatoes over WT fruit. Our study suggests that it is feasible to enhance aroma and immunity in fruit through metabolic engineering of PpGH28BG1 without causing visible changes in the fruit ripening process.PMID:39140299 | DOI:10.1093/plphys/kiae423

Food profiling goes green: Sustainable analysis strategies for food authentication

Wed, 14/08/2024 - 12:00
Electrophoresis. 2024 Aug 14. doi: 10.1002/elps.202400098. Online ahead of print.ABSTRACTOmics technologies, such as genomics, proteomics, metabolomics, isotopolomics, and metallomics, are important tools for analytical verification of food authenticity. However, in many cases, their application requires the use of high-resolution technological platforms as well as careful consideration of sample collection, storage, preparation and, in particular, extraction. In this overview, the individual steps and disciplines are explained against the background of the term "Green Chemistry," and the various instrumental procedures for the respective omics disciplines are discussed. Furthermore, new approaches and developments are presented on how such analyses can be made sustainable in the future.PMID:39140227 | DOI:10.1002/elps.202400098

Targeting Cyclophilin A in the Cardiac Microenvironment Preserves Heart Function and Structure in Failing Hearts

Wed, 14/08/2024 - 12:00
Circ Res. 2024 Aug 14. doi: 10.1161/CIRCRESAHA.124.324812. Online ahead of print.ABSTRACTBACKGROUND: Cardiac hypertrophy is characterized by remodeling of the myocardium, which involves alterations in the ECM (extracellular matrix) and cardiomyocyte structure. These alterations critically contribute to impaired contractility and relaxation, ultimately leading to heart failure. Emerging evidence implicates that extracellular signaling molecules are critically involved in the pathogenesis of cardiac hypertrophy and remodeling. The immunophilin CyPA (cyclophilin A) has been identified as a potential culprit. In this study, we aimed to unravel the interplay between eCyPA (extracellular CyPA) and myocardial dysfunction and evaluate the therapeutic potential of inhibiting its extracellular accumulation to improve heart function.METHODS: Employing a multidisciplinary approach encompassing in silico, in vitro, in vivo, and ex vivo experiments we studied a mouse model of cardiac hypertrophy and human heart specimen to decipher the interaction of CyPA and the cardiac microenvironment in highly relevant pre-/clinical settings. Myocardial expression of CyPA (immunohistology) and the inflammatory transcriptome (NanoString) was analyzed in human cardiac tissue derived from patients with nonischemic, noninflammatory congestive heart failure (n=187). These analyses were paralleled by a mouse model of Ang (angiotensin) II-induced heart failure, which was assessed by functional (echocardiography), structural (immunohistology, atomic force microscopy), and biomolecular (Raman spectroscopy) analyses. The effect of inhibiting eCyPA in the cardiac microenvironment was evaluated using a newly developed neutralizing anti-eCyPA monoclonal antibody.RESULTS: We observed a significant accumulation of eCyPA in both human and murine-failing hearts. Importantly, higher eCyPA expression was associated with poor clinical outcomes in patients (P=0.043) and contractile dysfunction in mice (Pearson correlation coefficient, -0.73). Further, myocardial expression of eCyPA was critically associated with an increase in myocardial hypertrophy, inflammation, fibrosis, stiffness, and cardiac dysfunction in vivo. Antibody-based inhibition of eCyPA prevented (Ang II)-induced myocardial remodeling and dysfunction in mice.CONCLUSIONS: Our study provides strong evidence of the pathogenic role of eCyPA in remodeling, myocardial stiffening, and dysfunction in heart failure. The findings suggest that antibody-based inhibition of eCyPA may offer a novel therapeutic strategy for nonischemic heart failure. Further research is needed to evaluate the translational potential of these interventions in human patients with cardiac hypertrophy.PMID:39140165 | DOI:10.1161/CIRCRESAHA.124.324812

Metabolomic insights into Monascus-fermented rice products: Implications for monacolin K content and nutritional optimization

Wed, 14/08/2024 - 12:00
Food Sci Nutr. 2024 May 13;12(8):5587-5604. doi: 10.1002/fsn3.4222. eCollection 2024 Aug.ABSTRACTThis study aims to elucidate the detailed metabolic implications of varying monacolin K levels and sterilization methods on Monascus-fermented rice products (MFRPs), acclaimed for their health benefits and monacolin K content. Advanced metabolite profiling of various MFRP variants was conducted using ultrahigh-performance liquid chromatography coupled with tandem time-of-flight mass spectrometry (UHPLC-Q-TOF MS). Statistical analysis encompassed t-tests, ANOVA, and multivariate techniques including PCA, PLS-DA, and OPLS-DA. Notable variations in metabolites were observed across MFRPs with differing monacolin K levels, particularly in variants such as MR1-S, MR1.5-S, MR2-S, and MR3-S. Among the 524 identified metabolites, significant shifts were noted in organic acids, derivatives, lipids, nucleosides, and organic oxygen compounds. The study also uncovered distinct metabolic changes resulting from different sterilization methods and the use of highland barley as a fermentation substitute for rice. Pathway analysis shed light on affected metabolic pathways, including those involved in longevity regulation, cGMP-PKG signaling, and the biosynthesis of unsaturated fatty acids. The research provides critical insights into the complex metabolic networks of MFRPs, underscoring the impact of fermentation substrates and conditions on monacolin K levels and their health implications. This study not only guides the nutritional optimization of MFRPs but also emphasizes the strategic importance of substrate choice and sterilization techniques in enhancing the nutritional and medicinal value of these functional foods.PMID:39139959 | PMC:PMC11317686 | DOI:10.1002/fsn3.4222

Changes in urinary metabolomic profile show the effectiveness of a nutritional intervention in children 6-12 years old: The ALINFA study

Wed, 14/08/2024 - 12:00
Food Sci Nutr. 2024 May 15;12(8):5663-5676. doi: 10.1002/fsn3.4226. eCollection 2024 Aug.ABSTRACTDiet plays an essential role in health and disease. Therefore, its determination is an important component of many investigations. The aim of the study was to evaluate the effect of a nutritional intervention on the urinary metabolome in children aged 6-12 years. Also, it was intended to identify biomarkers of diet quality and dietary intake. A 2-month, randomized, controlled, parallel trial was conducted in Spanish children. The analyses focused on the ALINFA group, which followed a full-fixed meal plan including healthy products, ready-to-eat meals, and healthy recipes. Diet quality was assessed by the KIDMED index and dietary intake by a food frequency questionnaire. Untargeted metabolomic analysis on urine samples was carried out, and multivariate analyses were performed for pattern recognition and characteristic metabolite identification. PLS-DA and Volcano plot analyses were performed to identify the discriminating metabolites of this group. 12 putative metabolites were found to be the most relevant to this intervention. Most of them were products derived from protein and amino acid metabolism (N-Ribosylhistidine, indolacrylic acid, and peptides) and lipid metabolism (3-oxo-2-pentylcyclopentane-1-hexanoic acid methyl, Suberoyl-L-carnitine, and 7-Dehydrodichapetalin E). All these metabolites decreased after the intervention, which was mainly associated with a decrease in the consumption of fatty meat and total fat, especially saturated fat. In turn, N-Ribosylhistidine and Suberoyl-L-carnitine were negatively associated with diet quality, as well as able to predict the change in KIDMED index. In conclusion, the changes observed in urinary metabolome demonstrate the effectiveness of the ALINFA nutritional intervention.PMID:39139943 | PMC:PMC11317665 | DOI:10.1002/fsn3.4226

Endoplasmic Reticulum Membrane Protein Complex Regulates Cancer Stem Cells and is Associated with Sorafenib Resistance in Hepatocellular Carcinoma

Wed, 14/08/2024 - 12:00
J Hepatocell Carcinoma. 2024 Aug 9;11:1519-1539. doi: 10.2147/JHC.S474343. eCollection 2024.ABSTRACTBACKGROUND: Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related mortality, underscoring the need for novel therapeutic targets. This study aimed to elucidate the role of endoplasmic reticulum membrane protein complex subunit 1 (EMC1) in HCC progression and its therapeutic potential.METHODS: Publicly available sequencing data and biopsy specimens were analyzed to assess EMC's clinical value and functions in HCC. In vitro experiments validated EMC functions, and multiplex immunofluorescence analysis examined EMC-associated sorafenib resistance mechanisms. EMC1 expression was knocked down in HCC cell lines, followed by cell viability, wound healing, and transwell migration assays. Tumor growth and response to sorafenib treatment were evaluated in mouse models. Metabolomic analysis assessed changes in the TCA cycle.RESULTS: EMC genes were aberrantly expressed in HCC, and high EMC1 expression correlated with poorer survival rates. EMC1 disruption enhanced HCC cells' sensitivity to sorafenib, reducing cell viability, increasing apoptosis, and decreasing tumor size and weight. EMC1 maintained cancer cell stemness and promoted M2 macrophage infiltration. Metabolomic analysis revealed significant changes in the TCA cycle, indicating EMC1's role in HCC metabolic reprogramming. Importantly, EMC1 is highly associated with sorafenib resistance, potentially linked to CTNNB1 mutation or activation.CONCLUSION: EMC1 plays a critical role in regulating the sorafenib resistance in HCC. Targeting EMC1 may improve HCC treatment efficacy.PMID:39139735 | PMC:PMC11321348 | DOI:10.2147/JHC.S474343

Spiny dogfish, <em>Squalus suckleyi</em>, shows a good tolerance for hypoxia but need long recovery times

Wed, 14/08/2024 - 12:00
Conserv Physiol. 2024 Aug 13;12(1):coae054. doi: 10.1093/conphys/coae054. eCollection 2024.ABSTRACTPacific spiny dogfish, Squalus suckleyi, move to shallow coastal waters during critical reproductive life stages and are thus at risk of encountering hypoxic events which occur more frequently in these areas. For effective conservation management, we need to fully understand the consequences of hypoxia on marine key species such as elasmobranchs. Because of their benthic life style, we hypothesized that S. suckleyi are hypoxia tolerant and able to efficiently regulate oxygen consumption, and that anaerobic metabolism is supported by a broad range of metabolites including ketones, fatty acids and amino acids. Therefore, we studied oxygen consumption rates, ventilation frequency and amplitude, blood gasses, acid-base regulation, and changes in plasma and tissue metabolites during progressive hypoxia. Our results show that critical oxygen levels (P crit) where oxyregulation is lost were indeed low (18.1% air saturation or 28.5 Torr at 13°C). However, many dogfish behaved as oxyconformers rather than oxyregulators. Arterial blood PO2 levels mostly decreased linearly with decreasing environmental PO2. Blood gases and acid-base status were dependent on open versus closed respirometry but in both set-ups ventilation frequency increased. Hypoxia below Pcrit resulted in an up-regulation of anaerobic glycolysis, as evidenced by increased lactate levels in all tissues except brain. Elasmobranchs typically rely on ketone bodies as oxidative substrates, and decreased concentrations of acetoacetate and β-hydroxybutyrate were observed in white muscle of hypoxic and/or recovering fish. Furthermore, reductions in isoleucine, glutamate, glutamine and other amino acids were observed. After 6 hours of normoxic recovery, changes persisted and only lactate returned to normal in most tissues. This emphasizes the importance of using suitable bioindicators adjusted to preferred metabolic pathways of the target species in conservation physiology. We conclude that Pacific spiny dogfish can tolerate severe transient hypoxic events, but recovery is slow and negative impacts can be expected when hypoxia persists.PMID:39139733 | PMC:PMC11320369 | DOI:10.1093/conphys/coae054

An overview of multi-omics technologies in rheumatoid arthritis: applications in biomarker and pathway discovery

Wed, 14/08/2024 - 12:00
Front Immunol. 2024 Jul 30;15:1381272. doi: 10.3389/fimmu.2024.1381272. eCollection 2024.ABSTRACTRheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease with a complex pathological mechanism involving autoimmune response, local inflammation and bone destruction. Metabolic pathways play an important role in immune-related diseases and their immune responses. The pathogenesis of rheumatoid arthritis may be related to its metabolic dysregulation. Moreover, histological techniques, including genomics, transcriptomics, proteomics and metabolomics, provide powerful tools for comprehensive analysis of molecular changes in biological systems. The present study explores the molecular and metabolic mechanisms of RA, emphasizing the central role of metabolic dysregulation in the RA disease process and highlighting the complexity of metabolic pathways, particularly metabolic remodeling in synovial tissues and its association with cytokine-mediated inflammation. This paper reveals the potential of histological techniques in identifying metabolically relevant therapeutic targets in RA; specifically, we summarize the genetic basis of RA and the dysregulated metabolic pathways, and explore their functional significance in the context of immune cell activation and differentiation. This study demonstrates the critical role of histological techniques in decoding the complex metabolic network of RA and discusses the integration of histological data with other types of biological data.PMID:39139555 | PMC:PMC11319186 | DOI:10.3389/fimmu.2024.1381272

Liver Extracellular Vesicles and Particles Enriched β-Sitosterol Effectively Promote Liver Regeneration in Mice

Wed, 14/08/2024 - 12:00
Int J Nanomedicine. 2024 Aug 8;19:8117-8137. doi: 10.2147/IJN.S465346. eCollection 2024.ABSTRACTBACKGROUND: The liver's regenerative capacity allows it to repair itself after injury. Extracellular vesicles and particles (EVPs) in the liver's interstitial space are crucial for signal transduction, metabolism, and immune regulation. Understanding the role and mechanism of liver-derived EVPs in regeneration is significant, particularly after partial hepatectomy, where the mechanisms remain unclear.METHODS: A 70% hepatectomy model was established in mice, and EVPs were isolated and characterized using electron microscopy, nanocharacterization, and Western blot analysis. Combined metabolomic and transcriptomic analyses revealed β-sitosterol enrichment in EVPs and activation of the Hedgehog signaling pathway during regeneration. The role of β-sitosterol in EVPs on the Hedgehog pathway and its targets were identified using qRT-PCR, Western blot analysis. The regulation of carnitine synthesis by this pathway was determined using a dual luciferase assay. The effect of a β-sitosterol diet on liver regeneration was verified in mice.RESULTS: After 70% hepatectomy, the liver successfully regenerated without liver failure or death. At 24 hours post-surgery, tissue staining showed transient regeneration-associated steatosis (TRAS), with increased Ki67 positivity at 48 hours. EVPs displayed a spherical lipid bilayer structure with particle sizes of 70-130 nm. CD9, CD63, and CD81 in liver-derived EVPs were confirmed. Transcriptomic and metabolomic analyses showed EVPs supplementation significantly promoted carnitine synthesis and fatty acid oxidation. Tissue staining confirmed accelerated TRAS resolution and enhanced liver regeneration with EVP supplementation. Mass spectrometry identified β-sitosterol in EVPs, which binds to Smo protein, activating the Hedgehog pathway. This led to the nuclear transport of Gli3, stimulating Setd5 transcription and inducing carnitine synthesis, thereby accelerating fatty acid oxidation. Mice with increased β-sitosterol intake showed faster TRAS resolution and liver regeneration compared to controls.CONCLUSION: Liver-derived EVPs promote regeneration after partial hepatectomy. β-sitosterol from EVPs accelerates fatty acid oxidation and promotes liver regeneration by activating Hedgehog signaling pathway.PMID:39139504 | PMC:PMC11319097 | DOI:10.2147/IJN.S465346

Dynamic profiling of metabolite changes and health-promoting functions in 'yuling paste' during nine steaming and nine sun-drying processes

Wed, 14/08/2024 - 12:00
Food Chem X. 2024 Jul 18;23:101668. doi: 10.1016/j.fochx.2024.101668. eCollection 2024 Oct 30.ABSTRACTYuling paste, a traditional Chinese health food derived from longan pulp and American ginseng, undergoes a unique processing method involving nine cycles of steaming and sun-drying. Ultra-high-performance liquid chromatography tandem mass spectrometry combined with widely targeted metabolomics has been used to examine the dynamic change in metabolite profiles through the processing. A total of 758 metabolites were identified. Processing significantly affects metabolite changes, and network pharmacology is subsequently used to explore potential pharmacological ingredients. After processing, the contents of active ingredients such as ginsenoside rh2, oleanolic acid, choline, d-glucose, and D-galacturonic acid were found to increase significantly. These increases can be correlated to the enhancement of five distinct pathways, and the contents of naringenin-7-O-glucoside, adenosine, pantothenic acid, and D-sucrose decreased after the processing, correlating with decreases in two different pathways. This study provides a comprehensive reference and scientific basis for understanding the health benefits associated with this traditional health food.PMID:39139487 | PMC:PMC11321412 | DOI:10.1016/j.fochx.2024.101668

Identifying distinct markers in two Sorghum varieties for baijiu fermentation using untargeted metabolomics and molecular network approaches

Wed, 14/08/2024 - 12:00
Food Chem X. 2024 Jul 14;23:101646. doi: 10.1016/j.fochx.2024.101646. eCollection 2024 Oct 30.ABSTRACTThe quality of strong-flavor Baijiu, a prominent Chinese liquor, is intricately tied to the choice of sorghum variety used in fermentation. However, a significant gap remains in our understanding of how glutinous and non-glutinous sorghum varieties comprehensively impact Baijiu flavor formation through fermentation metabolites. This study employed untargeted metabolomics combined with feature-based molecular networking (FBMN) to explore the unique metabolic characteristics of these two sorghum varieties during fermentation. FBMN analysis revealed 267 metabolites within both types of fermented sorghum (Zaopei) in the cellar. Further multidimensional statistical analyses highlighted sphingolipids, 2,5-diketopiperazines, and methionine derivatives as critical markers for quality control. These findings represent a significant advancement in our understanding and provide valuable insights for regulating the quality of Baijiu flavors.PMID:39139485 | PMC:PMC11321435 | DOI:10.1016/j.fochx.2024.101646

Metabolomics biomarkers of hepatocellular carcinoma in a prospective cohort of patients with cirrhosis

Wed, 14/08/2024 - 12:00
JHEP Rep. 2024 May 15;6(8):101119. doi: 10.1016/j.jhepr.2024.101119. eCollection 2024 Aug.ABSTRACTBACKGROUND & AIMS: The effectiveness of surveillance for hepatocellular carcinoma (HCC) in patients with cirrhosis is limited, due to inadequate risk stratification and suboptimal performance of current screening modalities.METHODS: We developed a multicenter prospective cohort of patients with cirrhosis undergoing surveillance with MRI and applied global untargeted metabolomics to 612 longitudinal serum samples from 203 patients. Among them, 37 developed HCC during follow-up.RESULTS: We identified 150 metabolites with significant abundance changes in samples collected prior to HCC (Cases) compared to samples from patients who did not develop HCC (Controls). Tauro-conjugated bile acids and gamma-glutamyl amino acids were increased, while acyl-cholines and deoxycholate derivatives were decreased. Seven amino acids including serine and alanine had strong associations with HCC risk, while strong protective effects were observed for N-acetylglycine and glycerophosphorylcholine. Machine learning using the 150 metabolites, age, gender, and PNPLA3 and TMS6SF2 single nucleotide polymorphisms, identified 15 variables giving optimal performance. Among them, N-acetylglycine had the highest AUC in discriminating Cases and Controls. When restricting Cases to samples collected within 1 year prior to HCC (Cases-12M), additional metabolites including microbiota-derived metabolites were identified. The combination of the top six variables identified by machine learning (alpha-fetoprotein, 6-bromotryptophan, N-acetylglycine, salicyluric glucuronide, testosterone sulfate and age) had good performance in discriminating Cases-12M from Controls (AUC 0.88, 95% CI 0.83-0.93). Finally, 23 metabolites distinguished Cases with LI-RADS-3 lesions from Controls with LI-RADS-3 lesions, with reduced abundance of acyl-cholines and glycerophosphorylcholine-related lysophospholipids in Cases.CONCLUSIONS: This study identified N-acetylglycine, amino acids, bile acids and choline-derived metabolites as biomarkers of HCC risk, and microbiota-derived metabolites as contributors to HCC development.IMPACT AND IMPLICATIONS: The effectiveness of surveillance for hepatocellular carcinoma (HCC) in patients with cirrhosis is limited. There is an urgent need for improvement in risk stratification and new screening modalities, particularly blood biomarkers. Longitudinal collection of paired blood samples and MRI images from patients with cirrhosis is particularly valuable in assessing how early blood and imaging markers become positive during the period when lesions are observed to obtain a diagnosis of HCC. We generated a multicenter prospective cohort of patients with cirrhosis under surveillance with contrast MRI, applied untargeted metabolomics on 612 serum samples from 203 patients and identified metabolites associated with risk of HCC development. Such biomarkers may significantly improve early-stage HCC detection for patients with cirrhosis undergoing HCC surveillance, a critical step to increasing curative treatment opportunities and reducing mortality.PMID:39139459 | PMC:PMC11321296 | DOI:10.1016/j.jhepr.2024.101119

The impact of lactic acid bacteria inoculation on the fermentation and metabolomic dynamics of indigenous Beijing douzhi microbial communities

Wed, 14/08/2024 - 12:00
Front Microbiol. 2024 Jul 30;15:1435834. doi: 10.3389/fmicb.2024.1435834. eCollection 2024.ABSTRACTBACKGROUND: Douzhi, a traditional Chinese fermented beverage, features microbial communities primarily composed of lactic acid bacteria (LAB). As fermented foods continue to gain recognition and popularity, douzhi is attracting growing interest. However, investigation of the critical aspects of douzhi's fermentation processes, including fermentation characteristics and microbial community dynamics, remains vital for enhancing food safety and quality for douzhi, as well as for similar fermented food products.METHOD: In this study, we collected douzhi microbial communities from four chain stores, using them as fermentation starter cultures. The microbial dynamics of the fermentation were analyzed, focusing on the inoculation of LAB strains and the transition from a mung bean-based matrix to skimmed milk. The metabolomic profiles of the fermented mung bean matrices were also studied.RESULTS: Douzhi samples obtained from representative chain stores were found to be overwhelmingly dominated by LAB. When inoculated along with the douzhi community, both LAB strains exhibited notable and substantial reductions in the pH value of the designated mung bean matrices compared to those inoculated indigenous microbiota. Specifically, Lactiplantibacillus plantarum CGMCC 1.1856 retained its population, whereas Pediococcus pentosaceus CGMCC 1.2695 exhibited a decrease in relative abundance. Using skimmed milk as a fermentation substrate instead of the mung bean matrix resulted in significant shifts in microbial communities, particularly leading to an increase in Escherichia sp. The metagenomic analyses and functional predictions illustrated that various metabolic functions were enhanced during the fermentation process due to LAB inoculation. The liquid chromatography-mass spectrometry based metabolomic analysis revealed that the inoculation of Lactiplantibacillus plantarum and Pediococcus pentosaceus in mung bean matrix did not introduce new metabolites but significantly altered the concentration and profile of existing metabolites, especially increased low molecular carbohydrates, which may enhance the nutritional potential of the fermented product.DISCUSSION: This study examines the microbial dynamics of douzhi microbiota fermentation, emphasizing the role of lactic acid bacteria in enhancing fermentation activity and metabolite profiles. These insights contribute to improving manufacturing processes and ensuring the safety and quality of douzhi and similar fermented foods.PMID:39139380 | PMC:PMC11319256 | DOI:10.3389/fmicb.2024.1435834

Tribovoltaic Effect Strengthened Microwave Catalytic Antibacterial Composite Hydrogel

Wed, 14/08/2024 - 12:00
Adv Healthc Mater. 2024 Aug 13:e2402266. doi: 10.1002/adhm.202402266. Online ahead of print.ABSTRACTMicrowave (MW) therapy is an emerging therapy with high efficiency and deep penetration to combat the crisis of bacterial resistance. However, as the energy of MW is too low to induce electron transition, the mechanism of MW catalytic effect remains ambiguous. Herein, a cerium-based metal-organic framework (MOF) is fabricated and used in MW therapy. The MW-catalytic performance of CeTCPP is largely dependent on the ions in the liquid environment, and the electron transition is achieved through a "tribovoltaic effect" between water molecules and CeTCPP. By this way, CeTCPP can generate reactive oxygen species (ROS) in saline under pulsed MW irradiation, showing 99.9995 ± 0.0002% antibacterial ratio against Staphylococcus aureus (S. aureus) upon two cycles of MW irradiation. Bacterial metabolomics further demonstrates that the diffusion of ROS into bacteria led to the bacterial metabolic disorders. The bacteria are finally killed due to "amino acid starvation". In order to improve the applicability of CeTCPP, It is incorporated into alginate-based hydrogel, which maintains good MW catalytic antibacterial efficiency and also good biocompatibility. Therefore, this work provides a comprehensive instruction of using CeTCPP in MW therapy, from mechanism to application. This work also provides new perspectives for the design of antibacterial composite hydrogel.PMID:39138999 | DOI:10.1002/adhm.202402266

Metabolomic characterization of monoclonal antibody-producing Chinese hamster lung (CHL)-YN cells in glucose-controlled serum-free fed-batch operation

Wed, 14/08/2024 - 12:00
Biotechnol Bioeng. 2024 Sep;121(9):2848-2867. doi: 10.1002/bit.28777. Epub 2024 Jun 22.ABSTRACTThe fast-growing Chinese hamster lung (CHL)-YN cell line was recently developed for monoclonal antibody production. In this study, we applied a serum-free fed-batch cultivation process to immunoglobulin (Ig)G1-producing CHL-YN cells, which were then used to design a dynamic glucose supply system to stabilize the extracellular glucose concentration based on glucose consumption. Glucose consumption of the cultures rapidly oscillated following three phases of glutamine metabolism: consumption, production, and re-consumption. Use of the dynamic glucose supply prolonged the viability of the CHL-YN-IgG1 cell cultures and increased IgG1 production. Liquid chromatography with tandem mass spectrometry-based target metabolomics analysis of the extracellular metabolites during the first glutamine shift was conducted to search for depleted compounds. The results suggest that the levels of four amino acids, namely arginine, aspartate, methionine, and serine, were sharply decreased in CHL-YN cells during glutamine production. Supporting evidence from metabolic and gene expression analyses also suggest that CHL-YN cells acquired ornithine- and cystathionine-production abilities that differed from those in Chinese hamster ovary-K1 cells, potentially leading to proline and cysteine biosynthesis.PMID:39138873 | DOI:10.1002/bit.28777

Based on UHPLC-Q-TOF-MS and bioinformatics strategies, the potential allergens and mechanisms of allergic reactions caused by Danshen injection were explored

Wed, 14/08/2024 - 12:00
Biomed Chromatogr. 2024 Aug 13:e5985. doi: 10.1002/bmc.5985. Online ahead of print.ABSTRACTThe aim is to investigate the potential allergens and mechanisms underlying allergic-like reactions induced by Danshen injection (DSI). Utilizing ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS), metabolomics, and bioinformatics, we identified the key allergens, targets, and metabolic pathways involved in DSI-induced allergic-like reactions, validating binding efficiency through molecular docking and molecular dynamics. A total of 45 compounds were identified within DSI, with 24 compounds exhibiting strong binding activity to the MrgprX2 activation site. DSI was found to cause changes in 89 endogenous metabolites, including arachidonic acid, prostaglandins, and leukotrienes, primarily affecting pathways such as phenylalanine metabolism and arachidonic acid metabolism. The key allergens identified were Cryptotanshinone, Miltipolone, Neocryptotanshinone, Salvianolic acid B, and Isosalvianolic acid C, which primarily trigger allergic-like reactions by regulating upstream signaling targets such as ALOX5, PTGS1, PPARD, and LTB4R. Validation confirmed the high binding affinity and stability between key allergens and targets. These findings indicate that the allergic components in DSI primarily induce allergic-like reactions by modulating the aforementioned signaling targets, activating the AA metabolic pathway, promoting mast cell degranulation, and releasing downstream endogenous inflammatory mediators, subsequently eliciting allergic-like reactions.PMID:39138643 | DOI:10.1002/bmc.5985

Pages