PubMed
Screening for Early Biomarkers of Cisplatin-Induced Acute Kidney Injury in Rats Through Serum Metabolomics Technology
J Coll Physicians Surg Pak. 2024 Aug;34(8):936-941. doi: 10.29271/jcpsp.2024.08.936.ABSTRACTOBJECTIVE: To systematically identify early biomarkers of cisplatin-induced acute kidney injury (AKI) in rats.STUDY DESIGN: An experimental study. Place and Duration of the Study: Experimental Animal Laboratory of Lanzhou University, Gansu, China, and the Department of Pharmacy, The First Hospital of Lanzhou University, Gansu, China, from July 2022 to October 2023.METHODOLOGY: In this study, an AKI model was established by continuously injecting cisplatin into rats at a dose of 1 mg/kg once a day for control group and for 2, 3, 4, and 5 days to other four groups, respectively. Subsequently, rat plasma samples were collected for metabolomics analysis to identify early differentiated metabolites in the plasma prior to creatinine elevation. Furthermore, accurate HPLC-MS/MS methods were developed to validate the biomarker variation in other AKI models.RESULTS: The occurrence of time-dependent renal cortical injury and significant alterations of creatinine (Cr) concentration were observed on day-4 and 5, which demonstrated successful model construction. Sixty-six compounds changed on Day-2 while 61 compounds changed on Day-3. Eleven compounds with variable importance in projection (VIP) >1.5 and false discover rate (FDR) <0.2 were selected and identified by HPLC-MS/MS. Among these, N-acetylglutamine and citramalic acid changed earlier than serum creatinine (sCr) in the AKI model.CONCLUSION: N-acetylglutamine and citramalic acid may serve as early biomarker of cisplatin-induced AKI.KEY WORDS: Acute kidney injury, Biomarker, Cisplatin, Metabolomics, LC-MS/MS, Rats.PMID:39113513 | DOI:10.29271/jcpsp.2024.08.936
Delta-6 desaturase FADS2 is a tumor-promoting factor in cholangiocarcinoma
Cancer Sci. 2024 Aug 7. doi: 10.1111/cas.16306. Online ahead of print.ABSTRACTCholangiocarcinoma is a fatal disease with limited therapeutic options. We screened genes required for cholangiocarcinoma tumorigenicity and identified FADS2, a delta-6 desaturase. FADS2 depletion reduced in vivo tumorigenicity and cell proliferation. In clinical samples, FADS2 was expressed in cancer cells but not in stromal cells. FADS2 inhibition also reduced the migration and sphere-forming ability of cells and increased apoptotic cell death and ferroptosis markers. Lipidome assay revealed that triglyceride and cholesterol ester levels were decreased in FADS2-knockdown cells. The oxygen consumption ratio was also decreased in FADS2-depleted cells. These data indicate that FADS2 depletion causes a reduction in lipid levels, resulting in decrease of energy production and attenuation of cancer cell malignancy.PMID:39113435 | DOI:10.1111/cas.16306
Integrating serum metabolomics analysis and network pharmacology to reveal the potential mechanism of Shengmai Jianghuang San in the treatment of nasopharyngeal carcinoma
Biomed Chromatogr. 2024 Aug 7:e5981. doi: 10.1002/bmc.5981. Online ahead of print.ABSTRACTShengmai Jianghuang San (SMJHS) is a traditional Chinese herbal compound reported to inhibit Nasopharyngeal Carcinoma (NPC) progression and enhance radiosensitivity. However, the specific active ingredients and regulatory mechanisms of SMJHS against NPC, particularly under hypoxic conditions, remain unclear. In this study, Sprague-Dawley (SD) rats were gavaged with Shengmai Jianghuang San (SMJHS), and their blood was collected from the abdominal aorta. UHPLC-Q-Exactive orbitrap MS/MS was used to identify the metabolite profiles of SMJHS drug-containing serum. A molecular network of the active compositions in SMJHS targeting NPC was constructed through network pharmacology and molecular docking. The HIF-1α/VEGF pathway was in key positions. The effects of SMJHS on the proliferation, migration, and radiosensitivity of hypoxic NPC cells were assessed by in vitro experiments. NPC cell lines stably overexpressing HIF-1α were established using a lentivirus to investigate the regulation of HIF-1α/VEGF signaling in hypoxic NPC cells by SMJHS. Through a combination of network pharmacological analysis, cellular biofunctional validation, and molecular biochemical experiments, our study found that SMJHS had an anti-proliferative effect on NPC cells cultured under hypoxic conditions, inhibiting their migration and increasing their radiosensitivity. Additionally, SMJHS suppressed the expression of HIF-1α and VEGFA, exhibiting potential as an effective option for improving NPC treatment.PMID:39113411 | DOI:10.1002/bmc.5981
Serum metabolome analysis reveals medicinal fungi Phellinus igniarius ameliorated type 2 diabetes mellitus indications in rats via modulation of amino acid and carbohydrate metabolism
Biomed Chromatogr. 2024 Aug 7:e5979. doi: 10.1002/bmc.5979. Online ahead of print.ABSTRACTMedicinal fungi Phellinus igniarius exhibited hypoglycemic effects; however, the protective mechanisms of P. igniarius on type 2 diabetes are not yet fully understood. Herein, the anti-diabetic effect of P. igniarius was investigated via gas chromatography-mass spectrometry (GC/MS)-based metabolome analysis. The rats were divided into normal group; model group; positive group; and groups treated with low, medium, and high dose of P. igniarius. After the treatments, a significant decrease in blood glucose concentration was observed. The levels of total cholesterol and triglyceride were dramatically decreased, whereas the level of insulin was increased. Multivariate statistical analysis revealed 31 differential endogenous metabolites between model group and normal group. A total of 14, 28, and 31 biomarkers were identified for low, medium, and high dose of P. igniarius treated groups, respectively. Twenty-one of the biomarkers were validated by using standard substances. The linear correlation coefficients ranged from 0.9990 to 1.0000. The methodology exhibited good repeatability, recoveries, and stability. The major intervened metabolic pathways covered glyoxylate and dicarboxylic acid metabolism; alanine, aspartate, and glutamate metabolism; and glycine, serine, and threonine metabolism. Our metabolome analysis has provided insights into the underlying mechanism of P. igniarius on type 2 diabetes.PMID:39113379 | DOI:10.1002/bmc.5979
Multi-omics analysis reveals a feedback loop amplifying immune responses in acute graft-versus-host disease due to imbalanced gut microbiota and bile acid metabolism
J Transl Med. 2024 Aug 7;22(1):746. doi: 10.1186/s12967-024-05577-x.ABSTRACTAcute graft-versus-host disease (aGVHD) is primarily driven by allogeneic donor T cells associated with an altered composition of the host gut microbiome and its metabolites. The severity of aGVHD after allogeneic hematopoietic stem cell transplantation (allo-HSCT) is not solely determined by the host and donor characteristics; however, the underlying mechanisms remain unclear. Using single-cell RNA sequencing, we decoded the immune cell atlas of 12 patients who underwent allo-HSCT: six with aGVHD and six with non-aGVHD. We performed a fecal microbiota (16SrRNA sequencing) analysis to investigate the fecal bacterial composition of 82 patients: 30 with aGVHD and 52 with non-aGVHD. Fecal samples from these patients were analyzed for bile acid metabolism. Through multi-omic analysis, we identified a feedback loop involving "immune cell-gut microbes-bile acid metabolites" contributing to heightened immune responses in patients with aGVHD. The dysbiosis of the gut microbiota and disruption of bile acid metabolism contributed to an exaggerated interleukin-1 mediated immune response. Our findings suggest that resistin and defensins are crucial in mitigating against aGVHD. Therefore, a comprehensive multi-omic atlas incorporating immune cells, gut microbes, and bile acid metabolites was developed in this study and used to propose novel, non-immunosuppressive approaches to prevent aGVHD.PMID:39113144 | DOI:10.1186/s12967-024-05577-x
Effects of pacing strategy on metabolic responses to 2-min intense exercise in Thoroughbred horses
Sci Rep. 2024 Aug 7;14(1):18352. doi: 10.1038/s41598-024-69339-x.ABSTRACTEvidence suggests that positive pacing strategy improves exercise performance and fatigue tolerance in athletic events lasting 1-5 min. This study investigated muscle metabolic responses to positive and negative pacing strategies in Thoroughbred horses. Eight Thoroughbred horses performed 2 min treadmill running using positive (1 min at 110% maximal O2 uptake [V̇O2max], followed by 1 min at 90% V̇O2max) and negative (1 min at 90% V̇O2max, followed by 1 min at 110% V̇O2max) pacing strategies. The arterial-mixed venous O2 difference did not significantly differ between the two strategies. Plasma lactate levels increased toward 2 min, with significantly higher concentrations during positive pacing than during negative pacing. Muscle glycogen level was significantly lower at 1 and 2 min of positive pacing than those of negative pacing. Metabolomic analysis showed that the sum of glycolytic intermediates increased during the first half of positive pacing and the second half of negative pacing. Regardless of pacing strategy, the sum of tricarboxylic acid cycle metabolites increased during the first half but remained unchanged thereafter. Our data suggest that positive pacing strategy is likely to activate glycolytic metabolism to a greater extent compared to negative pacing, even though the total workload is identical.PMID:39112781 | DOI:10.1038/s41598-024-69339-x
Assessing the influence of sleep and sampling time on metabolites in oral fluid: implications for metabolomics studies
Metabolomics. 2024 Aug 7;20(5):97. doi: 10.1007/s11306-024-02158-3.ABSTRACTINTRODUCTION: The human salivary metabolome is a rich source of information for metabolomics studies. Among other influences, individual differences in sleep-wake history and time of day may affect the metabolome.OBJECTIVES: We aimed to characterize the influence of a single night of sleep deprivation compared to sufficient sleep on the metabolites present in oral fluid and to assess the implications of sampling time points for the design of metabolomics studies.METHODS: Oral fluid specimens of 13 healthy young males were obtained in Salivette® devices at regular intervals in both a control condition (repeated 8-hour sleep) and a sleep deprivation condition (total sleep deprivation of 8 h, recovery sleep of 8 h) and their metabolic contents compared in a semi-targeted metabolomics approach.RESULTS: Analysis of variance results showed factor 'time' (i.e., sampling time point) representing the major influencer (median 9.24%, range 3.02-42.91%), surpassing the intervention of sleep deprivation (median 1.81%, range 0.19-12.46%). In addition, we found about 10% of all metabolic features to have significantly changed in at least one time point after a night of sleep deprivation when compared to 8 h of sleep.CONCLUSION: The majority of significant alterations in metabolites' abundances were found when sampled in the morning hours, which can lead to subsequent misinterpretations of experimental effects in metabolomics studies. Beyond applying a within-subject design with identical sample collection times, we highly recommend monitoring participants' sleep-wake schedules prior to and during experiments, even if the study focus is not sleep-related (e.g., via actigraphy).PMID:39112673 | DOI:10.1007/s11306-024-02158-3
Association between the third trimester maternal serum metabolome and child growth and development through the first year of life
Sci Rep. 2024 Aug 7;14(1):18360. doi: 10.1038/s41598-024-69247-0.ABSTRACTEvidence suggests that maternal metabolome may be associated with child health outcomes. We analyzed the association between the maternal metabolome between 28-35 gestational weeks and child growth and development during the first year. A prospective cohort of 98 mother-child dyads was followed at birth, 1, 6, and 12 months. Maternal serum samples were collected for targeted LC-MS/MS analysis, which measured 132 metabolites. The child's growth and development were assessed at each time-point. Z-scores were calculated based on WHO growth standards, and the domains of development were assessed using the Ages and Stages Questionnaires (ASQ-3). Multiple linear mixed-effects models were performed and confounders were identified using a Diagram Acyclic Graph. The Benjamini-Hochberg correction was used for multiple comparison adjustments. We found a positive association between lysophosphatidylcholines (14:0; 16:0; 16:1; 17:0; 18:0; 18:1; 18:2; 20:4) with the z-score of weight-for-age, and lysophosphatidylcholines (14:0; 16:0; 16:1; 18:0) and taurine with the z-score of weight-for-length, and lysophosphatidylcholines (14:0; 16:0; 16:1; 17:0; 18:0; 18:1; 18:2; 20:4) and glycine with the z-score of BMI-for-age. The leucine, methionine, tryptophan, and valine were negatively associated with the fine motor skills domain. We observed an association between maternal metabolome and the growth and child's development throughout the first year.PMID:39112666 | DOI:10.1038/s41598-024-69247-0
The past 25 years in paediatric rheumatology: insights from monogenic diseases
Nat Rev Rheumatol. 2024 Aug 7. doi: 10.1038/s41584-024-01145-1. Online ahead of print.ABSTRACTThe past 25 years have seen major novel developments in the field of paediatric rheumatology. The concept of autoinflammation was introduced to this field, and medicine more broadly, with studies of familial Mediterranean fever, the most common autoinflammatory disease globally. New data on the positive evolutionary selection of familial Mediterranean fever-associated genetic variants might be pertinent to mild gain-of-function variants reported in other disease-associated genes. Genetic studies have unveiled the complexity of human heritability to inflammation and flourishing data from rare monogenic disorders have contributed to a better understanding of general disease mechanisms in paediatric rheumatic conditions. Beyond genomics, the application of other 'omics' technologies, including transcriptomics, proteomics and metabolomics, has generated an enormous dataset that can be applied to the development of new therapies and in the practice of precision medicine. Novel biomarkers for monitoring disease activity and progression have also emerged. A surge in the development of targeted biologic therapies has led to durable remission and improved prognosis for many diseases that in the past caused major complications. Last but not least, the COVID-19 pandemic has affected paediatric rheumatology practice and has sparked new investigations into the link between viral infections and unregulated inflammatory responses in children.PMID:39112602 | DOI:10.1038/s41584-024-01145-1
Multi-omic analysis of Huntington's disease reveals a compensatory astrocyte state
Nat Commun. 2024 Aug 8;15(1):6742. doi: 10.1038/s41467-024-50626-0.ABSTRACTThe mechanisms underlying the selective regional vulnerability to neurodegeneration in Huntington's disease (HD) have not been fully defined. To explore the role of astrocytes in this phenomenon, we used single-nucleus and bulk RNAseq, lipidomics, HTT gene CAG repeat-length measurements, and multiplexed immunofluorescence on HD and control post-mortem brains. We identified genes that correlated with CAG repeat length, which were enriched in astrocyte genes, and lipidomic signatures that implicated poly-unsaturated fatty acids in sensitizing neurons to cell death. Because astrocytes play essential roles in lipid metabolism, we explored the heterogeneity of astrocytic states in both protoplasmic and fibrous-like (CD44+) astrocytes. Significantly, one protoplasmic astrocyte state showed high levels of metallothioneins and was correlated with the selective vulnerability of distinct striatal neuronal populations. When modeled in vitro, this state improved the viability of HD-patient-derived spiny projection neurons. Our findings uncover key roles of astrocytic states in protecting against neurodegeneration in HD.PMID:39112488 | DOI:10.1038/s41467-024-50626-0
Volatile organic compounds in cancer and exhaled breath detection technology
Adv Clin Chem. 2024;122:53-114. doi: 10.1016/bs.acc.2024.06.012. Epub 2024 Jul 4.ABSTRACTThe detection of volatile organic compounds (VOCs) in breath has become a potential method for early cancer screening. Although this approach has attracted increasing attention from the both scientific and medical communities, it has not received appreciable traction in the clinical setting. There are two main obstacles. One involves the identification of specific biomarkers or combinations thereof especially in early cancer. The other is the lack the specialized equipment for breath analysis having the appropriate sensitivity and specificity. Using metabolomics, this chapter examines the research strategies involving gas biomarkers in cancer patient breath, cancer cell gas metabolites and synthetic biomarkers. We briefly explore gas biomarkers of seven cancers and introduce principles of detection and clinical application. Large analytical instruments and small sensor technology are highlighted. Challenges to VOC analysis are presented including clinical use, extraction and detection, miniaturization efforts and examination of metabolic VOC pathways. Finally, VOCs in cancer and in exhaled breath detection technology are summarized and future prospects explored.PMID:39111965 | DOI:10.1016/bs.acc.2024.06.012
Probiotic and anti-inflammatory properties of Lactiplantibacillus plantarum MKTJ24 isolated from an artisanal fermented fish of North-east India
N Biotechnol. 2024 Aug 5:S1871-6784(24)00034-7. doi: 10.1016/j.nbt.2024.07.005. Online ahead of print.ABSTRACTThe study aimed to isolate and characterize lactic acid bacteria from various traditional fermented fish products from North East India, including Xindol, Hentak, and Ngari, which hold significant dietary importance for the indigenous tribes. Additionally, the study sought to examine their untargeted metabolomic profiles. A total of 43 strains of Bacillus, Priestia, Staphylococcus, Pediococcus, and Lactiplantibacillus were isolated, characterized by 16S rRNA gene and tested for probiotic properties. Five strains passed pH and bile salt tests with strain dependent antimicrobial activity, which exhibited moderate autoaggregation and hydrophobicity properties. Lactiplantibacillus plantarum MKTJ24 exhibited the highest hydrophobicity (42%), which was further confirmed by adhesion assay in HT-29 cell lines (100%). Lactiplantibacillus plantarum MKTJ24 treatment in LPS-stimulated HT-29 cells up-regulated expression of mucin genes compared to LPS-treated cells. Treatment of RAW 264.7 cells with Lactiplantibacillus plantarum MKTJ24 decreased LPS-induced reactive oxygen species (ROS) and nitric oxide (NO) productions. Further, genome analysis of Lactiplantibacillus plantarum MKTJ24 revealed the presence of several probiotic markers and immunomodulatory genes. The genome was found to harbour plantaracin operon involved in bacteriocin production. A pangenome analysis using all the publicly available L. plantarum genomes specifically isolated from fermented fish products identified 120 unique genes in Lactiplantibacillus plantarum MKTJ24. Metabolomic analysis indicated dominance of ascorbic acids, pentafluropropionate, cyclopropaneacetic acid, florobenzylamine, and furanonee in Xindol. This study suggests that Lactiplantibacillus plantarum MKTJ24 has potential probiotic and immunomodulatory properties that could be used in processing traditional fermented fish products on an industrial scale to improve their quality and enhance functional properties.PMID:39111568 | DOI:10.1016/j.nbt.2024.07.005
Cannabidiol exposure during embryonic period caused serious malformation in embryos and inhibited the development of reproductive system in adult zebrafish
Sci Total Environ. 2024 Aug 5:175315. doi: 10.1016/j.scitotenv.2024.175315. Online ahead of print.ABSTRACTCannabidiol (CBD) is a non-psychoactive component of cannabis with potential applications in biomedicine, food, and cosmetics due to its analgesic, anti-inflammatory, and anticonvulsant properties. However, increasing reports of adverse CBD exposure events underscore the necessity of evaluating its toxicity. In this study, we investigated the developmental toxicity of CBD in zebrafish during the embryonic (0-4 dpf, days post fertilization) and early larval stages (5-7 dpf). The median lethal concentration of CBD in embryos/larvae is 793.28 μg/L. CBD exhibited concentration-dependent manner (ranging from 250 to 1500 μg/L) in inducing serious malformed somatotypes, like shorter body length, pericardial cysts, vitelline cysts, spinal curvature, and smaller eyes. However, no singular deformity predominates. The 5-month-old zebrafish treated with 100 and 200 μg/L of CBD during the embryonic and early larval stages produced fewer offspring with higher natural mortality and malformation rate. Gonadal growth and gamete development were inhibited. Transcriptomic and metabolomic analyses conducted with 400 μg/L CBD on embryos/larvae from 0 to 5 dpf suggested that CBD promoted the formation and transportation of extracellular matrix components on 1 dpf, promoting abnormal cell division and migration, probably resulting in random malformed somatotypes. It inhibited optical vesicle development and photoreceptors formation on 2 and 3 dpf, resulting in damaged sight and smaller eye size. CBD also induced an integrated stress response on 4 and 5 dpf, disrupting redox, protein, and cholesterol homeostasis, contributing to cellular damage, physiological dysfunction, embryonic death, and inhibited reproductive system and ability in adult zebrafish. At the tested concentrations, CBD exhibited developmental toxicity, lethal toxicity, and reproductive inhibition in zebrafish. These findings demonstrate that CBD threatens the model aquatic animal, highlighting the need for additional toxicological evaluations of CBD before its inclusion in dietary supplements, edible food, and other products.PMID:39111451 | DOI:10.1016/j.scitotenv.2024.175315
Combination of biotransformation and metabolomics reveals tolfenpyrad-induced hepatocytotoxicity
Sci Total Environ. 2024 Aug 5:175320. doi: 10.1016/j.scitotenv.2024.175320. Online ahead of print.ABSTRACTTolfenpyrad (TFP) is an extensively used pesticide that inevitably leads to human exposure to both TFP and its transformation product residues. However, the biotransformation of TFP in humans has not been elucidated, and the toxicity of TFP along with its biotransformation products remains largely unknown. In this study, the biotransformation process of TFP was investigated using human liver microsomes and human hepatic cells. Endogenous metabolic changes in the cells were studied to investigate the hepatocytotoxicity of TFP at environmentally relevant concentrations. Fourteen phase I biotransformation products and four phase II TFP products were characterized, among which twelve products were identified for the first time. The oxidative product tolfenpyrad-benzoic acid (PT-CA) was particularly abundant and stable. Further hepatotoxicity assessments and metabolic studies demonstrated comparable metabolic profiles for TFP and PT-CA in HepG2 cells, with both significantly disrupting purine and glutathione metabolism. These processes are closely associated with oxidative stress, mitochondrial damage, and cell death. Our results provide novel perspectives on the biotransformation, metabolism, and hepatotoxicity of TFP, thereby highlighting the non-negligible toxicity of its crucial biotransformation product PT-CA in environmental risk assessments.PMID:39111429 | DOI:10.1016/j.scitotenv.2024.175320
Heterotrophic nitrification processes driven by glucose and sodium acetate: New insights into microbial communities, functional genes and nitrogen metabolism from metagenomics and metabolomics
Bioresour Technol. 2024 Aug 5:131226. doi: 10.1016/j.biortech.2024.131226. Online ahead of print.ABSTRACTHeterotrophic nitrification (HN) bacteria use organic carbon sources to remove ammonia nitrogen (NH4+-N); however, the mechanisms of carbon and nitrogen metabolism are unknown. To understand this mechanism, HN functional microbial communities named MG and MA were enriched with glucose and sodium acetate, respectively. The NH4+-N removal efficiencies were 98.87 % and 98.91 %, with 88.06 % and 69.77 % nitrogen assimilation for MG and MA at 22 h and 10 h, respectively. Fungi (52.86 %) were more competitive in MG, and bacteria (99.99 %) were dominant in MA. Metagenomic and metabolomic analyses indicated that HN might be a signaling molecule (NO) in the production and detoxification processes when MG metabolizes glucose (amo, hao, and nosZ were not detected). MA metabolizes sodium acetate to produce less energy and promotes nitrogen oxidation reduction; however, genes (hao, hox, and NOS2) were not detected. These results suggest that NO and energy requirements induce microbial HN.PMID:39111401 | DOI:10.1016/j.biortech.2024.131226
Decreasing light exposure increases the abundance of antibiotic resistance genes in the cecum and feces of laying hens
Sci Total Environ. 2024 Aug 5;949:175275. doi: 10.1016/j.scitotenv.2024.175275. Online ahead of print.ABSTRACTThe gut microbiome plays a crucial role in maintaining animal health and is influenced by various factors, including light exposure; however, the response in laying hens of the gut microbiome to intermittent light regimes and the related impact on antibiotic resistance genes (ARGs) remain poorly understood. In this study, we divided 20-week-old laying hens into two groups. These groups were exposed to either continuous normal light or intermittent light for 8 weeks. The feces and cecal contents of laying hens were collected for analysis. Metagenomic analysis of both feces and cecal content samples revealed significant shifts in the microbial composition and abundance of ARGs under intermittent light exposure compared to normal light exposure (P < 0.05). Furthermore, metabolomic analysis of the cecal contents revealed substantial alterations in the abundance and composition of ARGs and mobile genetic elements (MGEs) in response to intermittent light exposure (P < 0.05). Network analysis revealed intricate co-occurrence patterns among bacterial communities, metabolites, and ARGs, highlighting correlations between Bacteroidetes species, ARGs, and metabolites. Although certain bacterial species showed differential associations, the dominant bacteria carrying ARGs or MGEs had relatively low numbers, suggesting that other bacterial communities may have had a greater influence on ARG dissemination. Moreover, our observations highlight the crucial role of metabolites as mediators between bacterial communities and ARGs, providing novel insights into the dynamics of antibiotic resistance development. Our findings underscore the impact of intermittent light exposure on ARG proliferation in poultry farming and emphasize interconnections among ARGs, bacterial communities, and metabolic pathways. The results underscore the importance of considering both microbial communities and metabolic processes to understand antibiotic resistance in agricultural settings.PMID:39111271 | DOI:10.1016/j.scitotenv.2024.175275
Glutamine withdrawal leads to the preferential activation of lipid metabolism in metastatic colorectal cancer
Transl Oncol. 2024 Aug 6;48:102078. doi: 10.1016/j.tranon.2024.102078. Online ahead of print.ABSTRACTINTRODUCTION: Glutamine is a non-essential amino acid that is critical for cell growth. However, the differential metabolism of l-glutamine in metastatic versus primary colorectal cancer (CRC) has not been evaluated adequately.MATERIALS AND METHODS: Differential expression of glutamine-related genes was determined in primary versus metastatic CRC. Univariate Cox regression and hierarchical clustering were used to generate a gene signature for prognostication. Untargeted metabolomics and 18O based fluxomics were used to identify differential metabolite levels and energy turnover in the paired primary (SW480) and metastatic (SW620) CRC cells. Western blot and qRT-PCR were used to validate differential gene expression. Subcellular localization of E-cadherin was determined by immunocytochemistry. Lipid droplets were visualized with Nile Red.RESULTS: The GO term "Glutamine metabolism" was significantly enriched in metastatic versus primary tumors. Supporting this, SW620 cells showed decreased membrane localization of E-cadherin and increased motility upon l-Glutamine withdrawal. A glutamine related signature associated with worse prognosis was identified and validated in multiple datasets. A fluxomics assay revealed a slower TCA cycle in SW480 and SW620 cells upon l-Glutamine withdrawal. SW620 cells, however, could maintain high ATP levels. Untargeted metabolomics indicated the preferential metabolism of fatty acids in SW620 but not SW480 cells. Lipids were mainly obtained from the environment rather than by de novo synthesis.CONCLUSIONS: Metastatic CRC cells can display aberrant glutamine metabolism. We show for the first time that upon l-glutamine withdrawal, SW620 (but not SW480) cells were metabolically plastic and could metabolize lipids for survival and cellular motility.PMID:39111172 | DOI:10.1016/j.tranon.2024.102078
Crystal structure combined with metabolomics and biochemical studies indicates that FAM3A participates in fatty acid beta-oxidation upon binding of acyl-L-carnitine
Biochem Biophys Res Commun. 2024 Jul 31;735:150481. doi: 10.1016/j.bbrc.2024.150481. Online ahead of print.ABSTRACTAs the first member of the family with sequence similarity 3 (FAM3), FAM3A promotes synthesis of ATP in mitochondria of hepatic cells and cells from other organs. Dysregulations of FAM3A are involved in the development of diabetes and nonalcoholic fatty liver disease (NAFLD). So far, the molecule mechanism under the physiological and pathological functions of FAM3A is largely unexplored. Here, we determined the crystal structure of FAM3A at high resolution of 1.38Å, complexed with an unknown-source compound which was characterized through metabolomics and confirmed as methacholine by thermal shift assay and surface plasmon resonance (SPR). Exploration for natural ligands of FAM3A was conducted through the same molecular interaction assays. The observed binding of acyl-L-carnitine molecules indicated FAM3A participating in fatty acid beta-oxidation. Knockdown and rescue assays coupled with fatty acid oxidation determination confirmed the role of FAM3A in beta-oxidation. This investigation reveals the molecular mechanism for the biological function of FAM3A and would provide basis for identifying drug target for treatment of diabetes and NAFLD.PMID:39111121 | DOI:10.1016/j.bbrc.2024.150481
Oral matrine alleviates CCl4-induced liver fibrosis via preserved HSP72 from modulated gut microbiota
Biomed Pharmacother. 2024 Aug 6;178:117262. doi: 10.1016/j.biopha.2024.117262. Online ahead of print.ABSTRACTHepatic fibrosis is intricately associated with dysregulation of gut microbiota and host metabolomes. Our previous studies have demonstrated that matrine can effectively reduce hepatosteatosis and associated disorders. However, it is poorly understood whether the gut microbiota involved in the attenuation of liver fibrosis by matrine. Herein we explored a novel mechanism of how oral administration of matrine alleviates liver fibrosis by modulating gut microbiota. Administration of matrine not only potently ameliorated liver fibrosis in carbon tetrachloride (CCl4)-induced mice, but also significantly preserved hepatic heat shock protein 72 (HSP72) in vivo and in vitro. Matrine was failed to reduce liver fibrosis when HSP72 upregulation was blocked by the HSP72 antagonist VER-155008. Also, consumption of matrine significantly alleviated gut dysbiosis and fecal metabonomic changes in CCl4-treated mice. Transplanted the faces of matrine-treated mice induced a remarkable upregulation of HSP72 and remission of fibrosis in liver in CCl4-exposed mice and inhibition of TGF-β1-induced inflammatory response and epithelial-mesenchymal transition (EMT) in AML-12 cells. Furthermore, deficiency of HSP72 partly reversed the intestinal microbial composition that prevented matrine from reducing CCl4-induced liver fibrosis in mice. This study reveals the "gut microbiota-hepatic HSP72" axis as a key mechanism of matrine in reducing liver fibrosis and suggest that this axis may be targeted for developing other new therapies for liver fibrosis.PMID:39111080 | DOI:10.1016/j.biopha.2024.117262
Combined transcriptome and metabolome analysis identifies triterpenoid-induced defense responses in Myzus persicae Sulzer-infested peach
J Exp Bot. 2024 Aug 7:erae339. doi: 10.1093/jxb/erae339. Online ahead of print.ABSTRACTThe defense response of peach (Prunus persica) to insect attack involves changes in gene expression and metabolites. Piercing/sucking insects such as green peach aphid cause direct damage by obtaining phloem nutrients and indirect damage by spreading plant viruses. To investigate the response of peach trees to aphids, the leaf transcriptome and metabolome of two genotypes with different sensitivities to green peach aphid (GPA, Myzus persicae) were studied. The transcriptome analysis of infected peach leaves showed two different response patterns. The gene expression of aphid-susceptible peach plants infected by aphids was more similar to that of the control plants, while the gene expression of aphid-resistant peach plants infected by aphids showed strongly induced changes in gene expression compared with the response in the control plants. Furthermore, gene transcripts in defense-related pathways, including plant-pathogen interaction, MAPK signaling, and several metabolic pathways, were more strongly enriched upon aphid infestation. Untargeted secondary metabolite profiling confirmed that aphid treatment induced larger changes in aphid-resistant peaches than in aphid-susceptible peaches. Consistent with transcriptomic alterations, nine triterpenoids showed extremely significant GPA-induced accumulation in aphid-resistant peaches, whereas triterpenoid abundance remained predominantly unchanged or undetected in aphid- susceptible peaches. Furthermore, some types of transcription factors (including WRKYs, ERFs, NACs, etc.) were more strongly induced upon GPA infestation in aphid-resistant peaches but not in aphid-susceptible peaches. Aphid feeding-dependent transcriptome and metabolite profiles provide the foundation for understanding the molecular mechanisms underlying the response of peach to aphid infestation. These results suggested that accumulation of specialized triterpenoids and the corresponding pathway transcripts may play a key role in peach GPA resistance.PMID:39110720 | DOI:10.1093/jxb/erae339