Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Comparison of nanovesicles derived from <em>Panax notoginseng</em> at different size: physical properties, composition, and bioactivity

Tue, 06/08/2024 - 12:00
Front Pharmacol. 2024 Jul 22;15:1423115. doi: 10.3389/fphar.2024.1423115. eCollection 2024.ABSTRACTAIM: Plant-derived nanovesicles have emerged as potential agents for combating tumors. In this study, we investigated the inhibitory effects of Panax notoginseng-derived nanovesicles (PnNVs) on the proliferation and migration of squamous cell carcinoma. Additionally, we explored the relationship between plant tuber size and the physical properties, composition and bioactivity of these nanovesicles.METHODS: We isolated PnNVs from Panax notoginseng tubers of varying sizes: small-sized (s_PnNVs), medium-sized (m_PnNVs) and large-sized (l_PnNVs), and evaluated for size, potential, and morphology. Cellular uptake efficiency was assessed using confocal microscopy and flow cytometry. The ability of different PnNVs to inhibit oral squamous cell carcinoma cells was evaluated using plate cloning, CCK8 assay, and scratch healing assay. Off-target metabolomics was used to compare metabolic compounds of different PnNVs.RESULTS: Our findings revealed that s_PnNVs exhibited lower potential but had the highest cellular uptake efficiency, whereas m_PnNVs were characterized by the smallest size and lowest cellular uptake efficiency. Notably, m_PnNVs demonstrated the most effective inhibition of squamous cell carcinoma growth and migration. Compositional analyses showed that PnNVs were rich in proteins and contained lower levels of RNA, with l_PnNVs having the highest protein content. Furthermore, untargeted metabolomics analysis revealed a significant increase in the expression of specific antitumour-related metabolites in m_PnNVs compared to s_PnNVs and l_PnNVs.CONCLUSION: Overall, our results underscore the influence of plant tuber size on the bioactivity of the nanovesicles from which they are derived, emphasizing its importance for experimental design and study reproducibility.PMID:39104384 | PMC:PMC11298367 | DOI:10.3389/fphar.2024.1423115

Elucidating of the metabolic impact of risperidone on brain microvascular endothelial cells using untargeted metabolomics-based LC-MS

Tue, 06/08/2024 - 12:00
Toxicol Rep. 2024 Jul 8;13:101691. doi: 10.1016/j.toxrep.2024.101691. eCollection 2024 Dec.ABSTRACTRisperidone is useful for the treatment of schizophrenia symptoms; however, it also has side effects, and an overdose can be harmful. The metabolic effects of risperidone at high therapeutic doses and its metabolites have not been elucidated. Endogenous cellular metabolites may be comprehensively analyzed using untargeted metabolomics-based liquid chromatography-mass spectrometry (LC-MS), which can reveal changes in cell regulation and metabolic pathways. By identifying the metabolites and pathway changes using a nontargeted metabolomics-based LC-MS approach, we aimed to shed light on the potential toxicological effects of high-dose risperidone on brain microvascular endothelial cells (MVECs) associated with the human blood brain barrier. A total of 42 metabolites were selected as significant putative metabolites of the toxicological response of high-dose risperidone in MVECs. Six highly correlated pathways were identified, including those involving diacylglycerol, fatty acid, ceramide, glycerophospholipid, amino acid, and tricarboxylic acid metabolism. We demonstrated that methods focused on metabolomics are useful for identifying metabolites that may be used to clarify the mechanism of drug-induced toxicity.PMID:39104367 | PMC:PMC11299597 | DOI:10.1016/j.toxrep.2024.101691

Dip2a regulates stress susceptibility in the basolateral amygdala

Tue, 06/08/2024 - 12:00
Neural Regen Res. 2025 Jun 1;20(6):1735-1748. doi: 10.4103/NRR.NRR-D-23-01871. Epub 2024 May 13.ABSTRACTJOURNAL/nrgr/04.03/01300535-202506000-00025/figure1/v/2024-08-05T133530Z/r/image-tiff Dysregulation of neurotransmitter metabolism in the central nervous system contributes to mood disorders such as depression, anxiety, and post-traumatic stress disorder. Monoamines and amino acids are important types of neurotransmitters. Our previous results have shown that disco-interacting protein 2 homolog A (Dip2a) knockout mice exhibit brain development disorders and abnormal amino acid metabolism in serum. This suggests that DIP2A is involved in the metabolism of amino acid-associated neurotransmitters. Therefore, we performed targeted neurotransmitter metabolomics analysis and found that Dip2a deficiency caused abnormal metabolism of tryptophan and thyroxine in the basolateral amygdala and medial prefrontal cortex. In addition, acute restraint stress induced a decrease in 5-hydroxytryptamine in the basolateral amygdala. Additionally, Dip2a was abundantly expressed in excitatory neurons of the basolateral amygdala, and deletion of Dip2a in these neurons resulted in hopelessness-like behavior in the tail suspension test. Altogether, these findings demonstrate that DIP2A in the basolateral amygdala may be involved in the regulation of stress susceptibility. This provides critical evidence implicating a role of DIP2A in affective disorders.PMID:39104112 | DOI:10.4103/NRR.NRR-D-23-01871

Dietary fatty acid pattern and its association with metabolic profile among overweight and obese adults

Mon, 05/08/2024 - 12:00
BMC Endocr Disord. 2024 Aug 5;24(1):141. doi: 10.1186/s12902-024-01662-w.ABSTRACTBACKGROUND: Numerous studies have revealed the role of dietary fatty acids in human health. However, few studies have evaluated dietary fatty acid patterns and their association with metabolic parameters. The current study aimed to explore the association between dietary fatty acid patterns and risk factors for metabolic syndrome (MetS) among overweight and obese adults.METHODS: This cross-sectional study involved 340 participants who were overweight or obese. The study included assessments of body composition and anthropometric measurements. Dietary fatty acid consumption was evaluated using a validated Food Frequency Questionnaire (FFQ) containing 168 items. Additionally, biochemical parameters, including serum total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), fasting serum glucose (FSG), and insulin levels, were measured using enzymatic methods. Fatty acid patterns were determined by principal component analysis (PCA), and the association between these dietary FA patterns and risk factors related to MetS components was assessed using logistic regression.RESULTS: Factor analysis conducted in this study explored three dietary fatty acid patterns: saturated fatty acids (SFA), polyunsaturated fatty acids (PUFA), and long-chain combined fatty acids (LC-CFA). Those at the highest tertile of the SFA pattern had lower diastolic blood pressure (DBP) (P = 0.03). Low-density lipoprotein cholesterol (LDL) was lower in the second and third tertiles (P ≤ 0.05). Also, higher fasting blood glucose (FBS) was observed in the second and third tertiles (P < 0.05), and the homeostatic model assessment of insulin resistance (HOMA-IR) was higher in the third tertile (P = 0.049). In the PUFA pattern, FBS was lower in the third tertile (P = 0.03). In the LC-CFA pattern, lower TC was achieved in higher tertiles (P = 0.04).CONCLUSION: Our findings demonstrated that consuming high and moderate SFA patterns is associated with higher FBS and HOMA-IR. Also, increased consumption of SCFAs is related to lower DPB and LDL. Individuals who consumed more PUFA, especially linoleic acid, had lower FBS. These outcomes might be beneficial in managing MetS and leading to a new field of research.PMID:39103858 | DOI:10.1186/s12902-024-01662-w

Harnessing in vivo synthesis of bioactive multiarylmethanes in Escherichia coli via oxygen-mediated free radical reaction induced by simple phenols

Mon, 05/08/2024 - 12:00
Microb Cell Fact. 2024 Aug 6;23(1):219. doi: 10.1186/s12934-024-02494-y.ABSTRACTBACKGROUND: Xanthenes and multi-aryl carbon core containing compounds represent different types of complex and condensed architectures that have impressive wide range of pharmacological, industrial and synthetic applications. Moreover, indoles as building blocks were only found in naturally occurring metabolites with di-aryl carbon cores and in chemically synthesized tri-aryl carbon core containing compounds. Up to date, rare xanthenes with indole bearing multicaryl carbon core have been reported in natural or synthetic products. The underlying mechanism of fluorescein-like arthrocolins with tetra-arylmethyl core were synthesized in an engineered Escherichia coli fed with toluquinol remained unclear.RESULTS: In this study, the Keio collection of single gene knockout strains of 3901 mutants of E. coli BW25113, together with 14 distinct E. coli strains, was applied to explore the origins of endogenous building blocks and the biogenesis for arthrocolin assemblage. Deficiency in bacterial respiratory and aromatic compound degradation genes ubiX, cydB, sucA and ssuE inhibited the mutant growth fed with toluquinol. Metabolomics of the cultures of 3897 mutants revealed that only disruption of tnaA involving in transforming tryptophan to indole, resulted in absence of arthrocolins. Further media optimization, thermal cell killing and cell free analysis indicated that a non-enzyme reaction was involved in the arthrocolin biosynthesis in E. coli. Evaluation of redox potentials and free radicals suggested that an oxygen-mediated free radical reaction was responsible for arthrocolins formation in E. coli. Regulation of oxygen combined with distinct phenol derivatives as inducer, 31 arylmethyl core containing metabolites including 13 new and 8 biological active, were isolated and characterized. Among them, novel arthrocolins with p-hydroxylbenzene ring from tyrosine were achieved through large scale of aerobic fermentation and elucidated x-ray diffraction analysis. Moreover, most of the known compounds in this study were for the first time synthesized in a microbe instead of chemical synthesis. Through feeding the rat with toluquinol after colonizing the intestines of rat with E. coli, arthrocolins also appeared in the rat blood.CONCLUSION: Our findings provide a mechanistic insight into in vivo synthesis of complex and condensed arthrocolins induced by simple phenols and exploits a quinol based method to generate endogenous aromatic building blocks, as well as a methylidene unit, for the bacteria-facilitated synthesis of multiarylmethanes.PMID:39103877 | DOI:10.1186/s12934-024-02494-y

Progesterone boosts abiraterone-driven target and NK cell therapies against glioblastoma

Mon, 05/08/2024 - 12:00
J Exp Clin Cancer Res. 2024 Aug 6;43(1):218. doi: 10.1186/s13046-024-03144-2.ABSTRACTINTRODUCTION: Glioblastoma (GBM) poses a significant challenge in oncology, with median survival times barely extending beyond a year due to resistance to standard therapies like temozolomide (TMZ). This study introduces a novel therapeutic strategy combining progesterone (Prog) and abiraterone (Abi) aimed at enhancing GBM treatment efficacy by modulating the tumor microenvironment and augmenting NK cell-mediated immunity.METHODS: We employed in vitro and in vivo GBM models to assess the effects of Prog and Abi on cell viability, proliferation, apoptosis, and the immune microenvironment. Techniques included cell viability assays, Glo-caspase 3/7 apoptosis assays, RNA-seq and qPCR for gene expression, Seahorse analysis for mitochondrial function, HPLC-MS for metabolomics analysis, and immune analysis by flow cytometry to quantify NK cell infiltration.RESULTS: Prog significantly reduced the IC50 of Abi in TMZ-resistant GBM cell, suggesting the enhanced cytotoxicity. Treatment induced greater apoptosis than either agent alone, suppressed tumor growth, and prolonged survival in mouse models. Notably, there was an increase in CD3-/CD19-/CD56+/NK1.1+ NK cell infiltration in treated tumors, indicating a shift towards an anti-tumor immune microenvironment. The combination therapy also resulted in a reduction of MGMT expression and a suppression of mitochondrial respiration and glycolysis in GBM cells.CONCLUSION: The combination of Prog and Abi represents a promising therapeutic approach for GBM, showing potential in suppressing tumor growth, extending survival, and modulating the immune microenvironment. These findings warrant further exploration into the clinical applicability of this strategy to improve outcomes for GBM patients.PMID:39103871 | DOI:10.1186/s13046-024-03144-2

An artificial metabzyme for tumour-cell-specific metabolic therapy

Mon, 05/08/2024 - 12:00
Nat Nanotechnol. 2024 Aug 5. doi: 10.1038/s41565-024-01733-y. Online ahead of print.ABSTRACTMetabolic dysregulation constitutes a pivotal feature of cancer progression. Enzymes with multiple metal active sites play a major role in this process. Here we report the first metabolic-enzyme-like FeMoO4 nanocatalyst, dubbed 'artificial metabzyme'. It showcases dual active centres, namely, Fe2+ and tetrahedral Mo4+, that mirror the characteristic architecture of the archetypal metabolic enzyme xanthine oxidoreductase. Employing spatially dynamic metabolomics in conjunction with the assessments of tumour-associated metabolites, we demonstrate that FeMoO4 metabzyme catalyses the metabolic conversion of tumour-abundant xanthine into uric acid. Subsequent metabolic adjustments orchestrate crosstalk with immune cells, suggesting a potential therapeutic pathway for cancer. Our study introduces an innovative paradigm in cancer therapy, where tumour cells are metabolically reprogrammed to autonomously modulate and directly interface with immune cells through the intervention of an artificial metabzyme, for tumour-cell-specific metabolic therapy.PMID:39103450 | DOI:10.1038/s41565-024-01733-y

The protective effect of dulcitol on lipopolysaccharide-induced intestinal injury in piglets: mechanistic insights

Mon, 05/08/2024 - 12:00
J Nutr Biochem. 2024 Aug 3:109719. doi: 10.1016/j.jnutbio.2024.109719. Online ahead of print.ABSTRACTThis study investigated the protective effect of dulcitol on LPS-induced intestinal injury in piglets and explored the underlying molecular mechanisms. A total of 108 piglets were divided into three groups: CON, LPS, and DUL. The CON and LPS groups were fed a basal diet, the DUL group was fed a diet supplementation with 500 mg/kg dulcitol. On day 29, 6 piglets in the LPS and DUL groups were injected with 100 μg/kg BW of LPS. At 4 h post-challenge, all pigs were slaughtered, and colonic samples were collected. Results showed that dulcitol supplementation boosted intestinal barrier function in LPS-challenged piglets by enhancing intestinal morphology and integrity, and increasing the gene expression of zonula occludens-1, claudin-1, and occludin in the colonic mucosa (P <0.05). Metabolomics showed DUL supplementation mainly increased (P <0.05) the metabolites related to steroid and vitamin metabolism (Cholesterol and Vitamin C). Proteomics showed that dulcitol supplementation altered the protein expression involved in maintaining barrier integrity (FN1, CADM1, and PARD3), inhibiting inflammatory response (SLP1, SFN, and IRF3), and apoptosis (including FAS, ING1, BTK, MTHFR, NOX, and P53BP2) in LPS-challenged piglets (P <0.05). Additionally, dulcitol addition also suppressed the TLR4/NF-κB signaling pathway and apoptosis in mRNA and protein levels. Dulcitol increased the abundance of short-chain fatty acid-producing bacteria (Lactobacillus, Blautia, and Faecalibacterium) at the genus level, but decreased the relative abundance of Proteobacteria at the phylum level and Pseudomonas and Delftia at the genus level in piglets (P < 0.05). In conclusion, these results suggested that the addition of dulcitol alleviated LPS-induced intestinal barrier injury in piglets, probably by maintaining its integrity, inhibiting the TLR4/NF-κB signaling pathways and apoptosis, and modulating the gut microbiota. Therefore, dulcitol can be considered a potential dietary additive for improving intestinal health in pig models.PMID:39103108 | DOI:10.1016/j.jnutbio.2024.109719

Metabolic signatures of population exposure to metal mixtures: A metabolome-wide association study

Mon, 05/08/2024 - 12:00
Environ Pollut. 2024 Aug 3:124673. doi: 10.1016/j.envpol.2024.124673. Online ahead of print.ABSTRACTNumerous studies have explored the health impacts of individual metal exposures, yet the effects of metal mixtures on human endogenous metabolism remain largely unexplored. We aimed to assess the serum metabolic signatures of people exposure to metal mixtures. Serum and urine samples were collected from 186 workers at a steel factory in Anhui, China, in September 2019. Inductively coupled plasma mass spectrometry was used to analyze the concentrations of 23 metal elements. Serum metabolome was determined by liquid chromatography-mass spectrometry (LC-MS). A metabolome-wide association study (MWAS) was performed across the metal exposures and metabolism using quantile g-computation modeling. Pathway enrichment analysis was performed using MetaboAnalyst analysis. We identified 226 metabolites associated with metal mixtures, primarily involving lipid metabolism (glycerophospholipids, sphingolipids), amino acid metabolism (arginine and proline, alanine, aspartate and glutamate metabolism) and caffeine metabolic pathways. Exposure to metal mixtures is mainly associated with alterations in lipid metabolism and amino acid metabolism, particularly in the glycerophospholipid and arginine and proline metabolism pathway.PMID:39103040 | DOI:10.1016/j.envpol.2024.124673

Micro-/nano-plastics as Vectors of Heavy Metals and Stress Response of Ciliates using Transcriptomic and Metabolomic analyses

Mon, 05/08/2024 - 12:00
Environ Pollut. 2024 Aug 3:124667. doi: 10.1016/j.envpol.2024.124667. Online ahead of print.ABSTRACTThe escalating presence of microplastics and heavy metals in marine environments significantly jeopardizes ecological stability and human health. Despite this, research on the combined effects of microplastics/nanoplastics (MPs/NPs) and heavy metals on marine organisms remains limited. This study evaluated the impact of two sizes of polystyrene beads (approximately 2 μm and 200 nm) combined with cadmium (Cd) on the ciliate species Euplotes vannus. Results demonstrated that co-exposure of MPs/NPs and Cd markedly elevated reactive oxygen species (ROS) levels in ciliates while impairing antioxidant enzyme activities, thus enhancing oxidative damage and significantly reducing carbon biomass in ciliates. Transcriptomic profiling indicated that co-exposure of MPs/NPs and Cd potentially caused severe DNA damage and protein oxidation, as evidenced by numerous differentially expressed genes (DEGs) associated with mismatch repair, DNA replication, and proteasome function. Integrated transcriptomic and metabolomic analysis revealed that DEGs and differentially accumulated metabolites (DAMs) were significantly enriched in the TCA cycle, glycolysis, tryptophan metabolism, and glutathione metabolism. This suggests that co-exposure of MPs/NPs and Cd may reduce ciliate abundance and carbon biomass by inhibiting energy metabolism and antioxidant pathways. Additionally, compared to MPs, the co-exposure of NPs and Cd exhibited more severe negative effects due to the larger specific surface area of NPs, which can carry more Cd. These findings provide novel insights into the toxic effects of MPs/NPs and heavy metals on protozoan ciliates, offering foundational data for assessing the ecological risks of heavy metals exacerbated by MPs/NPs.PMID:39103036 | DOI:10.1016/j.envpol.2024.124667

Accumulated inflammation and fibrosis participate in atrazine induced ovary toxicity in mice

Mon, 05/08/2024 - 12:00
Environ Pollut. 2024 Aug 3:124672. doi: 10.1016/j.envpol.2024.124672. Online ahead of print.ABSTRACTAtrazine is a widely used herbicide in agricultural production. Previous studies have shown that atrazine affects hormone secretion and oocyte maturation in female reproduction. However, the specific mechanism by which atrazine affects ovarian function remains unclear. In this study, using a mouse gastric lavage model, we report that four weeks of atrazine exposure affects body growth, interferes with the estrous cycle, and increases the number of atretic follicles in mice. The expression levels of follicle development related factors StAR, BMP15, and AMH decreased. Metabolomic analysis revealed that atrazine activates an inflammatory response in ovarian tissue. Further studies confirmed that the expression levels of TNF-α, IL-6, and NF-κB increased in the ovaries of mice exposed to atrazine. Additionally, α-smooth muscle actin (α-SMA) accumulated in ovarian tissue, and transforming growth factor-β (TGF-β) signaling was activated, indicating the occurrence of tissue fibrosis. Moreover, mice exposed to atrazine produced fewer oocytes and exhibited reduced embryonic development. Furthermore, mice exposed to atrazine exhibited altered gut microbiota abundance and a disrupted colon barrier. Collectively, these findings suggest that atrazine exposure induces ovarian inflammation and fibrosis, disrupts ovarian homeostasis, and impairs follicle maturation, ultimately reducing oocyte quality.PMID:39103034 | DOI:10.1016/j.envpol.2024.124672

Insights into the Effects of Anilofos on Direct-seeded Rice Production System through Untargeted Metabolomics

Mon, 05/08/2024 - 12:00
Environ Pollut. 2024 Aug 3:124668. doi: 10.1016/j.envpol.2024.124668. Online ahead of print.ABSTRACTWeed infestation is the major biological threat in direct-seeded rice production and can cause significant yield losses. The effective use of herbicides is particularly important in direct-seeded rice production. Anilofos, a pre-emergence herbicide, has been shown to be effective against the weed barnyardgrass. However, its impacts on crop yield and the direct-seeded rice production ecosystem remain underexplored. In this study, we conducted field trials and used untargeted metabolomics to investigate systemic effects of two different treatments (40 g/acre and 60 g/acre) on rice shoot and root as well as the rhizosphere soil during the critical tillering stage. Here, a total of 400 metabolites were determined in the crop and soil, with differential metabolites primarily comprising lipids and lipid-like molecules as well as phenylpropanoids and polyketides. Spearman correlation network analysis and a Zi-Pi plot revealed 7 key differential metabolites with significant topological roles, including succinic acid semialdehyde and riboflavin. KEGG pathway analysis showed that anilofos downregulated the amino acid metabolism while mainly promoted carbohydrate metabolism and secondary metabolites biosynthesis of the crop, which made minimal disruption on soil metabolism. Notably, we found 40 g/acre anilofos application could significantly improve the rice yield, potentially linked to the improved activity of flavonoid biosynthesis and starch and sucrose metabolism. This research provides a comprehensive evaluation of anilofos effects in the direct-seeded rice production system, offering new insights into optimizing herbicide use to improve agricultural sustainability and productivity.PMID:39103033 | DOI:10.1016/j.envpol.2024.124668

CO-EXPRESSION OF HUMAN SIALYLTRANSFERASE IMPROVES N-GLYCOSYLATION IN Leishmania tarentolae AND OPTIMIZE THE PRODUCTION OF HUMANIZED THERAPEUTIC GLYCOPROTEIN IFN-BETA

Mon, 05/08/2024 - 12:00
J Biotechnol. 2024 Aug 3:S0168-1656(24)00212-8. doi: 10.1016/j.jbiotec.2024.08.002. Online ahead of print.ABSTRACTThe production of therapeutic glycoproteins is primarily expensive due to the necessity of culturing mammalian cells. These systems often require complex and costly culture media and typically yield low amounts of protein. Leishmania tarentolae, a non-pathogenic protozoan to mammals, has emerged as a cost-effective alternative system for heterologous glycoprotein expression due to its suitability for large-scale production using low-cost culture media, and its ability to perform mammalian-like post-translational modifications, including glycosylation. Nevertheless, differences in the carbohydrate residues at the end of N-glycan chains are observed in Leishmania compared to mammalian cells due to the absence of biosynthetic enzymes in Leishmania that are required for the incorporation of terminal sialic acid. In this study, a genetically optimized L. tarentolae cell line was engineered for the production of recombinant interferon-β (IFN-β) featuring a complete mammalian N-glycosylation profile. Genomic and metabolomic analyses revealed that heterologous expression of the sialyltransferase enzyme and cultivation in a medium containing sialic acid were sufficient to generate mammalian-like protein N-glycosylation. N-glycan mass spectrometry analysis demonstrated a glycosylation pattern compatible with the incorporation of sialic acid into the glycan structure. In vitro IFN-β activity indicated that the expressed protein exhibited reduced inflammatory effects compared to IFN-beta produced by other platforms, such as bacteria, non-optimized L. tarentolae, and mammalian cells.PMID:39103019 | DOI:10.1016/j.jbiotec.2024.08.002

Integrative Analyses Reveal the Correlation Between the Airway Microbiome and Host Metabolism in Severe Community-acquired Pneumonia

Mon, 05/08/2024 - 12:00
Am J Respir Cell Mol Biol. 2024 Aug 5. doi: 10.1165/rcmb.2024-0030OC. Online ahead of print.ABSTRACTCommunity-acquired pneumonia (CAP) is a significant global health concern, responsible for high mortality and morbidity. Recent research has revealed a potential link between disordered microbiome and metabolism in pneumonia, although the precise relationship between these factors and severe CAP remains unclear. To address this knowledge gap, we conducted a comprehensive analysis utilizing 16S sequencing and LC-MS/MS metabolomics data to characterize the microbial profile in sputum and metabolic profile in serum in patients with severe community-acquired pneumonia (sCAP). Our analysis identified 13 genera through LEfSe analysis and 15 metabolites meeting specific criteria (P < 0.05, VIP ≥ 2, and |Log2(FC)| ≥ 2). The findings of this study demonstrate the presence of altered coordination between the microbiome of the lower respiratory tract and host metabolism in patients with sCAP. The observed concentration trends of specific metabolites across different disease stages further support the potential involvement of the serum metabolism in the development of sCAP. These correlations between the airway microbiome and host metabolism in sCAP patients have important implications for optimizing early diagnosis and developing individualized therapeutic strategies.PMID:39102869 | DOI:10.1165/rcmb.2024-0030OC

Decoding anthocyanin biosynthesis regulation in Asparagus officinalis peel coloration: Insights from integrated metabolomic and transcriptomic analyses

Mon, 05/08/2024 - 12:00
Plant Physiol Biochem. 2024 Jul 26;215:108980. doi: 10.1016/j.plaphy.2024.108980. Online ahead of print.ABSTRACTAsparagus is a key global vegetable crop with significant economic importance. Purple asparagus, rich in anthocyanins, stands out for its nutritional value. Despite its prominence, the molecular mechanisms driving purple peel coloration in asparagus remain unclear. This study focuses on three asparagus varieties with distinct peel colors to analyze anthocyanins in both the metabolome and transcriptome, unraveling the regulatory mechanisms. Our findings identify 30 anthocyanins, categorized into five major anthocyanin aglycones across diverse asparagus peel colors. Notably, among the 30 differentially expressed metabolites (DEMs), 18 anthocyanins displayed significantly up-regulated expression in the 'Purple Passion' variety. Key contributors include Cyanidin-3-O-rutinoside-5-O-glucoside and Cyanidin-3-O-sophoroside. Cyanidin-3-O-glucoside is most abundant in 'Purple Passion', while Petunidin-glucoside-galactoside is the least. Analysis of differentially expressed genes (DEGs) displayed 21 structural genes in anthocyanin synthesis, with F3H, DFR, ANS, and one of three UFGTs showing significantly higher expression in the 'Purple Passion' compared to 'Grande' and 'Erasmus'. Additionally, transcription factors (TFs), including 38 MYB, 33 bHLH, and 13 bZIP, also display differential expression in this variety. Validation through real-time qPCR supports the idea that increased expression of anthocyanin structural genes contribute to anthocyanin accumulation. Transient overexpression of AoMYB17 in tobacco further showed that it had the vital function of increasing anthocyanin content. This study sheds light on the mechanisms behind anthocyanin coloration in three distinct asparagus peels. Therefore, it lays the foundation for potential genetic enhancements, aiming to develop new purple-fleshed asparagus germplasms with heightened anthocyanin content.PMID:39102766 | DOI:10.1016/j.plaphy.2024.108980

Identification of the Metabolic Signature of Aging Retina

Mon, 05/08/2024 - 12:00
Transl Vis Sci Technol. 2024 Aug 1;13(8):8. doi: 10.1167/tvst.13.8.8.ABSTRACTPURPOSE: This study aims to explore the metabolic signature of aging retina and identify the potential metabolic biomarkers for the diagnosis of retinal aging.METHODS: Retinal samples were collected from both young (two months) and aging (14 months) mice to conduct an unbiased metabolic profiling. Liquid chromatography-tandem mass spectrometry analysis was conducted to screen for the metabolic biomarkers and altered signaling pathways associated with retinal aging.RESULTS: We identified 166 metabolites differentially expressed between young and aged retinas using a threshold of orthogonal projection to latent structures discriminant analysis variable importance in projection >1 and P < 0.05. These metabolites were significantly enriched in several metabolic pathways, including purine metabolism, citrate cycle, phenylalanine, tyrosine and tryptophan biosynthesis, glycerophospholipid metabolism, and alanine, aspartate and glutamate metabolism. Among these significantly enriched pathways, glycerophospholipid metabolites emerged as promising candidates for retinal aging biomarkers. We assessed the potential of these metabolites as biomarkers through an analysis of their sensitivity and specificity, determined by the area under the receiver-operating characteristic (ROC) curves. Notably, the metabolites like PC (15:0/22:6), PC (17:0/14:1), LPC (P-16:0), PE (16:0/20:4), and PS (17:0/16:1) demonstrated superior performance in sensitivity, specificity, and accuracy in predicting retinal aging.CONCLUSIONS: This study sheds light on the molecular mechanisms underlying retinal aging by identifying distinct metabolic profiles and pathways. These findings provide a valuable foundation for developing future clinical applications in diagnosing, identifying, and treating age-related retinal degeneration.TRANSLATIONAL RELEVANCE: This study sheds light on novel metabolic profiles and biomarkers in aging retinas, potentially paving the way for targeted interventions in preventing, diagnosing, and treating age-related retinal degeneration and other retinal diseases.PMID:39102240 | DOI:10.1167/tvst.13.8.8

Chemical Isotope Labeling and Dual-Filtering Strategy for Comprehensive Profiling of Urinary Glucuronide Conjugates

Mon, 05/08/2024 - 12:00
Anal Chem. 2024 Aug 5. doi: 10.1021/acs.analchem.4c02339. Online ahead of print.ABSTRACTGlucuronidation, a crucial process in phase II metabolism, plays a vital role in the detoxification and elimination of endogenous substances and xenobiotics. A comprehensive and confident profiling of glucuronate-conjugated metabolites is imperative to understanding their roles in physiological and pathological processes. In this study, a chemical isotope labeling and dual-filtering strategy was developed for global profiling of glucuronide metabolites in biological samples. N,N-Dimethyl ethylenediamine (DMED-d0) and its deuterated counterpart DMED-d6 were used to label carboxylic acids through an amidation reaction. First, carboxyl-containing compounds were extracted based on a characteristic mass difference (Δm/z, 6.037 Da) observed in MS between light- and heavy-labeled metabolites (filter I). Subsequently, within the pool of carboxyl-containing compounds, glucuronides were identified using two pairs of diagnostic ions (m/z 247.1294/253.1665 and 229.1188/235.1559 for DMED-d0/DMED-d6-labeled glucuronides) originating from the fragmentation of the derivatized glucuronic acid group in MS/MS (filter II). Compared with non-derivatization, DEMD labeling significantly enhanced the detection sensitivity of glucuronides, as evidenced by a 3- to 55-fold decrease in limits of detection for representative standards. The strategy was applied to profiling glucuronide metabolites in urine samples from colorectal cancer (CRC) patients. A total of 685 features were screened as potential glucuronides, among which 181 were annotated, mainly including glucuronides derived from lipids, organic oxygen, and phenylpropanoids. Enzymatic biosynthesis was employed to accurately identify unknown glucuronides without standards, demonstrating the reliability of the dual-filtering strategy. Our strategy exhibits great potential for profiling the glucuronide metabolome with high coverage and confidence to reveal changes in CRC and other diseases.PMID:39102235 | DOI:10.1021/acs.analchem.4c02339

Oleic acid enriched diet affects the metabolome composition of the hybrid grouper infected with vibriosis

Mon, 05/08/2024 - 12:00
Fish Physiol Biochem. 2024 Aug 5. doi: 10.1007/s10695-024-01389-4. Online ahead of print.ABSTRACTThis study focuses in investigating the fatty acid contents of surviving infected hybrid grouper fed with oleic acid immunostimulant. After a 6-week feeding trial, Epinephelus fuscoguttatus × Epinephelus lanceolatus fingerlings were infected with Vibrio vulnificus. One week after bacterial challenge, fish oil was extracted from body tissue of surviving infected fingerlings using the Soxhlet extraction method. The extracted samples were then sent for GC-MS analysis. The raw GC-MS data were analyzed using software programs and databases (i.e., MetaboAnalyst, SIMCA-P, NIST Library, and KEGG). A total of 39 metabolites were putatively identified, with 18 metabolites derived from the fatty acid group. Our further analysis revealed that most metabolites were highly abundant in the oleic acid dietary samples, including oleic acid (4.56%), 5,8,11-eicosatrienoic acid (3.45%), n-hexadecenoic acid (3.34%), cis-erucic acid (2.76%), and 9-octadecenoic acid (2.5%). Worthy of note, we observed a greater abundance of α-linoleic acid (15.57%) in the control diet samples than in the oleic acid diet samples (14.59%) with no significant difference in their results. The results obtained from this study revealed that surviving infected hybrid grouper expressed more immune-related fatty acids due to the effect of oleic acid immunostimulant. Therefore, in this study, we propose oleic acid as a potential immunostimulant in enhancing fish immunity in aquaculture industry.PMID:39102011 | DOI:10.1007/s10695-024-01389-4

Children of Nature: Thoughts on Targeted and Untargeted Analytical Approaches to Decipher Polyphenol Reactivity in Food Processing and Metabolism

Mon, 05/08/2024 - 12:00
J Agric Food Chem. 2024 Aug 5. doi: 10.1021/acs.jafc.3c09211. Online ahead of print.ABSTRACTFollowing 25 years of polyphenol research in our laboratory, the astonishing chemical and metabolic reactivity of polyphenols resulting in considerable chemical diversity has emerged as the most remarkable attribute of this class of natural products. To illustrate this concept, we will present selected data from black tea and coffee chemistry. In black tea chemistry, enzymatic fermentation converts six catechin derivatives into an estimated 30 000 different polyphenolic compounds via a process we have termed the oxidative cascade process. In coffee roasting, around 45 chlorogenic acids are converted into an estimated 250 novel derivatives following a series of diverse chemical transformations. Following ingestion by humans, these dietary polyphenols, whether genuine secondary metabolites or food processing products, encounter the microorganisms of the gut microbiota, converting them into a myriad of novel structures. In the case of coffee, only two out of 250 chlorogenic acids are absorbed intact, with most others being subject to gut microbial metabolism. Modern mass spectrometry (MS) has been key in unravelling the true complexity of polyphenols subjected to food processing and metabolism. We will accompany this assay with a short overview on analytical strategies developed, including ultrahigh-resolution MS, tandem MS, multivariate statistics, and molecular networking that allow an insight into the fascinating chemical processes surrounding dietary polyphenols. Finally, experimental results studying biological activity of polyphenols will be presented and discussed, highlighting a general promiscuity of this class of compounds associated with nonselective protein binding leading to loss of enzymatic function, another noteworthy general property of many dietary polyphenols frequently overlooked.PMID:39101581 | DOI:10.1021/acs.jafc.3c09211

Transcriptomics and epigenetic data integration learning module on Google Cloud

Mon, 05/08/2024 - 12:00
Brief Bioinform. 2024 Jul 23;25(Supplement_1):bbae352. doi: 10.1093/bib/bbae352.ABSTRACTMulti-omics (genomics, transcriptomics, epigenomics, proteomics, metabolomics, etc.) research approaches are vital for understanding the hierarchical complexity of human biology and have proven to be extremely valuable in cancer research and precision medicine. Emerging scientific advances in recent years have made high-throughput genome-wide sequencing a central focus in molecular research by allowing for the collective analysis of various kinds of molecular biological data from different types of specimens in a single tissue or even at the level of a single cell. Additionally, with the help of improved computational resources and data mining, researchers are able to integrate data from different multi-omics regimes to identify new prognostic, diagnostic, or predictive biomarkers, uncover novel therapeutic targets, and develop more personalized treatment protocols for patients. For the research community to parse the scientifically and clinically meaningful information out of all the biological data being generated each day more efficiently with less wasted resources, being familiar with and comfortable using advanced analytical tools, such as Google Cloud Platform becomes imperative. This project is an interdisciplinary, cross-organizational effort to provide a guided learning module for integrating transcriptomics and epigenetics data analysis protocols into a comprehensive analysis pipeline for users to implement in their own work, utilizing the cloud computing infrastructure on Google Cloud. The learning module consists of three submodules that guide the user through tutorial examples that illustrate the analysis of RNA-sequence and Reduced-Representation Bisulfite Sequencing data. The examples are in the form of breast cancer case studies, and the data sets were procured from the public repository Gene Expression Omnibus. The first submodule is devoted to transcriptomics analysis with the RNA sequencing data, the second submodule focuses on epigenetics analysis using the DNA methylation data, and the third submodule integrates the two methods for a deeper biological understanding. The modules begin with data collection and preprocessing, with further downstream analysis performed in a Vertex AI Jupyter notebook instance with an R kernel. Analysis results are returned to Google Cloud buckets for storage and visualization, removing the computational strain from local resources. The final product is a start-to-finish tutorial for the researchers with limited experience in multi-omics to integrate transcriptomics and epigenetics data analysis into a comprehensive pipeline to perform their own biological research.This manuscript describes the development of a resource module that is part of a learning platform named ``NIGMS Sandbox for Cloud-based Learning'' https://github.com/NIGMS/NIGMS-Sandbox. The overall genesis of the Sandbox is described in the editorial NIGMS Sandbox [16] at the beginning of this Supplement. This module delivers learning materials on the analysis of bulk and single-cell ATAC-seq data in an interactive format that uses appropriate cloud resources for data access and analyses.PMID:39101486 | DOI:10.1093/bib/bbae352

Pages