Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

An iron rheostat controls hematopoietic stem cell fate

Sun, 25/02/2024 - 12:00
Cell Stem Cell. 2024 Feb 19:S1934-5909(24)00041-9. doi: 10.1016/j.stem.2024.01.011. Online ahead of print.ABSTRACTMechanisms governing the maintenance of blood-producing hematopoietic stem and multipotent progenitor cells (HSPCs) are incompletely understood, particularly those regulating fate, ensuring long-term maintenance, and preventing aging-associated stem cell dysfunction. We uncovered a role for transitory free cytoplasmic iron as a rheostat for adult stem cell fate control. We found that HSPCs harbor comparatively small amounts of free iron and show the activation of a conserved molecular response to limited iron-particularly during mitosis. To study the functional and molecular consequences of iron restriction, we developed models allowing for transient iron bioavailability limitation and combined single-molecule RNA quantification, metabolomics, and single-cell transcriptomic analyses with functional studies. Our data reveal that the activation of the limited iron response triggers coordinated metabolic and epigenetic events, establishing stemness-conferring gene regulation. Notably, we find that aging-associated cytoplasmic iron loading reversibly attenuates iron-dependent cell fate control, explicating intervention strategies for dysfunctional aged stem cells.PMID:38402617 | DOI:10.1016/j.stem.2024.01.011

Mechanisms of sex differences in Alzheimer's disease

Sun, 25/02/2024 - 12:00
Neuron. 2024 Feb 13:S0896-6273(24)00050-3. doi: 10.1016/j.neuron.2024.01.024. Online ahead of print.ABSTRACTAlzheimer's disease (AD) and the mechanisms underlying its etiology and progression are complex and multifactorial. The higher AD risk in women may serve as a clue to better understand these complicated processes. In this review, we examine aspects of AD that demonstrate sex-dependent effects and delve into the potential biological mechanisms responsible, compiling findings from advanced technologies such as single-cell RNA sequencing, metabolomics, and multi-omics analyses. We review evidence that sex hormones and sex chromosomes interact with various disease mechanisms during aging, encompassing inflammation, metabolism, and autophagy, leading to unique characteristics in disease progression between men and women.PMID:38402606 | DOI:10.1016/j.neuron.2024.01.024

Plasma metabolomics for diagnostic biomarkers on ectopic pregnancy

Sun, 25/02/2024 - 12:00
Scand J Clin Lab Invest. 2024 Feb 25:1-9. doi: 10.1080/00365513.2024.2317763. Online ahead of print.ABSTRACTMetabolomics is a relatively novel omics tool to provide potential biomarkers for early diagnosis of the diseases and to insight the pathophysiology not having discussed ever before. In the present study, an ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) was employed to the plasma samples of Group T1: Patients with ectopic pregnancy diagnosed using ultrasound, and followed-up with beta-hCG level (n = 40), Group T2: Patients with ectopic pregnancy diagnosed using ultrasound, underwent surgical treatment and confirmed using histopathology (n = 40), Group P: Healthy pregnant women (n = 40) in the first prenatal visit of pregnancy, Group C: Healthy volunteers (n = 40) scheduling a routine gynecological examination. Metabolite extraction was performed using 3 kDa pores - Amicon® Ultra 0.5 mL Centrifugal Filters. A gradient elution program (mobile phase composition was water and acetonitrile consisting of 0.1% formic acid) was applied using a C18 column (Agilent Zorbax 1.8 μM, 100 x 2.1 mm). Total analysis time was 25 min when the flow rate was 0.2 mL/min. The raw data was processed through XCMS - R program language edition where the optimum parameters detected using Isotopologue Parameter Optimization (IPO). The potential metabolites were identified using MetaboAnalyst 5.0 and finally 27 metabolites were evaluated to be proposed as potential biomarkers to be used for the diagnosis of ectopic pregnancy.PMID:38402583 | DOI:10.1080/00365513.2024.2317763

RT-Transformer: Retention time prediction for metabolite annotation to assist in metabolite identification

Sun, 25/02/2024 - 12:00
Bioinformatics. 2024 Feb 24:btae084. doi: 10.1093/bioinformatics/btae084. Online ahead of print.ABSTRACTMOTIVATION: Liquid chromatography retention times prediction can assist in metabolite identification, which is a critical task and challenge in non-targeted metabolomics. However, different chromatographic conditions may result in different retention times for the same metabolite. Current retention time prediction methods lack sufficient scalability to transfer from one specific chromatographic method to another.RESULTS: Therefore, we present RT-Transformer, a novel deep neural network model coupled with graph attention network and 1D-Transformer, which can predict retention times under any chromatographic methods. First, we obtain a pre-trained model by training RT-Transformer on the large small molecule retention time dataset containing 80038 molecules, and then transfer the resulting model to different chromatographic methods based on transfer learning. When tested on the small molecule retention time dataset, as other authors did, the average absolute error reached 27.30 after removing not retained molecules. Still, it reached 33.41 when no samples were removed. The pre-trained RT-Transformer was further transferred to 5 datasets corresponding to different chromatographic conditions and fine-tuned. According to the experimental results, RT-Transformer achieves competitive performance compared to state-of-the-art methods. In addition, RT-Transformer was applied to 41 external molecular retention time datasets. Extensive evaluations indicate that RT-Transformer has excellent scalability in predicting retention times for liquid chromatography and improves the accuracy of metabolite identification.AVAILABILITY AND IMPLEMENTATION: The source code for the model is available at https://github.com/01dadada/RT-Transformer.The web server is available at https://huggingface.co/spaces/Xue-Jun/RT-Transformer.SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.PMID:38402516 | DOI:10.1093/bioinformatics/btae084

Metabolomics approach for phenolic compounds profiling of soursop (Annona muricata L.) fruit during postharvest storage

Sun, 25/02/2024 - 12:00
Metabolomics. 2024 Feb 25;20(2):26. doi: 10.1007/s11306-024-02093-3.ABSTRACTINTRODUCTION: Soursop (Annona muricata L.) is a crop with medicinal properties and numerous bioactive compounds. Ripening is a complex process that regulates fruit quality and changes in metabolite content, such as flavonoids, polyphenols, and organic acids.OBJECTIVES: This study aimed to analyze the phenolic profiling of soursop fruit ripening.METHODS: The metabolic changes in different days of storage of soursop fruits were investigated using a semi-metabolomic approach based on ultra-performance liquid chromatography coupled to electrospray ionization quadrupole-time of flight mass spectrometry (UPLC-ESI-QTOF-MS). Further, multivariate analysis such as supervised partial least squares discriminant analysis (PLS-DA) was conducted to identify differential metabolites.RESULTS: A total of 68 metabolites were identified in soursop fruit during postharvest storage. A higher number of metabolites were identified in the Day zero (D0) compared to the Day one (D1), Day three (D3), and Day five (D5), belonging to flavonoids, other polyphenols, phenolic acids, and organic acids. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the pathways of flavone and flavonol biosynthesis, flavonoid biosynthesis, and biosynthesis of secondary metabolites were mostly enriched. Additionally, we included all the compounds and their postharvest storage in the public Phenolics profile database.CONCLUSIONS: Here, we show that the stage of ripening has a significant effect on the phenolic content, highlighting the point of cut (D0) and the onset of senescence (D5). The findings of this study provide new insights into the soursop fruit quality and may contribute to the identification of metabolic markers for its storage.PMID:38402513 | DOI:10.1007/s11306-024-02093-3

Acute venous thromboembolism plasma and red blood cell metabolomic profiling reveals potential new early diagnostic biomarkers: observational clinical study

Sat, 24/02/2024 - 12:00
J Transl Med. 2024 Feb 24;22(1):200. doi: 10.1186/s12967-024-04883-8.ABSTRACTBACKGROUND: Venous thromboembolism (VTE) is a leading cause of cardiovascular mortality. The diagnosis of acute VTE is based on complex imaging exams due to the lack of biomarkers. Recent multi-omics based research has contributed to the development of novel biomarkers in cardiovascular diseases. Our aim was to determine whether patients with acute VTE have differences in the metabolomic profile compared to non-acute VTE.METHODS: This observational trial included 62 patients with clinical suspicion of acute deep vein thrombosis or pulmonary embolism, admitted to the emergency room. There were 50 patients diagnosed with acute VTE and 12 with non-acute VTE conditions and no significant differences were found between the two groups for clinical and demographic characteristics. Metabolomics assays identified and quantified a final number of 91 metabolites in plasma and 55 metabolites in red blood cells (RBCs). Plasma from acute VTE patients expressed tendency to a specific metabolomic signature, with univariate analyses revealing 23 significantly different molecules between acute VTE patients and controls (p < 0.05). The most relevant metabolic pathway with the strongest impact on the acute VTE phenotype was D-glutamine and D-glutamate (p = 0.001, false discovery rate = 0.06). RBCs revealed a specific metabolomic signature in patients with a confirmed diagnosis of DVT or PE that distinguished them from other acutely diseased patients, represented by 20 significantly higher metabolites and four lower metabolites. Three of those metabolites revealed high performant ROC curves, including adenosine 3',5'-diphosphate (AUC 0.983), glutathione (AUC 0.923), and adenine (AUC 0.91). Overall, the metabolic pathway most impacting to the differences observed in the RBCs was the purine metabolism (p = 0.000354, false discovery rate = 0.68).CONCLUSIONS: Our findings show that metabolite differences exist between acute VTE and nonacute VTE patients admitted to the ER in the early phases. Three potential biomarkers obtained from RBCs showed high performance for acute VTE diagnosis. Further studies should investigate accessible laboratory methods for the future daily practice usefulness of these metabolites for the early diagnosis of acute VTE in the ER.PMID:38402378 | DOI:10.1186/s12967-024-04883-8

A genome-reduced Corynebacterium glutamicum derivative discloses a hidden pathway relevant for 1,2-propanediol production

Sat, 24/02/2024 - 12:00
Microb Cell Fact. 2024 Feb 24;23(1):62. doi: 10.1186/s12934-024-02337-w.ABSTRACTBACKGROUND: 1,2-propanediol (1,2-PDO) is widely used in the cosmetic, food, and drug industries with a worldwide consumption of over 1.5 million metric tons per year. Although efforts have been made to engineer microbial hosts such as Corynebacterium glutamicum to produce 1,2-PDO from renewable resources, the performance of such strains is still improvable to be competitive with existing petrochemical production routes.RESULTS: In this study, we enabled 1,2-PDO production in the genome-reduced strain C. glutamicum PC2 by introducing previously described modifications. The resulting strain showed reduced product formation but secreted 50 ± 1 mM D-lactate as byproduct. C. glutamicum PC2 lacks the D-lactate dehydrogenase which pointed to a yet unknown pathway relevant for 1,2-PDO production. Further analysis indicated that in C. glutamicum methylglyoxal, the precursor for 1,2-PDO synthesis, is detoxified with the antioxidant native mycothiol (MSH) by a glyoxalase-like system to lactoylmycothiol and converted to D-lactate which is rerouted into the central carbon metabolism at the level of pyruvate. Metabolomics of cell extracts of the empty vector-carrying wildtype, a 1,2-PDO producer and its derivative with inactive D-lactate dehydrogenase identified major mass peaks characteristic for lactoylmycothiol and its precursors MSH and glucosaminyl-myo-inositol, whereas the respective mass peaks were absent in a production strain with inactivated MSH synthesis. Deletion of mshA, encoding MSH synthase, in the 1,2-PDO producing strain C. glutamicum ΔhdpAΔldh(pEKEx3-mgsA-yqhD-gldA) improved the product yield by 56% to 0.53 ± 0.01 mM1,2-PDO mMglucose-1 which is the highest value for C. glutamicum reported so far.CONCLUSIONS: Genome reduced-strains are a useful basis to unravel metabolic constraints for strain engineering and disclosed in this study the pathway to detoxify methylglyoxal which represents a precursor for 1,2-PDO production. Subsequent inactivation of the competing pathway significantly improved the 1,2-PDO yield.PMID:38402147 | DOI:10.1186/s12934-024-02337-w

A metabolome-wide Mendelian randomization study identifies dysregulated arachidonic acid synthesis as a potential causal risk factor for bipolar disorder

Sat, 24/02/2024 - 12:00
Biol Psychiatry. 2024 Feb 22:S0006-3223(24)01106-5. doi: 10.1016/j.biopsych.2024.02.1005. Online ahead of print.ABSTRACTBACKGROUND: Bipolar disorder (BPD) is a debilitating mood disorder with an unclear aetiology. A better understanding of the underlying pathophysiological mechanisms will help to identify novel targets for improved treatment options and prevention strategies. In this metabolome-wide Mendelian randomization study, we screened for metabolites that may have a causal role in BPD.METHODS: We tested a total of 913 circulating metabolite exposures assessed in 14,296 Europeans using a mass spectrometry-based platform. For the BPD outcome, we used summary data from the largest and most recent genome-wide association study (GWAS) to date, including 41,917 BPD cases.RESULTS: We identified 33 metabolites associated with BPD (padj<5.48x10-5). Most of them were lipids, including arachidonic acid (β=-0.154, se=0.023, p=3.30x10-11), a polyunsaturated omega-6 fatty acid, along with several complex lipids containing either an arachidonic or a linoleic fatty acid side chain. These associations did not extend to other closely related psychiatric disorders like schizophrenia or depression, though they may be involved in the regulation of lithium response. These lipid associations were driven by genetic variants within the FADS1/2/3 gene cluster, which is a robust BPD risk locus encoding a family of fatty acid desaturase enzymes responsible for catalysing the conversion of linoleic into arachidonic acid. Statistical colocalization analyses indicated that 27 of the 33 metabolites share the same genetic aetiology with BPD at the FADS1/2/3 cluster, demonstrating that our findings are not confounded by linkage disequilibrium.CONCLUSIONS: Overall, our findings support the notion that ARA and other polyunsaturated fatty acids may represent potential targets for BPD.PMID:38401803 | DOI:10.1016/j.biopsych.2024.02.1005

Behavioral toxicity of TDCPP in marine zooplankton: Evidence from feeding and swimming responses, molecular dynamics and metabolomics of rotifers

Sat, 24/02/2024 - 12:00
Sci Total Environ. 2024 Feb 22:170864. doi: 10.1016/j.scitotenv.2024.170864. Online ahead of print.ABSTRACTAs new organic flame retardants, chlorinated organophosphate esters (Cl-OPEs) have high water solubility and structural similarity to organophosphate pesticides, posing risks to aquatic organisms. The potential neurotoxicity of Cl-OPEs has attracted attention, especially in marine invertebrates with a relatively simple nervous system. In this study, a marine rotifer with a cerebral ganglion, Brachionus plicatilis, was exposed to tris (1,3-dichloro-2-propyl) phosphate (TDCPP) (two environmental concentrations and one extreme level), and the changes in feeding and swimming behaviors and internal mechanism were explored. Exposure to 1.05 nM TDCPP did not change the filtration and ingestion rates of rotifers and average linear velocity. But 0.42 and 4.20 μM TDCPP inhibited these three parameters and reduced unsaturated fatty acid content, reproduction and population growth. All TDCPP test concentrations suppressed AChE activity, causing excessive accumulation of acetylcholine within rotifers, thereby disturbing the neural innervation of corona cilia. Molecular docking and molecular dynamics revealed that this inhibition was because TDCPP can bind to the catalytic active site of rotifer AChE through van der Waals forces and electrostatic interactions. TRP420 was the leading amino residue in the binding, and GLY207 contributed to a hydrogen bond. Nontargeted metabolomics using LC-MS and GC-MS identified differentially expressed metabolites in TDCPP treatments, mainly from lipid and lipid-like molecules, especially sphingolipids. TDCPP decreased ganglioside content but stimulated ceramide generation and the expression levels of 3 genes related to ceramide de novo synthesis. The mitochondrial membrane potential (MMP) and ATP content decreased, and the electron respiratory chain complex and TCA cycle were deactivated. An inhibitor of ceramide synthase, fumonisin, alleviated MMP and ATP, implying a critical role of ceramide in mitochondrial dysfunction. Thus, TDCPP exposure caused an energy supply deficit affecting ciliary movement and ultimately inhibiting rotifer behaviors. Overall, this study promotes the understanding of the neurotoxicity of Cl-OPEs in marine invertebrates.PMID:38401740 | DOI:10.1016/j.scitotenv.2024.170864

A role of gut-brain axis on prophylactic actions of arketamine in male mice exposed to chronic restrain stress

Sat, 24/02/2024 - 12:00
Pharmacol Biochem Behav. 2024 Feb 22:173736. doi: 10.1016/j.pbb.2024.173736. Online ahead of print.ABSTRACTThe gut-brain axis, which includes gut microbiota and microbiome-derived metabolites, might be implicated in depression. We reported the sustained prophylactic effects of a new antidepressant arketamine in chronic restrain stress (CRS) model of depression. In this study, we investigated the role of gut-brain axis on the prophylactic effects of arketamine in the CRS (7 days) model. Pretreatment with arketamine (10 mg/kg, 1 day prior to the CRS onset) significantly prevented CRS-induced body weight loss, increased immobility time of forced swimming test, decreased sucrose preference of sucrose preference test, and reduced expressions of synaptic proteins (GluA1 and PSD-95) in the prefrontal cortex (PFC) in the male mice. Gut microbiota analysis showed that pretreatment with arketamine might restore altered abundance of gut microbiota in CRS-exposed mice. An untargeted metabolomics analysis revealed four metabolites (e.g., L-leucine, N-acetyl-l-glutamine, 2-(2,4-dichlorophenyl)-3-[4-(dimethylamino)phenyl]acrylonitrile, L-threonine amide) that were altered between control and CRS group; however, there were found to be altered between the saline + CRS group and the arketamine + CRS group. Network analysis demonstrated correlations among synaptic proteins in the PFC and certain microbiota, and blood metabolites. These findings suggest that gut-brain axis, including its metabolites, might partially contribute to the persistent prophylactic effects of arketamine in the CRS model.PMID:38401573 | DOI:10.1016/j.pbb.2024.173736

Multiomics insights into the female reproductive aging

Sat, 24/02/2024 - 12:00
Ageing Res Rev. 2024 Feb 22:102245. doi: 10.1016/j.arr.2024.102245. Online ahead of print.ABSTRACTThe human female reproductive lifespan significantly diminishes with age, leading to decreased fertility, reduced fertility quality and endocrine function disorders. While many aspects of aging in general have been extensively documented, the precise mechanisms governing programmed aging in the female reproductive system remain elusive. Recent advancements in omics technologies and computational capabilities have facilitated the emergence of multiomics deep phenotyping. Through the application and refinement of various high-throughput histological methods, a substantial volume of omics data has been generated, deepening our comprehension of the pathogenesis and molecular underpinnings of reproductive aging. This review highlights current and emerging multiomics approaches for investigating female reproductive aging, encompassing genomics, epigenomics, transcriptomics, proteomics, metabolomics, and microbiomics. We elucidate their influence on fundamental cell biology and translational research in the context of reproductive aging, address the limitations and current challenges associated with multiomics studies, and offer a glimpse into future prospects.PMID:38401570 | DOI:10.1016/j.arr.2024.102245

CT-guided high dose rate brachytherapy can induce multiple systemic proteins of proliferation and angiogenesis predicting outcome in HCC

Sat, 24/02/2024 - 12:00
Transl Oncol. 2024 Feb 23;43:101919. doi: 10.1016/j.tranon.2024.101919. Online ahead of print.ABSTRACTBACKGROUND AND PURPOSE: To determine the potential prognostic value of proliferation and angiogenesis plasma proteins following CT-guided high dose rate brachytherapy (HDR-BT) of hepatocellular carcinoma (HCC).MATERIALS AND METHODS: For this prospective study, HDR-BT (1 × 15 Gy) was administered to 24 HCC patients. Plasma was obtained and analyzed using an Olink proteomics Target-96 immuno-oncology-panel that included multiple markers of angiogenesis and proliferation. Fold-change (FC) ratios were calculated by comparing baseline and 48 h post HDR-BT paired samples. Patients were classified as responders (n = 12) if they had no local progression within 6 months or systemic progression within 2 years. Non-responders (n = 12) had recurrence within 6 months and/or tumor progression or extrahepatic disease within 2 years.RESULTS: Proliferation marker EGF was significantly elevated in non-responders compared to responders (p = 0.0410) while FGF-2, HGF, and PlGF showed no significant differences. Angiogenesis markers Angiopoietin-1 and PDGF-B were likewise significantly elevated in non-responders compared to responders (p = 0.0171, p = 0.0462, respectively) while Angiopoietin-2, VEGF-A, and VEGFR-2 did not differ significantly. Kaplan-Meier analyses demonstrated significantly shorter time to systemic progression in patients with increased EGF and Angiopoietin-1 (p = 0.0185, both), but not in patients with one of the remaining proteins elevated (all p > 0.1). Pooled analysis for these 9 proteins showed significantly shorter time to systemic progression for FC ≥1.3 and ≥1.5 for at least 3 proteins elevated (p = 0.0415, p = 0.0193, respectively).CONCLUSION: Increased plasma levels of EGF and Angiopoietin-1 after HDR-BT for HCC are associated with poor response and may therefore function as predictive biomarkers of outcome.PMID:38401507 | DOI:10.1016/j.tranon.2024.101919

Integrative chemical, physiological, and metabolomics analyses reveal nanospecific phytotoxicity of metal nanoparticles

Sat, 24/02/2024 - 12:00
J Environ Manage. 2024 Feb 23;354:120338. doi: 10.1016/j.jenvman.2024.120338. Online ahead of print.ABSTRACTThe increasing application of metal nanoparticles (NPs) via agrochemicals and sewage sludge results in non-negligible phytotoxicological risks. Herein, the potential phytotoxicity of ZnO and CuO NPs on wheat was determined using integrative chemical, physiological, and metabolomics analyses, in comparison to Zn2+ and Cu2+. It was found that ZnO or CuO NPs had a stronger inhibitory effect on wheat growth than Zn2+ or Cu2+. After exposure to ZnO or CuO NPs, wheat seedlings accumulated significantly higher levels of Zn or Cu than the corresponding Zn2+ or Cu2+ treatments, indicating the active uptake of NPs via wheat root. TEM analysis further confirmed the intake of NPs. Moreover, ZnO or CuO NPs exposure altered micronutrients (Fe, Mn, Cu, and Zn) accumulation in the tissues and decreased the activities of antioxidant enzymes. The metabolomics analysis identified 312, 357, 145, and 188 significantly changed metabolites (SCMs) in wheat root exposed to ZnO NPs, CuO NPs, Zn2+, and Cu2+, respectively. Most SCMs were nano-specific to ZnO (80%) and CuO NPs (58%), suggesting greater metabolic reprogramming by NPs than metal ions. Overall, nanospecific toxicity dominated the phytotoxicity of ZnO and CuO NPs, and our results provide a molecular perspective on the phytotoxicity of metal oxide NPs.PMID:38401494 | DOI:10.1016/j.jenvman.2024.120338

Biomarker discovery and validation for gastrointestinal tumors: A comprehensive review of colorectal, gastric, and liver cancers

Sat, 24/02/2024 - 12:00
Pathol Res Pract. 2024 Feb 16;255:155216. doi: 10.1016/j.prp.2024.155216. Online ahead of print.ABSTRACTGastrointestinal (GI) malignancies, encompassing gastric, hepatic, colonic, and rectal cancers, are prevalent forms of cancer globally and contribute substantially to cancer-related mortality. Although there have been improvements in methods for diagnosing and treating GI cancers, the chances of survival for these types of cancers are still extremely low. According to the World Cancer Research International Fund's most recent figures, stomach cancer was responsible for roughly one million deaths worldwide in 2020. This emphasizes the importance of developing more effective tools for detecting, diagnosing, and predicting the outcome of these cancers at an early stage. Biomarkers, quantitative indications of biological processes or disease states, have emerged as promising techniques for enhancing the diagnosis and prognosis of GI malignancies. Recently, there has been a considerable endeavor to discover and authenticate biomarkers for various GI cancers by the utilization of diverse methodologies, including genomics, proteomics, and metabolomics. This review provides a thorough examination of the current state of biomarker research in the field of gastrointestinal malignancies, with a specific emphasis on colorectal, stomach, and liver cancers. A thorough literature search was performed on prominent databases such as PubMed, Scopus, and Web of Science to find pertinent papers published until November, 2023 for the purpose of compiling this review. The diverse categories of biomarkers, encompassing genetic, epigenetic, and protein-based biomarkers, and their potential utility in the fields of diagnosis, prognosis, and treatment selection, are explored. Recent progress in identifying and confirming biomarkers, as well as the obstacles that persist in employing biomarkers in clinical settings are emphasized. The utilization of biomarkers in GI cancers has significant potential in enhancing patient outcomes. Ongoing research is expected to uncover more efficient biomarkers for the diagnosis and prognosis of these cancers.PMID:38401376 | DOI:10.1016/j.prp.2024.155216

Metabolomic analysis reveals biogenic selenium nanoparticles improve the meat quality of thigh muscle in heat-stressed broilers is related to the regulation of ferroptosis pathway

Sat, 24/02/2024 - 12:00
Poult Sci. 2024 Feb 15;103(4):103554. doi: 10.1016/j.psj.2024.103554. Online ahead of print.ABSTRACTHeat stress (HS) causes oxidative damage and abnormal metabolism of muscle, thus impairing the meat quality in broilers. Selenium is an indispensable element for enhancing antioxidant systems. In our previous study, we synthesized a novel type of biogenic selenium nanoparticles synthesized with alginate oligosaccharides (SeNPs-AOS), and found that the particle size of Se is 80 nm and the Se content is 8% in the SeNPs-AOS; and dietary 5 mg/kg SeNPs-AOS has been shown to be effective against HS in broilers. However, whether SeNPs-AOS can mitigate HS-induced the impairment of thigh muscle quality in broilers is still unclear. Therefore, the purpose of this study was to investigate the protective effects of dietary SeNPs-AOS on meat quality, antioxidant capacity, and metabolomics of thigh muscle in broilers under HS. A total of 192 twenty-one-day-old Arbor Acres broilers were randomly divided into 4 groups with 6 replicates per group (8 broilers per replicate) according to a 2 × 2 experimental design: thermoneutral group (TN, broilers raised under 23±1.5°C); TN+SeNPs-AOS group (TN group supplemented 5 mg/kg SeNPS-AOS); HS group (broilers raised under 33 ± 2°C for 10 h/d); and HS + SeNPs-AOS group (HS group supplemented 5 mg/kg SeNPS-AOS). The results showed that HS increased the freezing loss, cooking loss, and malondialdehyde (MDA) content of thigh muscle, whereas decreased the total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activities, as well as downregulated the mRNA expression of SOD2, CAT, GPX3, nuclear factor erythroid 2-related factor 2 (Nrf2), selenoprotein S (SELENOS), solute carrier family 7 member 11 (SLC7A11), GPX4, and ferroportin 1 (Fpn1) of thigh muscle (P < 0.05). Dietary SeNPS-AOS reduced the b* value, elevated the pH0min value and the activities of T-SOD, GSH-Px, glutathione S-transferase (GST) and the mRNA expression levels of GSTT1, GSTA3, GPX1, GPX3, ferritin heavy polypeptide-1 (FTH1), and Fpn1 of thigh muscle in broilers under HS (P < 0.05). Nontargeted metabolomics analysis identified a total of 79 metabolites with significant differences among the four groups, and the differential metabolites were mainly enriched in 8 metabolic pathways including glutathione metabolism and ferroptosis (P < 0.05). In summary, dietary 5 mg/kg SeNPs-AOS (Se content of 8%) could alleviate HS-induced impairment of meat quality by improving the oxidative damage, metabolic disorders and ferroptosis of thigh muscle in broilers challenged with HS. Suggesting that the SeNPs-AOS may be used as a novel nano-modifier for meat quality in broilers raised in thermal environment.PMID:38401225 | DOI:10.1016/j.psj.2024.103554

Novel sulfonamide-indolinone hybrids targeting mitochondrial respiration of breast cancer cells

Sat, 24/02/2024 - 12:00
Eur J Med Chem. 2024 Feb 17;268:116255. doi: 10.1016/j.ejmech.2024.116255. Online ahead of print.ABSTRACTBreast cancer (BC) still poses a threat worldwide which demands continuous efforts to present safer and efficacious treatment options via targeted therapy. Beside kinases' aberrations as Aurora B kinase which controls cell division, BC adopts distinct metabolic profiles to meet its high energy demands. Accordingly, targeting both aurora B kinase and/or metabolic vulnerability presents a promising approach to tackle BC. Based on a previously reported indolinone-based Aurora B kinase inhibitor (III), and guided by structural modification and SAR investigation, we initially synthesized 11 sulfonamide-indolinone hybrids (5a-k), which showed differential antiproliferative activities against the NCI-60 cell line panel with BC cells displaying preferential sensitivity. Nonetheless, modest activity against Aurora B kinase (18-49% inhibition) was noted at 100 nM. Screening of a representative derivative (5d) against 17 kinases, which are overexpressed in BC, failed to show significant activity at 1 μM concentration, suggesting that kinase inhibitory activity only played a partial role in targeting BC. Bioinformatic analyses of genome-wide transcriptomics (RNA-sequencing), metabolomics, and CRISPR loss-of-function screens datasets suggested that indolinone-completely responsive BC cell lines (MCF7, MDA-MB-468, and T-47D) were more dependent on mitochondrial oxidative phosphorylation (OXPHOS) compared to partially responsive BC cell lines (MDA-MB-231, BT-549, and HS 578 T). An optimized derivative, TC11, obtained by molecular hybridization of 5d with sunitinib polar tail, manifested superior antiproliferative activity and was used for further investigations. Indeed, TC11 significantly reduced/impaired the mitochondrial respiration, as well as mitochondria-dependent ROS production of MCF7 cells. Furthermore, TC11 induced G0/G1 cell cycle arrest and apoptosis of MCF7 BC cells. Notably, anticancer doses of TC11 did not elicit cytotoxic effects on normal cardiomyoblasts and hepatocytes. Altogether, these findings emphasize the therapeutic potential of targeting the metabolic vulnerability of OXPHOS-dependent BC cells using TC11 and its related sulfonamide-indolinone hybrids. Further investigation is warranted to identify their precise/exact molecular target.PMID:38401190 | DOI:10.1016/j.ejmech.2024.116255

PRMT1 acts as a suppressor of MHC-I and anti-tumor immunity

Sat, 24/02/2024 - 12:00
Cell Rep. 2024 Feb 23;43(3):113831. doi: 10.1016/j.celrep.2024.113831. Online ahead of print.ABSTRACTCancer immunotherapies have demonstrated remarkable success; however, the majority of patients do not respond or develop resistance. Here, we conduct epigenetic gene-targeted CRISPR-Cas9 screens to identify epigenomic factors that limit CD8+ T cell-mediated anti-tumor immunity. We identify that PRMT1 suppresses interferon gamma (Ifnγ)-induced MHC-I expression, thus dampening CD8+ T cell-mediated killing. Indeed, PRMT1 knockout or pharmacological targeting of type I PRMT with the clinical inhibitor GSK3368715 enhances Ifnγ-induced MHC-I expression through elevated STAT1 expression and activation, while re-introduction of PRMT1 in PRMT1-deficient cells reverses this effect. Importantly, loss of PRMT1 enhances the efficacy of anti-PD-1 immunotherapy, and The Cancer Genome Atlas analysis reveals that PRMT1 expression in human melanoma is inversely correlated with expression of human leukocyte antigen molecules, infiltration of CD8+ T cells, and overall survival. Taken together, we identify PRMT1 as a negative regulator of anti-tumor immunity, unveiling clinical type I PRMT inhibitors as immunotherapeutic agents or as adjuncts to existing immunotherapies.PMID:38401121 | DOI:10.1016/j.celrep.2024.113831

Multi-Omics Analysis Reveals the Role of Changes in Platelet Activation Pathways in the Survival Outcome of Patients with Esophageal Squamous Cell Carcinoma

Sat, 24/02/2024 - 12:00
Altern Ther Health Med. 2024 Feb 9:AT10173. Online ahead of print.ABSTRACTOBJECTIVE: The objective of this study was to integrate metabolomics and transcriptomics data to identify key diagnostic and prognostic markers for esophageal squamous cell carcinoma (ESCC). Plasma samples were collected from 85 ESCC patients at different stages and 50 healthy volunteers for non-targeted metabolomic analysis.METHODS: Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was employed for non-targeted metabolomic analysis. Subsequently, we integrated the metabolomic data with transcriptomic data from the Gene Expression Omnibus (GEO) and prognosis data from The Cancer Genome Atlas Program (TCGA) to perform pathway analysis. Our focus was on pathways that involve both metabolites and upstream genes, as they often exhibit higher accuracy.RESULTS: Through the integration of metabolomics and transcriptomics, we identified significant alterations in the platelet activation pathway in ESCC. This pathway involves the participation of both metabolites and genes, making it a more accurate reflection of pathological changes associated with the disease. Notably, metabolite arachidonic acid (AA) and chemokine receptor type 2(CXCR2) were significantly downregulated in ESCC, while genes collagen type I alpha 1(COL1A1), collagen type I alpha 2(COL1A2), collagen type III alpha 1(COL3A1), type 3 inositol 1,4,5-trisphosphate receptor (ITPR3), and insulin-like growth factor II mRNA binding protein 3(IGF2BP3) were significantly upregulated, indicating the presence of tumor-induced platelet activation in ESCC. Further analysis of prognosis data revealed that high expression of COL1A1, IGF2BP3, and ITPR3 was associated with a favorable prognosis for ESCC, while high CXCR2 expression was linked to an adverse prognosis. In addition, we combined COL1A1, ITPR3, IGF2BP3, CXCR2, and AA to form a diagnostic biomarker panel. The receiver operating characteristic curve (ROC) demonstrated excellent diagnostic capability (AUC=0.987).CONCLUSION: Our study underscores the significant role of platelet activation pathways and related genes in the diagnosis and prognosis of ESCC patients. These findings offer promising insights for improving the clinical management of ESCC.PMID:38401086

Transcriptomics and Metabolomics Unveil the Neuroprotection Mechanism of AnGong NiuHuang (AGNH) Pill Against Ischaemic Stroke Injury

Sat, 24/02/2024 - 12:00
Mol Neurobiol. 2024 Feb 24. doi: 10.1007/s12035-024-04016-8. Online ahead of print.ABSTRACTAs a famous prescription in China, AnGong NiuHuang (AGNH) pill exerts good neuroprotection for ischaemic stroke (IS), but its mechanism is still unclear. In this study, the neuroprotection of AGNH was evaluated in the rat IS model which were established with the surgery of middle cerebral artery occlusion (MCAO), and the potential mechanism was elucidated by transcriptomic analysis and metabolomic analysis. AGNH treatment obviously decreased the infarct volume and Zea-Longa 5-point neurological deficit scores, improved the survival percentage of rats, regional cerebral blood flow (rCBF), and rat activity distance and activity time. Transcriptomics showed that AGNH exerted its anti-inflammatory effects by affecting the regulatory network including Tyrobp, Syk, Tlr2, Myd88 and Ccl2 as the core. Integrating transcriptomics and metabolomics identified 8 key metabolites regulated by AGNH, including L-histidine, L-serine, L-alanine, fumaric acid, malic acid, and N-(L-arginino) succinate, 1-pyrroline-4-hydroxy-2-carboxylate and 1-methylhistamine in the rats with IS. Additionally, AGNH obviously reduced Tyrobp, Syk, Tlr2, Myd88 and Ccl2 at both the mRNA and protein levels, decreased IL-1β, KC-GRO, IL-13, TNF-α, cleaved caspase 3 and p65 nucleus translocation, but increased IκBα expression. Network pharmacology analysis showed that quercetin, beta-sitosterol, baicalein, naringenin, acacetin, berberine and palmatine may play an important role in protecting against IS. Taken together, this study reveals that AGNH reduced neuroinflammation and protected against IS by inhibiting Tyrobp/Syk and Tlr2/Myd88, as well as NF-κB signalling pathway and regulating multiple metabolites.PMID:38401045 | DOI:10.1007/s12035-024-04016-8

Proteomic Analysis of the <em>Mycobacterium tuberculosis</em> Outer Membrane for Potential Implications in Uptake of Small Molecules

Sat, 24/02/2024 - 12:00
ACS Infect Dis. 2024 Feb 24. doi: 10.1021/acsinfecdis.3c00517. Online ahead of print.ABSTRACTIncreased resistance to current antimycobacterial agents and a potential bias toward relatively hydrophobic chemical entities highlight an urgent need to understand how current anti-TB drugs enter the tubercle bacilli. While inner membrane proteins are well-studied, how small molecules cross the impenetrable outer membrane remains unknown. Here, we employed mass spectrometry-based proteomics to show that octyl-β-d-glucopyranoside selectively extracts the outer membrane proteins of Mycobacterium tuberculosis. Differentially expressed proteins between nutrient-replete and nutrient-depleted conditions were enriched to identify proteins involved in nutrient uptake. We demonstrate cell surface localization of seven new proteins using immunofluorescence and show that overexpression of the proteins LpqY and ProX leads to hypersensitivity toward streptomycin, while overexpression of SubI, SpmT, and Rv2041 exhibited higher membrane permeability, assessed through an EtBr accumulation assay. Further, proton NMR metabolomics suggests the role of six outer membrane proteins in glycerol uptake. This study identifies several outer membrane proteins that are involved in the permeation of small hydrophilic molecules and are potential targets for enhancing the uptake and efficacy of anti-TB drugs.PMID:38400924 | DOI:10.1021/acsinfecdis.3c00517

Pages