Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Biochemical foundation of the aroma and antioxidant activity of Indian traditional rice landrace Maharaji and the effect of radiation-induced mutagenesis on its metabolome

Sun, 04/08/2024 - 12:00
Food Chem. 2024 Jul 30;460(Pt 3):140668. doi: 10.1016/j.foodchem.2024.140668. Online ahead of print.ABSTRACTMaharaji rice, an aromatic variety with medium slender grains, is traditionally cultivated in the central regions of India. This study aimed to identify the biochemical compounds responsible for Maharaji rice's distinctive fragrance and enhance its agro-morphological traits through mutation breeding. Using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) analysis, forty major metabolites were identified which may be responsible for its characteristic aroma. The bioactive compounds included terpenes, flavonoids, and amino acids. Maharaji brown rice extract exhibited potent radical scavenging activity. Radiation-induced mutation breeding improved the agro-morphological traits and also triggered biochemical diversification in different mutants. Maharaji Mutant-2 exhibited improved aroma due to higher abundance of aromatic compounds, improved yield and morphological characters as compared to the parent. This study, for the first time identifies the compounds associated with the characteristic aroma of Maharaji rice. Global metabolomics may, therefore, expedite the selection of mutants with suitable aroma and desirable biological properties.PMID:39098217 | DOI:10.1016/j.foodchem.2024.140668

Metabolomic and biochemical disorders reveal the toxicity of environmental microplastics and benzo[a]pyrene in the marine polychaete Hediste diversicolor

Sun, 04/08/2024 - 12:00
J Hazard Mater. 2024 Aug 2;477:135404. doi: 10.1016/j.jhazmat.2024.135404. Online ahead of print.ABSTRACTRecently, the abundance of environmental microplastics (MPs) has become a global paramount concern. Besides the danger of MPs for biota due to their tiny size, these minute particles may act as vectors of other pollutants. This study focused on evaluating the toxicity of environmentally relevant concentrations of MPs (10 and 50 mg/kg sediment) and benzo[a]pyrene (B[a]P, 1 µg/kg sediment), alone and in mixture, for 3 and 7 days in marine polychaete Hediste diversicolor, selected as a benthic bioindicator model. The exposure period was sufficient to confirm the bioaccumulation of both contaminants in seaworms, as well as the potential capacity of plastic particles to adsorb and vehiculate the B[a]P. Interestingly, increase of acidic mucus production was observed in seaworm tissues, indicative of a defense response. The activation of oxidative system pathways was demonstrated as a strategy to prevent lipid peroxidation. Furthermore, the comprehensive Nuclear Magnetic Resonance (NMR)-based metabolomics revealed significant disorders in amino acids metabolism, osmoregulatory process, energetic components, and oxidative stress related elements. Overall, these findings proved the possible synergic harmful effect of MPs and B[a]P even in small concentrations, which increases the concern about their long-term presence in marine ecosystems, and consequently their transfer and repercussions on marine fauna.PMID:39098204 | DOI:10.1016/j.jhazmat.2024.135404

Targeted saliva metabolomics in Sjogren's syndrome

Sun, 04/08/2024 - 12:00
Clinics (Sao Paulo). 2024 Aug 3;79:100459. doi: 10.1016/j.clinsp.2024.100459. Online ahead of print.ABSTRACTOBJECTIVE: Sjögren's Syndrome (SS) is a chronic inflammatory autoimmune exocrinopathy, and although, the role of metabolism in the autoimmune responses has been discussed in diseases such as lupus erythematosus, rheumatoid arthritis, psoriasis and scleroderma. There is a lack of information regarding the metabolic implications of SS. Considering that the disease affects primarily salivary glands; the aim of this study is to evaluate the metabolic changes in the salivary glands' microenvironment using a targeted metabolomics approach.METHODS: The saliva from 10 patients diagnosed with SS by the American-European consensus and 10 healthy volunteers was analyzed in an Ultra-high Performance Liquid Chromatograph Coupled Mass Spectrometry (UPLC-MS).RESULTS: The results showed an increased concentration in SS of metabolites involved in oxidative stress such as lactate, alanine and malate, and amino acids involved in the growth and proliferation of T-cells, such as arginine, leucine valine and isoleucine.CONCLUSIONS: These results revealed that is possible to differentiate the metabolic profile of SS and healthy individuals using a small amount of saliva, which in its turn may reflect the cellular changes observed in the microenvironments of damaged salivary glands from these patients.PMID:39098147 | DOI:10.1016/j.clinsp.2024.100459

NR4A3 prevents diabetes induced atrial cardiomyopathy by maintaining mitochondrial energy metabolism and reducing oxidative stress

Sun, 04/08/2024 - 12:00
EBioMedicine. 2024 Aug 3;106:105268. doi: 10.1016/j.ebiom.2024.105268. Online ahead of print.ABSTRACTBACKGROUND: Atrial cardiomyopathy (ACM) is responsible for atrial fibrillation (AF) and thromboembolic events. Diabetes mellitus (DM) is an important risk factor for ACM. However, the potential mechanism between ACM and DM remains elusive.METHODS: Atrial tissue samples were obtained from patients diagnosed with AF or sinus rhythm (SR) to assess alterations in NR4A3 expression, and then two distinct animal models were generated by subjecting Nr4a3-/- mice and WT mice to a high-fat diet (HFD) and Streptozotocin (STZ), while db/db mice were administered AAV9-Nr4a3 or AAV9-ctrl. Subsequently, in vivo and in vitro experiments were conducted to assess the impact of NR4A3 on diabetes-induced atrial remodeling through electrophysiological, biological, and histological analyses. RNA sequencing (RNA-seq) and metabolomics analysis were employed to unravel the downstream mechanisms.FINDINGS: The expression of NR4A3 was significantly decreased in atrial tissues of both AF patients and diabetic mice compared to their respective control groups. NR4A3 deficiency exacerbated atrial hypertrophy and atrial fibrosis, and increased susceptibility to pacing-induced AF. Conversely, overexpression of NR4A3 alleviated atrial structural remodeling and reduced AF induction rate. Mechanistically, we confirmed that NR4A3 improves mitochondrial energy metabolism and reduces oxidative stress injury by preserving the transcriptional expression of Sdha, thereby exerting a protective influence on atrial remodeling induced by diabetes.INTERPRETATION: Our data confirm that NR4A3 plays a protective role in atrial remodeling caused by diabetes, so it may be a new target for treating ACM.FUNDING: This study was supported by the major research program of National Natural Science Foundation of China (NSFC) No: 82370316 (to Q-S. W.), No. 81974041 (to Y-P. W.), and No. 82270447 (to Y-P. W.) and Fundation of Shanghai Hospital Development Center (No. SHDC2022CRD044 to Q-S. W.).PMID:39098108 | DOI:10.1016/j.ebiom.2024.105268

Bisphenol mixtures, metal mixtures and type 2 diabetes mellitus: Insights from metabolite profiling

Sun, 04/08/2024 - 12:00
Environ Int. 2024 Jul 30;190:108921. doi: 10.1016/j.envint.2024.108921. Online ahead of print.ABSTRACTBACKGROUND: Little is known about the combined effect of bisphenol mixtures and metal mixtures on type 2 diabetes mellitus (T2DM) risk, and the mediating roles of metabolites.METHODS: The study included 606 pairs of T2DM cases and controls matched by age and sex, and information of participants was collected through questionnaires and laboratory tests. Serum bisphenol and plasma metal concentrations were measured using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS/MS) and inductively coupled plasma-mass spectrometry (ICP-MS), respectively. Widely targeted metabolomics was employed to obtain the serum metabolomic profiles. Conditional logistic regression models were used to assess the single associations of bisphenols and metals with T2DM risk after multivariable adjustment. Additionally, the joint effects of bisphenol mixtures and metal mixtures were examined using quantile-based g-computation (QG-C) models. Furthermore, differential metabolites associated with T2DM were identified, and mediation analyses were performed to explore the role of metabolites in the associations of bisphenols and metals with T2DM risk.RESULTS: The results showed bisphenol mixtures were associated with an increased T2DM risk, with bisphenol A (BPA) identified as the primary contributor. While the association between metal mixtures and T2DM remained inconclusive, cobalt (Co), iron (Fe), and zinc (Zn) showed the highest weight indices for T2DM risk. A total of 154 differential metabolites were screened between the T2DM cases and controls. Mediation analyses indicated that 9 metabolites mediated the association between BPA and T2DM, while L-valine mediated the association between Zn and T2DM risk.CONCLUSIONS: The study indicated that BPA, Co, Fe, and Zn were the primary contributors to increased T2DM risk, and metabolites played a mediating role in the associations of BPA and Zn with the risk of T2DM. Our findings contribute to a better understanding of the mechanisms underlying the associations of bisphenols and metals with T2DM.PMID:39098088 | DOI:10.1016/j.envint.2024.108921

Fungal endophytes of Taxus species and regulatory effect of two strains on taxol synthesis

Sat, 03/08/2024 - 12:00
BMC Microbiol. 2024 Aug 3;24(1):291. doi: 10.1186/s12866-024-03445-8.ABSTRACTBACKGROUND: Taxol, derived from Taxus trees, is a valuable natural resource for the development of anticancer drugs. Endophytic fungi from Taxus trees are a promising alternative source of Taxol. However, the impact of plant-endophytic microbial interaction on the host's Taxol biosynthesis is largely unknown.RESULTS: In the current study, the diversity of endophytic fungi in three different Taxus species was analyzed using Internal Transcribed Spacer sequencing. A total of 271 Operational Taxonomic Units (OTUs) were identified, grouping into 2 phyla, 8 classes, 16 orders, 19 families, and 19 genera. Alpha and beta diversity analysis indicated significant differences in endophytic fungal communities among the various Taxus trees. At the genus level, Alternaria and Davidiella were predominantly found in T. mairei and T. media, respectively. By utilizing a previously published dataset, a Pearson correlation analysis was conducted to predict the taxol biosynthesis-related fungal genera. Following screening, two isolates of Alternaria (L7 and M14) were obtained. Effect of inoculation with Alternaria isolates on the gene expression and metabolite accumulation of T. mairei was determined by transcriptomic and untargeted metabolomic studies. The co-inoculation assay suggests that the two Alternaria isolates may have a negative regulatory effect on taxol biosynthesis by influencing hormone signaling pathways.CONCLUSION: Our findings will serve as a foundation for advancing the production and utilization of Taxus and will also aid in screening endophytic fungi related to taxol production.PMID:39097685 | DOI:10.1186/s12866-024-03445-8

Integrated metabolomic and transcriptomic analysis reveals biosynthesis mechanism of flavone and caffeoylquinic acid in chrysanthemum

Sat, 03/08/2024 - 12:00
BMC Genomics. 2024 Aug 3;25(1):759. doi: 10.1186/s12864-024-10676-6.ABSTRACTBACKGROUND: Chrysanthemum morifolium 'HangBaiJu', a popular medicinal and edible plant, exerts its biological activities primarily through the presence of flavones and caffeoylquinic acids (CQAs). However, the regulatory mechanism of flavone and CQA biosynthesis in the chrysanthemum capitulum remains unclear.RESULTS: In this study, the content of flavones and CQAs during the development of chrysanthemum capitulum was determined by HPLC, revealing an accumulation pattern with higher levels at S1 and S2 and a gradual decrease at S3 to S5. Transcriptomic analysis revealed that CmPAL1/2, CmCHS1/2, CmFNS, CmHQT, and CmHCT were key structural genes in flavones and CQAs biosynthesis. Furthermore, weighted gene co-expression correlation network analysis (WGCNA), k-means clustering, correlation analysis and protein interaction prediction were carried out in this study to identify transcription factors (TFs) associated with flavone and CQA biosynthesis, including MYB, bHLH, AP2/ERF, and MADS-box families. The TFs CmERF/PTI6 and CmCMD77 were proposed to act as upstream regulators of CmMYB3 and CmbHLH143, while CmMYB3 and CmbHLH143 might form a complex to directly regulate the structural genes CmPAL1/2, CmCHS1/2, CmFNS, CmHQT, and CmHCT, thereby controlling flavone and CQA biosynthesis.CONCLUSIONS: Overall, these findings provide initial insights into the TF regulatory network underlying flavones and CQAs accumulation in the chrysanthemum capitulum, which laid a theoretical foundation for the quality improvement of C. morifolium 'HangBaiJu' and the high-quality development of the industry.PMID:39097683 | DOI:10.1186/s12864-024-10676-6

Quantification of 700 mycotoxins and other secondary metabolites of fungi and plants in grain products

Sat, 03/08/2024 - 12:00
NPJ Sci Food. 2024 Aug 3;8(1):49. doi: 10.1038/s41538-024-00294-7.ABSTRACTThis work reports on the validation of a liquid chromatography-tandem mass spectrometric method for the simultaneous quantification of more than 700 mycotoxins and other secondary fungal metabolites and plant toxins in pasta, biscuits, crackers and musli. The "dilute and shoot" approach was found to be fully applicable to these complex matrices, as only 7-14% of the analytes exhibited significant matrix effects while recoveries of the extraction were outside the target range of 70-120% for only 26 compounds. Data on repeatability (based on 7 brands per matrix) and on intermediate precision was compliant to the related < 20% criterion for 95-98% and 99% of all analytes, respectively. The limits of quantification were much lower than the related regulatory limits set for mycotoxins in cereal products. Application of the method to 157 samples from the European market revealed the presence of enniatins and deoxynivalenol in the majority of the samples. No regulatory limits were exceeded except the sum of ergot alkaloids being higher in a few samples than the 50-150 µg/kg to be implemented as of July 2024.PMID:39097644 | DOI:10.1038/s41538-024-00294-7

Impact of the ketogenic diet as a dietary approach on cardiovascular disease risk factors: a meta-analysis of randomized clinical trials

Sat, 03/08/2024 - 12:00
Am J Clin Nutr. 2024 Aug;120(2):294-309. doi: 10.1016/j.ajcnut.2024.04.021. Epub 2024 Jul 15.ABSTRACTBACKGROUND: Cardiovascular diseases (CVD) remain the leading cause of mortality globally, and the scarcity of scientific evidence regarding the impact of ketogenic diets on CVD risk factors necessitates urgent attention and redress.OBJECTIVES: This meta-analysis evaluates the impact of the ketogenic diet on CVD risk factors compared with control diets through randomized controlled trials (RCTs).METHODS: The study was registered in advance in the PROSPERO database (CRD42023491853). A systematic search was conducted across PubMed, Web of Science, EMBASE, and Cochrane Library to identify relevant RCTs. Fixed and random effects were employed to calculate the mean differences and 95% confidence intervals (CIs) for changes in CVD risk factors pre- and postketogenic diet intervention.RESULTS: A total of 27 RCTs with 1278 participants were analyzed. The ketogenic diet intervention presented increase in total cholesterol (mean differences: 0.36 mmol/L; 95% CI: 0.15, 0.57; I2: 85.1%), low-density lipoprotein cholesterol (mean differences: 0.35 mmol/L; 95% CI: 0.20, 0.50; I2: 73.9%) and high-density lipoprotein cholesterol (mean differences: 0.16 mmol/L; 95% CI: 0.09, 0.23; I2: 86.7%) concentrations. Reductions were observed in the triglyceride (mean differences: -0.20 mmol/L; 95% CI: -0.29, -0.11; I2: 72.2%), blood glucose (mean differences: -0.18 mmol/L; 95% CI: -0.33, -0.02; I2: 76.4%), blood insulin (mean differences: -8.32 pmol/L; 95% CI: -14.52, -2.12; I2: 81.5%), diastolic blood pressure (mean differences: -1.41 mmHg; 95% CI: -2.57, -0.26; I2: 49.1%), weight (mean differences: -2.59 kg; 95% CI: -3.90, -1.28; I2: 87.4%), and body mass index (mean differences: -1.59 kg/m2; 95% CI: -2.32, -0.86; I2: 84.5%) concentrations after implementing ketogenic diets.CONCLUSIONS: Although the ketogenic diet demonstrates benefits in terms of triglyceride, blood pressure, weight, and glycemic control, its impact on CVD risk factors, especially the elevated total cholesterol and low-density lipoprotein cholesterol concentrations, warrants a cautious approach.PMID:39097343 | DOI:10.1016/j.ajcnut.2024.04.021

Metabolic responses of the marine mussel Mytilus galloprovincialis after exposure to microplastics of different shapes and sizes

Sat, 03/08/2024 - 12:00
Environ Pollut. 2024 Aug 1:124660. doi: 10.1016/j.envpol.2024.124660. Online ahead of print.ABSTRACTMicroplastics (MP) are ubiquitous pollutants with diverse shapes, sizes, and characteristics that pose critical risks to marine organisms and the environment. In this study, we used the Mediterranean mussel Mytilus galloprovincialis as a marine benthic organism model to investigate the metabolic consequences of exposure to different polyethylene terephthalate MP sizes and shapes: round (27-32 μm), small fibers (200-400 μm), large fibers (3000 μm), small fragments (20 μm), medium fragments (45-75 μm), and large fragments (> 150 μm). After exposure to high concentrations (100 mg∙L-1) of MP for 14 days, round and small fiber-type MP were highly accumulated in mussels. Metabolomic analysis revealed that exposure to round and small fiber-type MP induced significant changes in 150 metabolites. Partial least squares-discriminate analysis (PLS-DA) showed that the round and small fiber MP treatment groups displayed similar cluster patterns that differed from those of the control group. In addition, only 22 annotated metabolites related to histidine, valine, leucine, and isoleucine degradation/biosynthesis and vitamin B6 and aminoacyl-tRNA biosynthesis were significantly affected by round or small fiber-type MP. Among the histidine metabolites, round and small fiber-type MP upregulated the levels of L-histidine, L-glutamate, carnosine, imidazole-4-acetaldehyde, 4-imidazolone-5-propanoate, and methylimidazole acetaldehyde and downregulated methylimidazole acetic acid and N-formimino-L-glutamate. These results suggest novel insights into the potential pathways through which MP of specific sizes and shapes affect metabolic processes in mussels.PMID:39097259 | DOI:10.1016/j.envpol.2024.124660

Optimization of pre-enrichment strategies for mouse hematopoietic stem cell isolation and metabolomic analysis

Sat, 03/08/2024 - 12:00
Exp Hematol. 2024 Aug 1:104588. doi: 10.1016/j.exphem.2024.104588. Online ahead of print.ABSTRACTBlood cell production arises from the activity of hematopoietic stem cells (HSCs), defined by their self-renewal capacity and ability to give rise to all mature blood cell types. The mouse remains one of the most studied species in hematological research, and markers to define and isolate mouse HSCs are well-established. Given the very low frequency of HSCs in the bone marrow, stem cell pre-enrichment by red blood cell lysis and magnetic cell separation is often performed as part of the isolation process to reduce sorting times. Several pre-enrichment strategies are available, differing in their speed, degree of enrichment, final cell yield and cost. In the current study, we performed a side-by-side comparison and provide a decision tree to help researchers select a pre-enrichment strategy for mouse HSC isolation depending on their downstream application. We then compared different pre-enrichment techniques in combination with metabolomics analysis of HSCs, where speed, yield and temperature during pre-enrichment are crucial factors, and found that the choice of pre-enrichment strategy significantly impacts the number of metabolites detected and levels of individual metabolites in HSCs.PMID:39097159 | DOI:10.1016/j.exphem.2024.104588

Tissue-specific sex-dependent difference in the metabolism of fatty acid esters of hydroxy fatty acids

Sat, 03/08/2024 - 12:00
Biochim Biophys Acta Mol Cell Biol Lipids. 2024 Aug 1:159543. doi: 10.1016/j.bbalip.2024.159543. Online ahead of print.ABSTRACTFatty acid esters of hydroxy fatty acids (FAHFAs) are endogenous bioactive lipids known for their anti-inflammatory and anti-diabetic properties. Despite their therapeutic potential, little is known about the sex-specific variations in FAHFA metabolism. This study investigated the role of sex and Androgen Dependent TFPI Regulating Protein (ADTRP), a FAHFA hydrolase. Additionally, tissue-specific differences in FAHFA levels, focusing on the perigonadal white adipose tissue (pgWAT), subcutaneous white adipose tissue (scWAT), brown adipose tissue (BAT), plasma, and liver, were evaluated using metabolomics and lipidomics. We found that female mice exhibited higher FAHFA levels in pgWAT, scWAT, and BAT compared to males. FAHFA levels were inversely related to testosterone and Adtrp mRNA, which showed significantly lower expression in females compared with males in pgWAT and scWAT. However, no significant differences between the sexes were observed in plasma and liver FAHFA levels. Adtrp deletion had minimal impact on both sexes' metabolome and lipidome of pgWAT. However, we discovered higher endogenous levels of triacylglycerol estolides containing FAHFAs, a FAHFA metabolic reservoir, in the pgWAT of female mice. These findings suggest that sex-dependent differences in FAHFA levels occur primarily in specific WAT depots and may modulate local insulin sensitivity in adipocytes, and the role of ADTRP is limited to adipose depots. However, further investigations are warranted to fully comprehend the underlying mechanisms and implications of sex-dependent regulation of human FAHFA metabolism.PMID:39097081 | DOI:10.1016/j.bbalip.2024.159543

Imperata cylindrica polysaccharide ameliorates intestinal dysbiosis and damage in hyperuricemic nephropathy

Sat, 03/08/2024 - 12:00
Int J Biol Macromol. 2024 Aug 1:134432. doi: 10.1016/j.ijbiomac.2024.134432. Online ahead of print.ABSTRACTIn this study, a combination of adenine and potassium oxonate was utilized to establish a hyperuricemic nephropathy (HN) mouse model, aiming to elucidate the effect through which Imperata Cylindrica polysaccharide (ICPC-a) ameliorates HN. In HN mice, an elevation in the abundance of Erysipelatoclostridium, Enterococcus, Prevotella, and Escherichia-Shigella was observed, whereas Lactobacillus and Bifidobacterium declined. Additionally, the systemic reductions in the levels of acetate, propionate, and butyrate, along with a significant increase in indole content, were noted. HN mice demonstrated intestinal barrier impairment, as evidenced by diminished mRNA expression of ZO-1, Occludin, and Claudin-1 and increased Mmp-9 levels. The pro-inflammatory factors IL-6, IL-17, TNF-α, IFN-γ, and COX-2 were overexpressed. Subsequent gavage intervention with ICPC-a markedly mitigated the inflammatory response and ameliorated colon tissue damage. ICPC-a effectively regulated the abundance of gut microbiota and their metabolites, including short-chain fatty acids (SCFAs), bile acids (BAs), and indole, promoting the correction of metabolic and gut microbiota imbalances in HN mice. These findings underscored the capacity of ICPC-a as a prebiotic to modulate gut microbiota and microbial metabolites, thereby exerting a multi-pathway and multi-targeted therapeutic effect on HN.PMID:39097053 | DOI:10.1016/j.ijbiomac.2024.134432

β-resorcylic acid released by Limosilactobacillusreuteri protects against cisplatin-induced ovarian toxicity and infertility

Sat, 03/08/2024 - 12:00
Cell Rep Med. 2024 Jul 26:101678. doi: 10.1016/j.xcrm.2024.101678. Online ahead of print.ABSTRACTChemotherapy-induced premature ovarian insufficiency (CIPOI) triggers gonadotoxicity in women undergoing cancer treatment, leading to loss of ovarian reserves and subfertility, with no effective therapies available. In our study, fecal microbiota transplantation in a cisplatin-induced POI mouse model reveals that a dysbiotic gut microbiome negatively impacts ovarian health in CIPOI. Multi-omics analyses show a significant decrease in Limosilactobacillus reuteri and its catabolite, β-resorcylic acid , in the CIPOI group in comparison to healthy controls. Supplementation with L. reuteri or β-RA mitigates cisplatin-induced hormonal disruptions, morphological damages, and reductions in follicular reserve. Most importantly, β-RA pre-treatment effectively preserves oocyte function, embryonic development, and fetus health, thereby protecting against chemotherapy-induced subfertility. Our results provide evidence that β-RA suppresses the nuclear accumulation of sex-determining region Y-box 7, which in turn reduces Bcl-2-associated X activation and inhibits granulosa cell apoptosis. These findings highlight the therapeutic potential of targeting the gut-ovary axis for fertility preservation in CIPOI.PMID:39096912 | DOI:10.1016/j.xcrm.2024.101678

Discovery of perfluoroalkyl sulfonyl quaternary ammonium substances in the environment and their environmental behaviors

Sat, 03/08/2024 - 12:00
Water Res. 2024 Jul 30;263:122189. doi: 10.1016/j.watres.2024.122189. Online ahead of print.ABSTRACTA variety of per- and polyfluoroalkyl substances (PFASs) have been released into the environment via wastewater treatment plant (WWTP) effluent, with current target and nontarget analytical methods typically focusing on negatively ionized PFASs while largely overlooking positively ionized ones. In this study, five cationic PFASs, perfluoroalkyl sulfonyl quaternary ammonium substances (PFAQASs), were first identified in surface water impacted by the WWTP effluent, applying a metabolomics-based nontarget analysis method. Environmental behaviors of identified novel PFAQASs were further investigated. In surface water, sediment, and fish (Coilia mystus) samples collected from the Yangtze River, 8:3 PFAQA was consistently the predominant PFAQASs, with the mean concentrations of 90 ng/L (< LOD-558 ng/L), 92 ng/g dw (< LOD-421 ng/g dw), and 2.3 ng/g ww (< LOD-4.6 ng/g ww), respectively. This study highlights the necessity to discover other cationic PFASs in the environment. Among PFAQASs, 8:4 PFAQA (4.2, range 3.4 - 4.6) had the highest mean sediment-water partitioning coefficient (log Koc), followed by 8:3 PFAQA (3.9, 2.8 - 4.5) and 6:3 PFAQA (3.7, 3.3 - 4.1). The log Koc of PFAQASs showed a general increase trend with the increasing carbon chain length. Mean bioaccumulation factor (BAF) values of PFAQASs calculated in the collected fish from the Yangtze River ranged from 1.9 ± 0.32 (4:3 PFAQA) to 2.9 ± 0.34 (8:4 PFAQA). The mean BAF values of PFAQASs generally increased with the carbon chain length. Further studies are warranted to elucidate the environmental fate, potential toxicity, and human exposure implications for these identified novel PFASs.PMID:39096813 | DOI:10.1016/j.watres.2024.122189

Corrigendum to "Effect of in utero and lactational exposure to a thyroid hormone system disrupting chemical on mouse metabolome and brain transcriptome" [Environ. Pollut. 340 (2024) 122783]

Sat, 03/08/2024 - 12:00
Environ Pollut. 2024 Aug 2;360:124646. doi: 10.1016/j.envpol.2024.124646. Online ahead of print.NO ABSTRACTPMID:39096766 | DOI:10.1016/j.envpol.2024.124646

Combined transcriptome and metabolome analysis reveals the toxic effects of antimony on the earthworm

Sat, 03/08/2024 - 12:00
Ecotoxicol Environ Saf. 2024 Aug 2;283:116822. doi: 10.1016/j.ecoenv.2024.116822. Online ahead of print.ABSTRACTAntimony (Sb) poses a significant ecological threat. This study combines biochemical, pathological, transcriptome, and metabolome analyses to assess the short-term (14-day) toxic impact of two Sb levels (25 mg/kg and 125 mg/kg) on earthworms (Eisenia fetida). Higher Sb concentration caused severe intestinal damage, elevated metallothionein (MT) levels, and reduced antioxidant capacity. Metabolome analysis identifies 404 and 1698 significantly differential metabolites in the two groups. Metabolites such as S(-)-cathinone, N-phenyl-1-naphthylamine, serotonin, 4-hydroxymandelonitrile, and 5-fluoropentylindole contributed to the metabolic responses to Sb stress. Transcriptome analysis shows increased chitin synthesis as a protective response, impacting amino sugar and nucleotide sugar metabolism for cell wall synthesis and damage repair. Integrated analysis indicated that 5 metabolite-gene pairs were found in two Sb levels and 11 enriched pathways were related to signal transduction, carbohydrate metabolism, immune system, amino acid metabolism, digestive system, and nervous system. Therefore, the integration of multiomics approaches enhanced our comprehension of the molecular mechanisms underlying the toxicity of Sb in E. fetida.PMID:39096686 | DOI:10.1016/j.ecoenv.2024.116822

Mefunidone alleviates silica-induced inflammation and fibrosis by inhibiting the TLR4-NF-κB/MAPK pathway and attenuating pyroptosis in murine macrophages

Sat, 03/08/2024 - 12:00
Biomed Pharmacother. 2024 Aug 2;178:117216. doi: 10.1016/j.biopha.2024.117216. Online ahead of print.ABSTRACTAIMS: Silicosis is the most common and severe type of pneumoconiosis, imposing a substantial disease burden and economic loss on patients and society. The pathogenesis and key targets of silicosis are not yet clear, and there are currently no effective treatments available. Therefore, we conducted research on mefunidone (MFD), a novel antifibrotic drug, to explore its efficacy and mechanism of action in murine silicosis.METHODS: Acute 7-day and chronic 28-day silicosis models were constructed in C57BL/6J mice by the intratracheal instillation of silica and subsequently treated with MFD to assess its therapeutic potential. The effects of MFD on silica-induced inflammation, pyroptosis, and fibrosis were further investigated using immortalized mouse bone marrow-derived macrophages (iBMDMs).RESULTS: In the 7-day silica-exposed mouse models, MFD treatment significantly alleviated pulmonary inflammation and notably reduced macrophage infiltration into the lung tissue. RNA-sequencing analysis of silica-induced iBMDMs followed by gene set enrichment analysis revealed that MFD profoundly influenced cytokine-cytokine receptor interactions, chemokine signaling, and the toll-like receptor signaling pathways. MFD treatment also markedly reduced the secretion of inflammatory cytokines and chemokines from silica-exposed iBMDMs. Moreover, MFD effectively downregulated the activation of the TLR4-NF-κB/MAPK signaling pathway induced by silica and mitigated the upregulation of pyroptosis markers. Additionally, MFD treatment significantly suppressed the activation of fibroblasts and alveolar epithelial cells co-cultured with silica-exposed mouse macrophages. Ultimately, in the 28-day silica-exposed mouse models, MFD administration led to a substantial reduction in the severity of pulmonary fibrosis.CONCLUSION: MFD mitigates silica-induced pulmonary inflammation and fibrosis in mice by suppressing the TLR4-NF-κB/MAPK signaling pathway and reducing pyroptotic responses in macrophages. MFD could potentially emerge as a novel therapeutic agent for the treatment of silicosis.PMID:39096618 | DOI:10.1016/j.biopha.2024.117216

Metaboepigenetic regulation of gene expression in obesity and insulin resistance

Sat, 03/08/2024 - 12:00
Metabolomics. 2024 Aug 3;20(5):91. doi: 10.1007/s11306-024-02159-2.ABSTRACTINTRODUCTION: Variation in DNA methylation (DNAm) in adipose tissue is associated with the pathogenesis of obesity and insulin resistance. The activity of enzymes involved in altering DNAm levels is dependent on several metabolite cofactors.OBJECTIVES: To understand the role of metabolites as mechanistic regulators of epigenetic marks, we tested the association between selected plasma metabolites and DNAm levels in the adipose tissue of African Americans.METHODS: In the AAGMEx cohort (N = 256), plasma levels of metabolites were measured by untargeted liquid chromatography-mass spectrometry; adipose tissue DNAm and transcript levels were measured by reduced representation bisulfite sequencing, and expression microarray, respectively.RESULTS: Among the 21 one-carbon metabolism pathway metabolites evaluated, six were associated with gluco-metabolic traits (PFDR < 0.05, for BMI, SI, or Matsuda index) in AAGMEx. Methylation levels of 196, 116, and 180 CpG-sites were associated (P < 0.0001) with S-adenosylhomocysteine (SAH), cystine, and hypotaurine, respectively. Cis-expression quantitative trait methylation (cis eQTM) analyses suggested the role of metabolite-level-associated CpG sites in regulating the expression of adipose tissue transcripts, including genes in G-protein coupled receptor signaling pathway. Plasma SAH level-associated CpG sites chr19:3403712 and chr19:3403735 were also associated with the expression of G-protein subunit alpha 15 (GNA15) in adipose. The expression of GNA15 was significantly correlated with BMI (β = 1.87, P = 1.9 × 10-16) and SI (β = -1.61, P = 2.49 × 10-5).CONCLUSION: Our study suggests that a subset of metabolites modulates the methylation levels of CpG sites in specific loci and, in turn, regulates the expression of transcripts involved in obesity and insulin resistance.PMID:39096438 | DOI:10.1007/s11306-024-02159-2

Characterising the urinary acylcarnitine and amino acid profiles of HIV/TB co-infection, using LC-MS metabolomics

Sat, 03/08/2024 - 12:00
Metabolomics. 2024 Aug 3;20(5):92. doi: 10.1007/s11306-024-02161-8.ABSTRACTINTRODUCTION: The human immunodeficiency virus (HIV) and tuberculosis (TB) co-infection presents significant challenges due to the complex interplay between these diseases, leading to exacerbated metabolic disturbances. Understanding these metabolic profiles is crucial for improving diagnostic and therapeutic approaches.OBJECTIVE: This study aimed to characterise the urinary acylcarnitine and amino acid profiles, including 5-hydroxyindoleacetic acid (5-HIAA), in patients co-infected with HIV and TB using targeted liquid chromatography mass spectrometry (LC-MS) metabolomics.METHODS: Urine samples, categorised into HIV, TB, HIV/TB co-infected, and healthy controls, were analysed using HPLC-MS/MS. Statistical analyses included one-way ANOVA and a Kruskal-Wallis test to determine significant differences in the acylcarnitine and amino acid profiles between groups.RESULTS: The study revealed significant metabolic alterations, especially in TB and co-infected groups. Elevated levels of medium-chain acylcarnitines indicated increased fatty acid oxidation, commonly associated with cachexia in TB. Altered amino acid profiles suggested disruptions in protein and glucose metabolism, indicating a shift towards diabetes-like metabolic states. Notably, TB was identified as a primary driver of these changes, affecting protein turnover, and impacting energy metabolism in co-infected patients.CONCLUSION: The metabolic profiling of HIV/TB co-infection highlights the profound impact of TB on metabolic pathways, which may exacerbate the clinical complexities of co-infection. Understanding these metabolic disruptions can guide the development of targeted treatments and improve management strategies, ultimately enhancing the clinical outcomes for these patients. Further research is required to validate these findings and explore their implications in larger, diverse populations.PMID:39096437 | DOI:10.1007/s11306-024-02161-8

Pages