Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Emerging Issues and Initial Insights into Bacterial Biofilms: From Orthopedic Infection to Metabolomics

Fri, 23/02/2024 - 12:00
Antibiotics (Basel). 2024 Feb 13;13(2):184. doi: 10.3390/antibiotics13020184.ABSTRACTBacterial biofilms, enigmatic communities of microorganisms enclosed in an extracellular matrix, still represent an open challenge in many clinical contexts, including orthopedics, where biofilm-associated bone and joint infections remain the main cause of implant failure. This study explores the scenario of biofilm infections, with a focus on those related to orthopedic implants, highlighting recently emerged substantial aspects of the pathogenesis and their potential repercussions on the clinic, as well as the progress and gaps that still exist in the diagnostics and management of these infections. The classic mechanisms through which biofilms form and the more recently proposed new ones are depicted. The ways in which bacteria hide, become impenetrable to antibiotics, and evade the immune defenses, creating reservoirs of bacteria difficult to detect and reach, are delineated, such as bacterial dormancy within biofilms, entry into host cells, and penetration into bone canaliculi. New findings on biofilm formation with host components are presented. The article also delves into the emerging and critical concept of immunometabolism, a key function of immune cells that biofilm interferes with. The growing potential of biofilm metabolomics in the diagnosis and therapy of biofilm infections is highlighted, referring to the latest research.PMID:38391570 | DOI:10.3390/antibiotics13020184

Fine-Scale Characterization of Plant Diterpene Glycosides Using Energy-Resolved Untargeted LC-MS/MS Metabolomics Analysis

Fri, 23/02/2024 - 12:00
J Am Soc Mass Spectrom. 2024 Feb 23. doi: 10.1021/jasms.3c00420. Online ahead of print.ABSTRACTPlant diterpene glycosides are essential for diverse physiological processes. Comprehensive structural characterization proved to be a challenge due to variations in glycosylation patterns, diverse aglycone structures, and the absence of comprehensive reference databases. In this study, a method for fine-scale characterization was proposed based on energy-resolved (ER) untargeted LC-MS/MS metabolomics analysis using steviol glycosides as a demonstration. Energy-dependent fragmentation patterns were unveiled by a series of model compounds. Distinct glycosylation sites were discerned by leveraging varying fragmentation energies for the precursor ions. The sugar moiety linkage at C19OOH (R1) exhibited facile and intact cleavage at low collision energies, while the sugar moiety at C13-OH (R2) demonstrated consecutive cleavage with increasing energy. Aglycone ions exhibited a higher relative intensity at NCE 50, with relative intensities ranging from 95% to 100%. Subsequently, aglycone candidates, R1 sugar composition, and R2 sugar sequence were deduced through ER-MS/MS analysis. The developed method was applied to Stevia rebaudiana leaves. A total of 91 diterpene glycosides were unambiguously identified, including 16 steviol glycosides with novel acetylglycosylation patterns. This method offers a rapid alternative for glycan analysis and the structural differentiation of isomers. The developed method enhances the understanding of diterpene glycosides in plants, providing a reliable tool for the in-depth characterization of complex metabolite profiles.PMID:38391322 | DOI:10.1021/jasms.3c00420

UV-A radiation increases biomass yield by enhancing energy flow and carbon assimilation in the edible cyanobacterium <em>Nostoc sphaeroides</em>

Fri, 23/02/2024 - 12:00
Appl Environ Microbiol. 2024 Feb 23:e0211023. doi: 10.1128/aem.02110-23. Online ahead of print.ABSTRACTUltraviolet (UV) A radiation (315-400 nm) is the predominant component of solar UV radiation that reaches the Earth's surface. However, the underlying mechanisms of the positive effects of UV-A on photosynthetic organisms have not yet been elucidated. In this study, we investigated the effects of UV-A radiation on the growth, photosynthetic ability, and metabolome of the edible cyanobacterium Nostoc sphaeroides. Exposures to 5-15 W m-2 (15-46 µmol photons m-2 s-1) UV-A and 4.35 W m-2 (20 μmol photons m-2 s-1) visible light for 16 days significantly increased the growth rate and biomass production of N. sphaeroides cells by 18%-30% and 15%-56%, respectively, compared to the non-UV-A-acclimated cells. Additionally, the UV-A-acclimated cells exhibited a 1.8-fold increase in the cellular nicotinamide adenine dinucleotide phosphate (NADP) pool with an increase in photosynthetic capacity (58%), photosynthetic efficiency (24%), QA re-oxidation, photosystem I abundance, and cyclic electron flow (87%), which further led to an increase in light-induced NADPH generation (31%) and ATP content (83%). Moreover, the UV-A-acclimated cells showed a 2.3-fold increase in ribulose-1,5-bisphosphate carboxylase/oxygenase activity, indicating an increase in their carbon-fixing capacity. Gas chromatography-mass spectrometry-based metabolomics further revealed that UV-A radiation upregulated the energy-storing carbon metabolism, as evidenced by the enhanced accumulation of sugars, fatty acids, and citrate in the UV-A-acclimated cells. Therefore, our results demonstrate that UV-A radiation enhances energy flow and carbon assimilation in the cyanobacterium N. sphaeroides.IMPORTANCEUltraviolet (UV) radiation exerts harmful effects on photo-autotrophs; however, several studies demonstrated the positive effects of UV radiation, especially UV-A radiation (315-400 nm), on primary productivity. Therefore, understanding the underlying mechanisms associated with the promotive effects of UV-A radiation on primary productivity can facilitate the application of UV-A for CO2 sequestration and lead to the advancement of photobiological sciences. In this study, we used the cyanobacterium Nostoc sphaeroides, which has an over 1,700-year history of human use as food and medicine, to explore its photosynthetic acclimation response to UV-A radiation. As per our knowledge, this is the first study to demonstrate that UV-A radiation increases the biomass yield of N. sphaeroides by enhancing energy flow and carbon assimilation. Our findings provide novel insights into UV-A-mediated photosynthetic acclimation and provide a scientific basis for the application of UV-A radiation for optimizing light absorption capacity and enhancing CO2 sequestration in the frame of a future CO2 neutral, circular, and sustainable bioeconomy.PMID:38391210 | DOI:10.1128/aem.02110-23

Metabolomic profiling of the nutritional components of chicory leaves following heat processing

Fri, 23/02/2024 - 12:00
J Food Sci. 2024 Feb 23. doi: 10.1111/1750-3841.16998. Online ahead of print.ABSTRACTChicory (Cichorium intybus L.; witloof) is a crisp bitter leafy vegetable, popularly used in western cuisine in salads and soups (leaves) and as an alternative to coffee (roasted roots). In this study, we explored the effect of heat processing under various temperatures and for different durations on the nutritional composition of chicory leaves using gas chromatography-mass spectrometry (GC/MS) and principal component analysis (PCA). "Vintor" chicory leaves were processed and homogenized to obtain lyophilized samples, and their moisture content and pH were measured. Heat processing was conducted at 4, 30, 60, and 100°C. Metabolites were extracted and analyzed using GC/MS. The results were statistically analyzed using multiple t-tests and Tukey-Kramer method. A PCA was conducted using standardized data. A lower temperature (≤60°C) positively influenced the concentrations of nutritional components (sugars, free amino acids, and organic acids), branched-chain amino acids (which reportedly improve exercise performance), and γ-aminobutyric acid (which exerts antihypertensive effects). Whereas, a higher temperature (100°C) and microwave processing induced the generation of low-molecular-weight sugars from polysaccharides and glycosides, decreased free amino acid concentrations, and caused heat-induced aminocarbonyl reactions. This study provides valuable information for enhancing the flavor profiles and potential health benefits of chicory leaves by identifying the optimal heat processing parameters for preserving the desired nutritional value. PRACTICAL APPLICATION: The palatability, nutritional content, and health benefits of chicory have been evaluated based on its inherent constituents, but changes in these parameters during food processing remain unclear. Heating at 30 and 60°C activated secondary metabolism in chicory, increasing the amino acid and organic acid concentrations, whereas heating at 100°C and microwave processing increased the sugar concentrations in chicory. Thus, the nutritional value and potential health benefits of chicory could be enhanced by processing it under controlled temperatures; the findings are valuable for both consumers and food processing industry.PMID:38391109 | DOI:10.1111/1750-3841.16998

Bacterial diversity and metabolites: Exploring correlations with preservative properties in soybean pastes

Fri, 23/02/2024 - 12:00
J Food Sci. 2024 Feb 23. doi: 10.1111/1750-3841.16982. Online ahead of print.ABSTRACTSoybean paste, a traditional fermented condiment, exhibits distinct quality attributes by its microbial communities. This study employed Illumina sequencing and LC-MS to scrutinize the bacterial biota and metabolome of highly preserved (HP) and easily spoiled (ES) soybean pastes. Firmicutes were prevalent in both pastes, with HP showcasing greater microbial α-diversity compared to ES pastes. Bacillus predominated in HP pastes, whereas Lactobacillus was most abundant in ES pastes. Significant metabolic differences were observed between HP and ES samples in lipids, peptides, nucleic acids, secondary metabolite biosynthesis, protein digestion, amino acid metabolism, inflammatory mediator regulation, and neomycin, kanamycin, and gentamicin biosynthesis. Lactobacillus exhibited positive associations with daidzein and 3,4,5-trihydroxypentanoylcarnitine, whereas Bacillus showed negative correlations with 1,n6-ethenoadenosine, 2-deoxy-2,3-dehydro-n-acetyl-neuraminic acid, 3,4,5-trihydroxypentanoyl carnitine, and fructosyl valine. These findings highlight the collaborative impact of bacterial communities and metabolites on soybean paste quality attributes. This research enhances our comprehension of preservation mechanisms in fermented foods, particularly soybean pastes. PRACTICAL APPLICATION: The investigation would provide insights into the soybean pastes fermentation, safe and quality control methods, bio-preservative development strategies, and so on of soybean pastes for related studies and the consumers. Bacteria and their metabolites could be used to optimize the fermentation processes for the preservative and safe regulations.PMID:38391005 | DOI:10.1111/1750-3841.16982

miR-10b-5p promotes tumor growth by regulating cell metabolism in liver cancer via targeting SLC38A2

Fri, 23/02/2024 - 12:00
Cancer Biol Ther. 2024 Dec 31;25(1):2315651. doi: 10.1080/15384047.2024.2315651. Epub 2024 Feb 23.ABSTRACTMetabolic reprogramming plays a critical role in hepatocarcinogenesis. However, the mechanisms regulating metabolic reprogramming in primary liver cancer (PLC) are unknown. Differentially expressed miRNAs between PLC and normal tissues were identified using bioinformatic analysis. RT-qPCR was used to determine miR-10b-5p and SCL38A2 expression levels. IHC, WB, and TUNEL assays were used to assess the proliferation and apoptosis of the tissues. The proliferation, migration, invasion, and apoptosis of PLC cells were determined using the CCK-8 assay, Transwell assay, and flow cytometry. The interaction between miR-10b-5p and SLC38A2 was determined using dual-luciferase reporter assay. A PLC xenograft model in BALB/c nude mice was established, and tumorigenicity and SLC38A2 expression were estimated. Finally, liquid chromatography - mass spectrometry (LC-MS) untargeted metabolomics was used to analyze the metabolic profiles of xenograft PLC tissues in nude mice. miR-10b-5p was a key molecule in the regulation of PLC. Compared with para-carcinoma tissues, miR-10b-5p expression was increased in tumor tissues. miR-10b-5p facilitated proliferation, migration, and invasion of PLC cells. Mechanistically, miR-10b-5p targeted SLC38A2 to promote PLC tumor growth. Additionally, miR-10b-5p altered the metabolic features of PLC in vivo. Overexpression of miR-10b-5p resulted in remarkably higher amounts of lumichrome, folic acid, octanoylcarnitine, and Beta-Nicotinamide adenine dinucleotide, but lower levels of 2-methylpropanal, glycyl-leucine, and 2-hydroxycaproic acid. miR-10b-5p facilitates the metabolic reprogramming of PLC by targeting SLC38A2, which ultimately boosts the proliferation, migration, and invasion of PLC cells. Therefore, miR-10b-5p and SLC38A2 are potential targets for PLC diagnosis and treatment.PMID:38390840 | DOI:10.1080/15384047.2024.2315651

Repeated Exposure Enhanced Toxicity of Clarithromycin on <em>Microcystis aeruginosa</em> Versus Single Exposure through Photosynthesis, Oxidative Stress, and Energy Metabolism Shift

Fri, 23/02/2024 - 12:00
Environ Sci Technol. 2024 Feb 23. doi: 10.1021/acs.est.3c07008. Online ahead of print.ABSTRACTAntibiotics are being increasingly detected in aquatic environments, and their potential ecological risk is of great concern. However, most antibiotic toxicity studies involve single-exposure experiments. Herein, we studied the effects and mechanisms of repeated versus single clarithromycin (CLA) exposure on Microcystis aeruginosa. The 96 h effective concentration of CLA was 13.37 μg/L upon single exposure but it reduced to 6.90 μg/L upon repeated exposure. Single-exposure CLA inhibited algal photosynthesis by disrupting energy absorption, dissipation and trapping, reaction center activation, and electron transport, thereby inducing oxidative stress and ultrastructural damage. In addition, CLA upregulated glycolysis, pyruvate metabolism, and the tricarboxylic acid cycle. Repeated exposure caused stronger inhibition of algal growth via altering photosynthetic pigments, reaction center subunits biosynthesis, and electron transport, thereby inducing more substantial oxidative damage. Furthermore, repeated exposure reduced carbohydrate utilization by blocking the pentose phosphate pathway, consequently altering the characteristics of extracellular polymeric substances and eventually impairing the defense mechanisms of M. aeruginosa. Risk quotients calculated from repeated exposure were higher than 1, indicating significant ecological risks. This study elucidated the strong influence of repeated antibiotic exposure on algae, providing new insight into antibiotic risk assessment.PMID:38390827 | DOI:10.1021/acs.est.3c07008

Blood Pressure Partially Mediated the Association of Insulin Resistance and Cerebral Small Vessel Disease: A Community-Based Study

Fri, 23/02/2024 - 12:00
J Am Heart Assoc. 2024 Feb 23:e031723. doi: 10.1161/JAHA.123.031723. Online ahead of print.ABSTRACTBACKGROUND: Insulin resistance as a significant vascular risk factor has been studied in relation to cerebral small vessel disease (SVD). Evidence suggests that insulin resistance might trigger high blood pressure (BP). Therefore, we aimed to investigate whether insulin resistance impacts SVD with a mediating effect of BP in nondiabetic subjects.METHODS AND RESULTS: PRECISE (Polyvascular Evaluation for Cognitive Impairment and Vascular Events) study participants underwent brain and vascular imaging techniques and metabolomic risk factors measurements. Insulin resistance was evaluated by the insulin sensitivity index and the Homeostatic Model Assessment for Insulin Resistance based on the standard oral glucose tolerance test. On average, 2752 nondiabetic subjects (47.1% men) aged 60.9 years were included. The multivariable logistic regression model and linear regression model tested the association of insulin resistance with BP components (including systolic BP [SBP], diastolic BP (DBP), and pulse pressure [PP]) and SVD, and of BP components with SVD. In the mediation analysis, SBP, DBP, and PP were found to partially mediate the detrimental effect of insulin resistance (assessed by the insulin sensitivity index) on lacunes (mediation percentage: SBP, 31.15%; DBP, 34.21%; PP, 10.43%), white matter hyperintensity (mediation percentage: SBP, 37.34%; DBP, 44.15%; PP, 9.80%), and SVD total burden (mediation percentage: SBP, 42.07%; DBP, 49.29%; PP, 11.71%) (all P<0.05). The mediation analysis results were not significant when using the Homeostatic Model Assessment for Insulin Resistance to assess insulin resistance.CONCLUSIONS: Higher insulin resistance was associated with SVD in this community-dwelling population. The association of insulin resistance with lacunes, white matter hyperintensity, and SVD total burden was explained in part by BP.REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03178448.PMID:38390815 | DOI:10.1161/JAHA.123.031723

Depicting the Chemical Diversity of Bioactive Meroterpenoids Produced by the Largest Organism on Earth

Fri, 23/02/2024 - 12:00
Angew Chem Int Ed Engl. 2024 Feb 23:e202318505. doi: 10.1002/anie.202318505. Online ahead of print.ABSTRACTIn this investigation, we explored the diversity of melleolide-type meroterpenoids produced by Armillaria ostoyae, one of the largest and oldest organisms on Earth, using extracts from liquid and solid fermentation media. The study unveiled three unprecedented dimeric bismelleolides (1-3) and three novel fatty acid-substituted congeners (4-6), along with 11 new (7-17) and 21 known (18-38) derivatives. Structure elucidation was done by 1D- and 2D-NMR spectroscopy, HRESI-MS data, and ROESY spectral analysis for relative configurations. Absolute configurations were determined through crystal structures and ECD spectra comparison. A compound library of melleolide-type meroterpenoids facilitated metabolomics-wide associations, revealing production patterns under different culture conditions. The library enabled assessments of antimicrobial and cytotoxic activities, unveiling that the Δ2,4 double bond is not crucial for antifungal activity. Cytotoxicity was linked to the presence of an aldehyde at C-1, but lost with a hydroxylation at C-13. Chemoinformatic analyses demonstrated the intricate interplay of chemical modifications on biological properties. This study marks the first systematic exploration of Armillaria spp. meroterpenoid diversity via MS-based untargeted metabolomics, offering insights into structure-activity relationships through innovative chemoinformatics.PMID:38390787 | DOI:10.1002/anie.202318505

Multiomics Approach Reveals Serum Biomarker Candidates for Congenital Zika Syndrome

Fri, 23/02/2024 - 12:00
J Proteome Res. 2024 Feb 23. doi: 10.1021/acs.jproteome.3c00677. Online ahead of print.ABSTRACTThe Zika virus (ZIKV) can be vertically transmitted, causing congenital Zika syndrome (CZS) in fetuses. ZIKV infection in early gestational trimesters increases the chances of developing CZS. This syndrome involves several pathologies with a complex diagnosis. In this work, we aim to identify biological processes and molecular pathways related to CZS and propose a series of putative protein and metabolite biomarkers for CZS prognosis in early pregnancy trimesters. We analyzed serum samples of healthy pregnant women and ZIKV-infected pregnant women bearing nonmicrocephalic and microcephalic fetuses. A total of 1090 proteins and 512 metabolites were identified by bottom-up proteomics and untargeted metabolomics, respectively. Univariate and multivariate statistical approaches were applied to find CZS differentially abundant proteins (DAP) and metabolites (DAM). Enrichment analysis (i.e., biological processes and molecular pathways) of the DAP and the DAM allowed us to identify the ECM organization and proteoglycans, amino acid metabolism, and arachidonic acid metabolism as CZS signatures. Five proteins and four metabolites were selected as CZS biomarker candidates. Serum multiomics analysis led us to propose nine putative biomarkers for CZS prognosis with high sensitivity and specificity.PMID:38390744 | DOI:10.1021/acs.jproteome.3c00677

Aerobic exercise attenuates high-fat diet-induced renal injury through kidney metabolite modulation in mice

Fri, 23/02/2024 - 12:00
Ren Fail. 2024 Dec;46(1):2286330. doi: 10.1080/0886022X.2023.2286330. Epub 2024 Feb 23.ABSTRACTPURPOSE: To investigate the preventive effect of aerobic exercise on renal damage caused by obesity.METHODS: The mice in the Control (Con) and Control + Exercise (Con + Ex) groups received a standard chow diet for the 21-week duration of the study, while the High-fat diet (HFD) group and High-fat diet + Exercise (HFD + Ex) group were fed an HFD. Mice were acclimated to the laboratory for 1 week, given 12 weeks of being on their respective diets, and then the Con + Ex and HFD + Ex groups were subjected to moderate intensity aerobic treadmill running 45 min/day, 5 days/week for 8 weeks.RESULTS: We found that HFD-induced obesity mainly impacts kidney glycerin phospholipids, glycerides, and fatty acyls, and aerobic exercise mainly impacts kidney glycerides, amino acids and organic acids as well as their derivatives. We identified 18 metabolites with significantly altered levels that appear to be involved in aerobic exercise mediated prevention of HFD-induced obesity and renal damage, half of which were amino acids and organic acids and their derivatives.CONCLUSION: Aerobic exercise rewires kidney metabolites to reduce high-fat diet-induced obesity and renal injury.PMID:38390733 | DOI:10.1080/0886022X.2023.2286330

Succession of microbial community composition and secondary metabolism during marine biofilm development

Fri, 23/02/2024 - 12:00
ISME Commun. 2024 Jan 20;4(1):ycae006. doi: 10.1093/ismeco/ycae006. eCollection 2024 Jan.ABSTRACTIn nature, secondary metabolites mediate interactions between microorganisms residing in complex microbial communities. However, the degree to which community dynamics can be linked to secondary metabolite potential remains largely unknown. In this study, we address the relationship between community succession and secondary metabolism variation. We used 16S and 18S rRNA gene and adenylation domain amplicon sequencing, genome-resolved metagenomics, and untargeted metabolomics to track the taxons, biosynthetic gene clusters, and metabolome dynamics in situ of microorganisms during marine biofilm succession over 113 days. Two phases were identified during the community succession, with a clear shift around Day 29, where the alkaloid secondary metabolites, pseudanes, were also detected. The microbial secondary metabolite potential changed between the phases, and only a few community members, including Myxococotta spp., were responsible for the majority of the biosynthetic gene cluster potential in the early succession phase. In the late phase, bryozoans and benthic copepods were detected, and the microbial nonribosomal peptide potential drastically decreased in association with a reduction in the relative abundance of the prolific secondary metabolite producers. Conclusively, this study provides evidence that the early succession of the marine biofilm community favors prokaryotes with high nonribosomal peptide synthetase potential. In contrast, the late succession is dominated by multicellular eukaryotes and a reduction in bacterial nonribosomal peptide synthetase potential.PMID:38390522 | PMC:PMC10881302 | DOI:10.1093/ismeco/ycae006

Metabolomic profiling reveals key metabolites associated with hypertension progression

Fri, 23/02/2024 - 12:00
Front Cardiovasc Med. 2024 Feb 8;11:1284114. doi: 10.3389/fcvm.2024.1284114. eCollection 2024.ABSTRACTINTRODUCTION: Pre-hypertension is a prevalent condition among the adult population worldwide. It is characterized by asymptomatic elevations in blood pressure beyond normal levels but not yet reaching the threshold for hypertension. If left uncontrolled, pre-hypertension can progress to hypertension, thereby increasing the risk of serious complications such as heart disease, stroke, kidney damage, and others.OBJECTIVE: The precise mechanisms driving the progression of hypertension remain unknown. Thus, identifying the metabolic changes associated with this condition can provide valuable insights into potential markers or pathways implicated in the development of hypertension.METHODS: In this study, we utilized untargeted metabolomics profiling, which examines over 1,000 metabolites to identify novel metabolites contributing to the progression from pre-hypertension to hypertension. Data were collected from 323 participants through Qatar Biobank.RESULTS: By comparing metabolic profiles between pre-hypertensive, hypertensive and normotensive individuals, six metabolites including stearidonate, hexadecadienoate, N6-carbamoylthreonyladenosine, 9 and 13-S-hydroxyoctadecadienoic acid (HODE), 2,3-dihydroxy-5-methylthio- 4-pentenoate (DMTPA), and linolenate were found to be associated with increased risk of hypertension, in both discovery and validation cohorts. Moreover, these metabolites showed a significant diagnostic performance with area under curve >0.7.CONCLUSION: These findings suggest possible biomarkers that can predict the risk of progression from pre-hypertension to hypertension. This will aid in early detection, diagnosis, and management of this disease as well as its associated complications.PMID:38390445 | PMC:PMC10881871 | DOI:10.3389/fcvm.2024.1284114

Targeted metabolite profiling of <em>Salvia rosmarinus</em> Italian local ecotypes and cultivars and inhibitory activity against <em>Pectobacterium carotovorum</em> subsp. <em>carotovorum</em>

Fri, 23/02/2024 - 12:00
Front Plant Sci. 2024 Feb 2;15:1164859. doi: 10.3389/fpls.2024.1164859. eCollection 2024.ABSTRACTINTRODUCTION: The development of agriculture in terms of sustainability and low environmental impact is, at present, a great challenge, mainly in underdeveloped and marginal geographical areas. The Salvia rosmarinus "Eretto Liguria" ecotype is widespread in Liguria (Northwest Italy), and farmers commonly use it by for cuttings and for marketing. In the present study, this ecotype was characterized in comparison with other cultivars from the same geographical region and Campania (Southern Italy), with a view to application and registration processes for the designation of protected geographical indications. Moreover, the possibility of using the resulting biomass after removing cuttings or fronds as a source of extracts and pure compounds to be used as phytosanitary products in organic farming was evaluated. Specifically, the potential of rosemary extracts and pure compounds to prevent soft rot damage was then tested.METHODS: A targeted NMR metabolomic approach was employed, followed by multivariate analysis, to characterize the rosemary accessions. Bacterial soft rot assay and disk diffusion test were carried out to evaluate the activity of extracts and isolated compounds against Pectobacterium carotovorum subsp. carotovorum. Enzymatic assay was performed to measure the in vitro inhibition of the pectinase activity produced by the selected pathogen. Molecular docking simulations were used to explore the possible interaction of the selected compounds with the pectinase enzymes.RESULTS AND DISCUSSION: The targeted metabolomic analysis highlighted those different geographical locations can influence the composition and abundance of bioactive metabolites in rosemary extracts. At the same time, genetic factors are important when a single geographical area is considered. Self-organizing maps (SOMs) showed that the accessions of "Eretto Liguria" appeared well characterized when compared to the others and had a good content in specialized metabolites, particularly carnosic acid. Soft rotting Enterobacteriaceae belonging to the Pectobacterium genus represent a serious problem in potato culture. Even though rosemary methanolic extracts showed a low antibacterial activity against a strain of Pectobacterium carotovorum subsp. carotovorum in the disk diffusion test, they showed ability in reducing the soft rot damage induced by the bacterium on potato tissue. 7-O-methylrosmanol, carnosol and isorosmanol appeared to be the most active components. In silico studies indicated that these abietane diterpenoids may interact with P. carotovorum subsp. carotovorum pectate lyase 1 and endo-polygalacturonase, thus highlighting these rosemary components as starting points for the development of agents able to prevent soft rot progression.PMID:38390298 | PMC:PMC10883066 | DOI:10.3389/fpls.2024.1164859

Monitoring the metabolite content of seasoned zucchinis during storage by NMR-based metabolomics

Fri, 23/02/2024 - 12:00
Heliyon. 2024 Feb 13;10(4):e25976. doi: 10.1016/j.heliyon.2024.e25976. eCollection 2024 Feb 29.ABSTRACTThis study applied 1H NMR metabolomics to monitor the metabolite content of baked and seasoned zucchinis packaged in both compostable and plastic trays. Polar extracts of samples stored at 4 °C up to 35 days were investigated to check for metabolite changes upon shelf life. The evolution of the integral values of only the main metabolites responsible for sample differentiation (lactate, acetate, malate, α and β glucose and sucrose) were further analysed and compared. In particular, the evaluation of lactate and acetate amount, considered markers of fermentation progress, showed a comparable performance for the two types of packaging in preserving the freshness of seasoned zucchinis, confirming the maintenance of food product composition within the declared shelf life period in the recommended storage conditions. Albeit preliminary, the results support the NMR metabolomics as a tool for identifying candidate metabolites to monitor the shelf life of foods, thereby improving the understanding of molecular changes during storage.PMID:38390144 | PMC:PMC10881322 | DOI:10.1016/j.heliyon.2024.e25976

MAGL protects against renal fibrosis through inhibiting tubular cell lipotoxicity

Fri, 23/02/2024 - 12:00
Theranostics. 2024 Feb 4;14(4):1583-1601. doi: 10.7150/thno.92848. eCollection 2024.ABSTRACTRationale: Renal fibrosis, with no therapeutic approaches, is a common pathological feature in various chronic kidney diseases (CKD). Tubular cell injury plays a pivotal role in renal fibrosis. Commonly, injured tubular cells exhibit significant lipid accumulation. However, the underlying mechanisms remain poorly understood. Methods: 2-arachidonoylglycerol (2-AG) levels in CKD patients and CKD model specimens were measured using mass spectrometry. 2-AG-loaded nanoparticles were infused into unilateral ureteral obstruction (UUO) mice. Lipid accumulation and renal fibrosis were tested. Furthermore, monoacylglycerol lipase (MAGL), the hydrolyzing enzyme of 2-AG, was assessed in CKD patients and models. Tubular cell-specific MAGL knock-in mice were generated. Moreover, MAGL recombination protein was also administered to unilateral ischemia reperfusion injury (UIRI) mice. Besides, a series of methods including RNA sequencing, metabolomics, primary cell culture, lipid staining, etc. were used. Results: 2-AG was increased in the serum or kidneys from CKD patients and models. Supplement of 2-AG further induced lipid accumulation and fibrogenesis through cannabinoid receptor type 2 (CB2)/β-catenin signaling. β-catenin knockout blocked 2-AG/CB2-induced fatty acid β-oxidation (FAO) deficiency and lipid accumulation. Remarkably, MAGL significantly decreased in CKD, aligning with lipid accumulation and fibrosis. Specific transgene of MAGL in tubular cells significantly preserved FAO, inhibited lipid-mediated toxicity in tubular cells, and finally retarded fibrogenesis. Additionally, supplementation of MAGL in UIRI mice also preserved FAO function, inhibited lipid accumulation, and protected against renal fibrosis. Conclusion: MAGL is a potential diagnostic marker for kidney function decline, and also serves as a new therapeutic target for renal fibrosis through ameliorating lipotoxicity.PMID:38389852 | PMC:PMC10879875 | DOI:10.7150/thno.92848

Tripeptidyl peptidase II coordinates the homeostasis of calcium and lipids in the central nervous system and its depletion causes presenile dementia in female mice through calcium/lipid dyshomeostasis-induced autophagic degradation of CYP19A1

Fri, 23/02/2024 - 12:00
Theranostics. 2024 Jan 27;14(4):1390-1429. doi: 10.7150/thno.92571. eCollection 2024.ABSTRACTRationale: Tripeptidyl peptidase II (TPP2) has been proven to be related to human immune and neurological diseases. It is generally considered as a cytosolic protein which forms the largest known protease complex in eukaryotic cells to operate mostly downstream of proteasomes for degradation of longer peptides. However, this canonical function of TPP2 cannot explain its role in a wide variety of biological and pathogenic processes. The mechanistic interrelationships and hierarchical order of these processes have yet to be clarified. Methods: Animals, cells, plasmids, and viruses established and/or used in this study include: TPP2 knockout mouse line, TPP2 conditional knockout mouse lines (different neural cell type oriented), TRE-TPP2 knockin mouse line on the C57BL/6 background; 293T cells with depletion of TPP2, ATF6, IRE1, PERK, SYVN1, UCHL1, ATG5, CEPT1, or CCTα, respectively; 293T cells stably expressing TPP2, TPP2 S449A, TPP2 S449T, or CCTα-KDEL proteins on the TPP2-depleted background; Plasmids for eukaryotic transient expression of rat CYP19A1-Flag, CYP19A1 S118A-Flag, CYP19A1 S118D-Flag, Sac I ML GFP Strand 11 Long, OMMGFP 1-10, G-CEPIA1er, GCAMP2, CEPIA3mt, ACC-GFP, or SERCA1-GFP; AAV2 carrying the expression cassette of mouse CYP19A1-3 X Flag-T2A-ZsGreen. Techniques used in this study include: Flow cytometry, Immunofluorescence (IF) staining, Immunohistochemical (IHC) staining, Luxol fast blue (LFB) staining, β-galactosidase staining, Lipid droplet (LD) staining, Calcium (Ca2+) staining, Stimulated emission depletion (STED) imaging, Transmission electron microscopic imaging, Two-photon imaging, Terminal deoxynucleotidyl transferase (TdT) dUTP nick-end Labeling (TUNEL) assay, Bromodeoxyuridine (BrdU) assay, Enzymatic activity assay, Proximity ligation assay (PLA), In vivo electrophysiological recording, Long-term potentiation (LTP) recording, Split-GFP-based mitochondria-associated membrane (MAM) detection, Immunoprecipitation (IP), Cellular fractionation, In situ hybridization, Semi-quantitative RT-PCR, Immunoblot, Mass spectrometry-based lipidomics, metabolomics, proteomics, Primary hippocampal neuron culture and Morris water maze (MWM) test. Results: We found that TPP2, independent of its enzymatic activity, plays a crucial role in maintaining the homeostasis of intracellular Ca2+ and phosphatidylcholine (PC) in the central nervous system (CNS) of mice. In consistence with the critical importance of Ca2+ and PC in the CNS, TPP2 gene ablation causes presenile dementia in female mice, which is closely associated with Ca2+/PC dysregulation-induced endoplasmic reticulum (ER) stress, abnormal autophagic degradation of CYP19A1 (aromatase), and estrogen depletion. This work therefore uncovers a new role of TPP2 in lipogenesis and neurosteroidogenesis which is tightly related to cognitive function of adult female mice. Conclusion: Our study reveals a crucial role of TPP2 in controlling homeostasis of Ca2+ and lipids in CNS, and its deficiency causes sexual dimorphism in dementia. Thus, this study is not only of great significance for elucidating the pathogenesis of dementia and its futural treatment, but also for interpreting the role of TPP2 in other systems and their related disorders.PMID:38389851 | PMC:PMC10879859 | DOI:10.7150/thno.92571

20-HETE mediated TRPV1 activation drives allokinesis via MrgprA3<sup>+</sup> neurons in chronic dermatitis

Fri, 23/02/2024 - 12:00
Theranostics. 2024 Feb 4;14(4):1615-1630. doi: 10.7150/thno.85214. eCollection 2024.ABSTRACTRationale: Noxious stimuli are often perceived as itchy in patients with chronic dermatitis (CD); however, itch and pain mechanisms of CD are not known. Methods: TRPV1 involvement in CD was analyzed using a SADBE induced CD-like mouse model, and several loss- and gain-of-function mouse models. Trigeminal TRPV1 channel and MrgprA3+ neuron functions were analyzed by calcium imaging and whole-cell patch-clamp recordings. Lesional CD-like skin from mice were analyzed by unbiased metabolomic analysis. 20-HETE availability in human and mouse skin were determined by LC/MS and ELISA. And finally, HET0016, a selective 20-HETE synthase inhibitor, was used to evaluate if blocking skin TRPV1 activation alleviates CD-associated chronic itch or pain. Results: While normally a pain inducing chemical, capsaicin induced both itch and pain in mice with CD condition. DREADD silencing of MrgprA3+ primary sensory neurons in these mice selectively decreased capsaicin induced scratching, but not pain-related wiping behavior. In the mice with CD condition, MrgprA3+ neurons showed elevated ERK phosphorylation. Further experiments showed that MrgprA3+ neurons from MrgprA3;Braf mice, which have constitutively active BRAF in MrgprA3+ neurons, were significantly more excitable and responded more strongly to capsaicin. Importantly, capsaicin induced both itch and pain in MrgprA3;Braf mice in an MrgprA3+ neuron dependent manner. Finally, the arachidonic acid metabolite 20-HETE, which can activate TRPV1, was significantly elevated in the lesional skin of mice and patients with CD. Treatment with the selective 20-HETE synthase inhibitor HET0016 alleviated itch in mice with CD condition. Conclusion: Our results demonstrate that 20-HETE activates TRPV1 channels on sensitized MrgprA3+ neurons, and induces allokinesis in lesional CD skin. Blockade of 20-HETE synthesis or silencing of TRPV1-MrgprA3+ neuron signaling offers promising therapeutic strategies for alleviating CD-associated chronic itch.PMID:38389848 | PMC:PMC10879873 | DOI:10.7150/thno.85214

Global metabolomics revealed deviations from the metabolic aging clock in colorectal cancer patients

Fri, 23/02/2024 - 12:00
Theranostics. 2024 Feb 4;14(4):1602-1614. doi: 10.7150/thno.87303. eCollection 2024.ABSTRACTBackground: Markers of aging hold promise in the context of colorectal cancer (CRC) care. Utilizing high-resolution metabolomic profiling, we can unveil distinctive age-related patterns that have the potential to predict early CRC development. Our study aims to unearth a panel of aging markers and delve into the metabolomic alterations associated with aging and CRC. Methods: We assembled a serum cohort comprising 5,649 individuals, consisting of 3,002 healthy volunteers, 715 patients diagnosed with colorectal advanced precancerous lesions (APL), and 1,932 CRC patients, to perform a comprehensive metabolomic analysis. Results: We successfully identified unique age-associated patterns across 42 metabolic pathways. Moreover, we established a metabolic aging clock, comprising 9 key metabolites, using an elastic net regularized regression model that accurately estimates chronological age. Notably, we observed significant chronological disparities among the healthy population, APL patients, and CRC patients. By combining the analysis of circulative carcinoembryonic antigen levels with the categorization of individuals into the "hypo" metabolic aging subgroup, our blood test demonstrates the ability to detect APL and CRC with positive predictive values of 68.4% (64.3%, 72.2%) and 21.4% (17.8%, 25.9%), respectively. Conclusions: This innovative approach utilizing our metabolic aging clock holds significant promise for accurately assessing biological age and enhancing our capacity to detect APL and CRC.PMID:38389840 | PMC:PMC10879879 | DOI:10.7150/thno.87303

Cancer-associated fibroblasts reprogram cysteine metabolism to increase tumor resistance to ferroptosis in pancreatic cancer

Fri, 23/02/2024 - 12:00
Theranostics. 2024 Feb 11;14(4):1683-1700. doi: 10.7150/thno.89805. eCollection 2024.ABSTRACTBackground: Pancreatic ductal adenocarcinoma (PDAC) is an insidious, rapidly progressing malignancy of the gastrointestinal tract. Due to its dense fibrous stroma and complex tumor microenvironment, neither of which is sensitive to radiotherapy, pancreatic adenocarcinoma is one of the malignancies with the poorest prognosis. Therefore, detailed elucidation of the inhibitory microenvironment of PDAC is essential for the development of novel therapeutic strategies. Methods: We analyzed the association between cancer-associated fibroblasts (CAFs) and resistance to ferroptosis in PDAC using conditioned CAF medium and co-culture of pancreatic cancer cells. Abnormal cysteine metabolism was observed in CAFs using non-targeted metabolomics analysis with liquid chromatography-tandem mass spectrometry (LC-MS/MS). The regulatory effects of cysteine were investigated in PDAC cells through measurement of cell cloning, cell death, cell function, and EdU assays. The effects of exogenous cysteine intake were examined in a mouse xenograft model and the effects of the cysteine pathway on ferroptosis in PDAC were investigated by western blotting, measurement of glutathione and reactive oxygen species levels, among others. Results: It was found that CAFs played a critical role in PDAC metabolism by secreting cysteine, which could increase tumor resistance to ferroptosis. A previously unrecognized function of the sulfur transfer pathway in CAFs was identified, which increased the extracellular supply of cysteine to support glutathione synthesis and thus inducing ferroptosis resistance. Cysteine secretion by CAFs was found to be mediated by the TGF-β/SMAD3/ATF4 signaling axis. Conclusion: Taken together, the findings demonstrate a novel metabolic relationship between CAFs and cancer cells, in which cysteine generated by CAFs acts as a substrate in the prevention of oxidative damage in PDAC and thus suggests new therapeutic targets for PDAC.PMID:38389839 | PMC:PMC10879865 | DOI:10.7150/thno.89805

Pages