Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Integrated UHPLC-MS untargeted metabolomics and gut microbe metabolism pathway-targeted metabolomics to reveal the prevention mechanism of Gushudan on kidney-yang-deficiency-syndrome rats

Thu, 22/02/2024 - 12:00
J Pharm Biomed Anal. 2024 Feb 20;242:116062. doi: 10.1016/j.jpba.2024.116062. Online ahead of print.ABSTRACTGushudan (GSD) was a traditional Chinese prescription with the remarkable effect of kidney-tonifying and bone-strengthening. However, the potential prevention mechanisms of the GSD on kidney-yang-deficiency-syndrome (KYDS) and its regulation on gut microbe metabolism still need to be further systematically investigated. This study established untargeted urinary metabolomics based on RP/HILIC-UHPLC-Q-Orbitrap HRMS and combined with multivariate statistical analysis to discover differential metabolites and key metabolic pathways. And the gut microbe metabolism pathway-targeted metabolomic based on HILIC-UHPLC-MS/MS was developed and validated to simultaneously determine 15 gut microbe-mediated metabolites in urine samples from the control group (CON), KYDS model group (MOD), GSD-treatment group (GSD) and positive group (POS). The results showed that a total of 36 differential metabolites were discovered in untargeted metabolomics. These differential metabolites included proline, cytosine, butyric acid and nicotinic acid, which were primarily involved in the gut microbe metabolism, amino acid metabolism, energy metabolism and nucleotide metabolism. And GSD played a role in preventing KYDS by regulating these metabolic pathways. The targeted metabolomics found that the levels of 10 gut microbe-mediated metabolites had significant differences in different groups. Among them, compared with the CON group, the levels of lysine, tryptophan, phenylacetylglycine and hippuric acid were increased in the MOD group, while the levels of threonine, leucine, dimethylamine, trimethylamine, succinic acid and butyric acid were decreased, which verified the disorders of gut microbe metabolism in the KYDS rats and GSD had a significant regulatory effect on this disorder. As well as by comparing analysis, it was found that the experimental results were consistent with previous metabolomics and microbiomics of fecal samples. Therefore, this integrated strategy of untargeted and targeted metabolomics not only elucidated the potential prevention mechanism of GSD on KYDS, but also provided a scientific basis for GSD preventing KYDS via the "gut-kidney" axis.PMID:38387127 | DOI:10.1016/j.jpba.2024.116062

Investigating the anti-atherosclerotic effects and potential mechanism of Dalbergia odorifera in ApoE-deficient mice using network pharmacology combined with metabolomics

Thu, 22/02/2024 - 12:00
J Pharm Biomed Anal. 2024 Feb 7;242:116017. doi: 10.1016/j.jpba.2024.116017. Online ahead of print.ABSTRACTDalbergia odorifera (DO) is a precious rosewood species in Southern Asia, and its heartwood is used in China as an official plant for invigorating blood circulation and eliminating stasis. This study aims to evaluate the efficacy of DO on atherosclerosis (AS), and further explore its active components and potential mechanisms. The apolipoprotein-E (ApoE)-deficient mice fed a high-fat diet were used as model animals, and the pathological changes in mice with or without DO treatment were compared to evaluate the pharmacodynamics of DO on AS. The mechanisms were preliminarily expounded by combining with metabolomics and network pharmacology. Moreover, the bioactive components and targets were assessed by cell experiments and molecular docking, respectively. Our findings suggested that DO significantly modulated blood lipid levels and alleviated intimal hyperplasia in atherosclerotic-lesioned mice, and the mechanisms may involve the regulation of 18 metabolites that changed during the progression of AS, thus affecting 3 major metabolic pathways and 3 major signaling pathways. Moreover, the interactions between 16 compounds with anti-proliferative effect and hub targets in the 3 signaling pathways were verified using molecular docking. Collectively, our findings preliminarily support the therapeutic effect of DO in atherosclerosis, meanwhile explore the active constituents and potential pharmacological mechanisms, which is conducive to its reasonable exploitation and utilization.PMID:38387125 | DOI:10.1016/j.jpba.2024.116017

Multiomics Signatures of Coagulopathy in a Polytrauma Swine Model Contrasted with Severe Multisystem Injured Patients

Thu, 22/02/2024 - 12:00
J Proteome Res. 2024 Feb 22. doi: 10.1021/acs.jproteome.3c00581. Online ahead of print.ABSTRACTTrauma-induced coagulopathy (TIC) is a leading contributor to preventable mortality in severely injured patients. Understanding the molecular drivers of TIC is an essential step in identifying novel therapeutics to reduce morbidity and mortality. This study investigated multiomics and viscoelastic responses to polytrauma using our novel swine model and compared these findings with severely injured patients. Molecular signatures of TIC were significantly associated with perturbed coagulation and inflammation systems as well as extensive hemolysis. These results were consistent with patterns observed in trauma patients who had multisystem injuries. Here, intervention using resuscitative endovascular balloon occlusion of the aorta following polytrauma in our swine model revealed distinct multiomics alterations as a function of placement location. Aortic balloon placement in zone-1 worsened ischemic damage and mitochondrial dysfunction, patterns that continued throughout the monitored time course. While placement in zone-III showed a beneficial effect on TIC, it showed an improvement in effective coagulation. Taken together, this study highlights the translational relevance of our polytrauma swine model for investigating therapeutic interventions to correct TIC in patients.PMID:38386921 | DOI:10.1021/acs.jproteome.3c00581

Genome scale metabolic network modelling for metabolic profile predictions

Thu, 22/02/2024 - 12:00
PLoS Comput Biol. 2024 Feb 22;20(2):e1011381. doi: 10.1371/journal.pcbi.1011381. Online ahead of print.ABSTRACTMetabolic profiling (metabolomics) aims at measuring small molecules (metabolites) in complex samples like blood or urine for human health studies. While biomarker-based assessment often relies on a single molecule, metabolic profiling combines several metabolites to create a more complex and more specific fingerprint of the disease. However, in contrast to genomics, there is no unique metabolomics setup able to measure the entire metabolome. This challenge leads to tedious and resource consuming preliminary studies to be able to design the right metabolomics experiment. In that context, computer assisted metabolic profiling can be of strong added value to design metabolomics studies more quickly and efficiently. We propose a constraint-based modelling approach which predicts in silico profiles of metabolites that are more likely to be differentially abundant under a given metabolic perturbation (e.g. due to a genetic disease), using flux simulation. In genome-scale metabolic networks, the fluxes of exchange reactions, also known as the flow of metabolites through their external transport reactions, can be simulated and compared between control and disease conditions in order to calculate changes in metabolite import and export. These import/export flux differences would be expected to induce changes in circulating biofluid levels of those metabolites, which can then be interpreted as potential biomarkers or metabolites of interest. In this study, we present SAMBA (SAMpling Biomarker Analysis), an approach which simulates fluxes in exchange reactions following a metabolic perturbation using random sampling, compares the simulated flux distributions between the baseline and modulated conditions, and ranks predicted differentially exchanged metabolites as potential biomarkers for the perturbation. We show that there is a good fit between simulated metabolic exchange profiles and experimental differential metabolites detected in plasma, such as patient data from the disease database OMIM, and metabolic trait-SNP associations found in mGWAS studies. These biomarker recommendations can provide insight into the underlying mechanism or metabolic pathway perturbation lying behind observed metabolite differential abundances, and suggest new metabolites as potential avenues for further experimental analyses.PMID:38386685 | DOI:10.1371/journal.pcbi.1011381

Modulation of intestinal metabolites by calorie restriction and its association with gut microbiota in a xenograft model of colorectal cancer

Thu, 22/02/2024 - 12:00
Discov Oncol. 2024 Feb 22;15(1):46. doi: 10.1007/s12672-024-00897-2.ABSTRACTBACKGROUND: Colorectal cancer (CRC) is a common malignant tumor, and its occurrence and development are closely related to dysbiosis of gut microbes. Previously, we found calorie restriction altered the composition of the microbial community in a colorectal cancer mouse model and inhibited in vivo growth of CRC cells. Here, we aim to further investigate alteration in the intestinal metabolites and explore the interplay between gut microbiota and intestinal metabolites upon calorie restriction.METHODS: Human colorectal cancer HCT116 cells were used to establish a colorectal cancer xenograft mouse model. The changes of intestinal metabolites in the ad libitum group and calorie restriction group were investigated through untargeted metabolomics analysis. The integrative analysis of gut microbiota and metabolites to elucidate the associations between gut microbiota and intestinal metabolites.RESULTS: Compared with the mice in the ad libitum group, mice upon calorie restriction exhibited downregulation of Isoleucyl-Valine, and upregulation of D-Proline, 1-Palmitoylphosphatidylcholine, and 4-Trimethylammoniobutanoic acid. Additionally, an integrative analysis of gut microbiota and metabolites revealed that Lactobacillus, Parabacteroides and rC4-4 genus were upregulated in the calorie restriction group and positively correlated with D-Proline, 4-Trimethylammoniobutanoic acid or 1-Palmitoylphosphatidylcholine, while negatively correlated with Isoleucyl-Valine. In contrast, the Nitrospirae and Deferribacteres phylum exhibited opposite trends.CONCLUSION: Calorie restriction affects the abundance of gut microbes such as Nitrospirae phylum and Lactobacillus genus in mouse model of colorectal cancer, leading to changes in the metabolites such as D-Proline、Isoleucyl-Valine, which contributes to the suppression of in vivo growth of CRC by calorie restriction.PMID:38386206 | DOI:10.1007/s12672-024-00897-2

Environmental Concentrations of Herbicide Prometryn Render Stress-Tolerant Corals Susceptible to Ocean Warming

Thu, 22/02/2024 - 12:00
Environ Sci Technol. 2024 Feb 22. doi: 10.1021/acs.est.3c10417. Online ahead of print.ABSTRACTGlobal warming has caused the degradation of coral reefs around the world. While stress-tolerant corals have demonstrated the ability to acclimatize to ocean warming, it remains unclear whether they can sustain their thermal resilience when superimposed with other coastal environmental stressors. We report the combined impacts of a photosystem II (PSII) herbicide, prometryn, and ocean warming on the stress-tolerant coral Galaxea fascicularis through physiological and omics analyses. The results demonstrate that the heat-stress-induced inhibition of photosynthetic efficiency in G. fascicularis is exacerbated in the presence of prometryn. Transcriptomics and metabolomics analyses indicate that the prometryn exposure may overwhelm the photosystem repair mechanism in stress-tolerant corals, thereby compromising their capacity for thermal acclimation. Moreover, prometryn might amplify the adverse effects of heat stress on key energy and nutrient metabolism pathways and induce a stronger response to oxidative stress in stress-tolerant corals. The findings indicate that the presence of prometryn at environmentally relevant concentrations would render corals more susceptible to heat stress and exacerbate the breakdown of coral Symbiodiniaceae symbiosis. The present study provides valuable insights into the necessity of prioritizing PSII herbicide pollution reduction in coral reef protection efforts while mitigating the effects of climate change.PMID:38386019 | DOI:10.1021/acs.est.3c10417

Multiple and Optimal Screening Subset: a method selecting global characteristic congeners for robust foodomics analysis

Thu, 22/02/2024 - 12:00
Brief Bioinform. 2024 Jan 22;25(2):bbae046. doi: 10.1093/bib/bbae046.ABSTRACTMetabolomics and foodomics shed light on the molecular processes within living organisms and the complex food composition by leveraging sophisticated analytical techniques to systematically analyze the vast array of molecular features. The traditional feature-picking method often results in arbitrary selections of the model, feature ranking, and cut-off, which may lead to suboptimal results. Thus, a Multiple and Optimal Screening Subset (MOSS) approach was developed in this study to achieve a balance between a minimal number of predictors and high predictive accuracy during statistical model setup. The MOSS approach compares five commonly used models in the context of food matrix analysis, specifically bourbons. These models include Student's t-test, receiver operating characteristic curve, partial least squares-discriminant analysis (PLS-DA), random forests, and support vector machines. The approach employs cross-validation to identify promising subset feature candidates that contribute to food characteristic classification. It then determines the optimal subset size by comparing it to the corresponding top-ranked features. Finally, it selects the optimal feature subset by traversing all possible feature candidate combinations. By utilizing MOSS approach to analyze 1406 mass spectral features from a collection of 122 bourbon samples, we were able to generate a subset of features for bourbon age prediction with 88% accuracy. Additionally, MOSS increased the area under the curve performance of sweetness prediction to 0.898 with only four predictors compared with the top-ranked four features at 0.681 based on the PLS-DA model. Overall, we demonstrated that MOSS provides an efficient and effective approach for selecting optimal features compared with other frequently utilized methods.PMID:38385875 | DOI:10.1093/bib/bbae046

The shifting lipidomic landscape of blood monocytes and neutrophils during pneumonia

Thu, 22/02/2024 - 12:00
JCI Insight. 2024 Feb 22;9(4):e164400. doi: 10.1172/jci.insight.164400.ABSTRACTThe lipidome of immune cells during infection has remained unexplored, although evidence of the importance of lipids in the context of immunity is mounting. In this study, we performed untargeted lipidomic analysis of blood monocytes and neutrophils from patients hospitalized for pneumonia and age- and sex-matched noninfectious control volunteers. We annotated 521 and 706 lipids in monocytes and neutrophils, respectively, which were normalized to an extensive set of internal standards per lipid class. The cellular lipidomes were profoundly altered in patients, with both common and distinct changes between the cell types. Changes involved every level of the cellular lipidome: differential lipid species, class-wide shifts, and altered saturation patterns. Overall, differential lipids were mainly less abundant in monocytes and more abundant in neutrophils from patients. One month after hospital admission, lipidomic changes were fully resolved in monocytes and partially in neutrophils. Integration of lipidomic and concurrently collected transcriptomic data highlighted altered sphingolipid metabolism in both cell types. Inhibition of ceramide and sphingosine-1-phosphate synthesis in healthy monocytes and neutrophils resulted in blunted cytokine responses upon stimulation with lipopolysaccharide. These data reveal major lipidomic remodeling in immune cells during infection, and link the cellular lipidome to immune functionality.PMID:38385743 | DOI:10.1172/jci.insight.164400

Analysis on the change of gut microbiota and metabolome in lung transplant patients

Thu, 22/02/2024 - 12:00
Microbiol Spectr. 2024 Feb 22:e0314223. doi: 10.1128/spectrum.03142-23. Online ahead of print.ABSTRACTPrevious studies have shown that the gut microbiota and its metabolites are associated with the success of organ transplantation. However, the specific changes in the gut microbiota of lung transplant patients remain unclear. Hence, this study aimed to elucidate the interplay between the gut microbiota, metabolome, and lung transplantation outcomes. Using 16S metagenomics sequencing and untargeted metabolic profiling, we conducted a comprehensive analysis of gut microbial and metabolic alterations in lung transplant recipients relative to non-transplant group. Our findings revealed the predominance of Enterococcus and Streptococcus genera within the lung transplant cohort, accompanied by the significant reduction in Bacteroides, Epulopiscium, Faecalibacterium, and Prevotella abundance. In addition, a significant reduction in ATRA (all-trans retinoic acid) levels and suppression of IgA production were observed in lung transplant recipients, which were found to be closely associated with the Enterococcus genus. It was speculated that the association might have implications for the prognosis of lung transplant patients. Notably, the differences in gut microbial composition and metabolomic profiles between successful transplant recipients and those experiencing chronic rejection were not statistically significant. These novel insights shed light on the putative implications of the gut microbiota and metabolome in shaping lung transplantation outcomes, and provide a foundation for future investigations and targeted therapeutic interventions.IMPORTANCEThis study has profound implications for lung transplantation as it uncovers the important role of gut microbiota and metabolome in shaping transplantation outcomes. The identification of dominant bacterial genera, such as Enterococcus and Streptococcus, within the lung transplant cohort, along with the significant decrease in Bacteroides, Epulopiscium, Faecalibacterium, and Prevotella abundance, reveals potential microbial imbalances associated with lung transplantation. In addition, a significant reduction in ATRA (all-trans retinoic acid) levels and suppression of IgA production were observed in lung transplant recipients, which were found to be closely associated with the Enterococcus genus. It was speculated that the association might have implications for the prognosis of lung transplant patients. These findings hold immense clinical significance as they lay the groundwork for future research and targeted therapeutic interventions. Understanding the impact of the gut microbiota and metabolome on lung transplantation outcomes offers promising avenues for improving transplantation patient prognosis.PMID:38385646 | DOI:10.1128/spectrum.03142-23

Fire Impacts on the Soil Metabolome and Organic Matter Biodegradability

Thu, 22/02/2024 - 12:00
Environ Sci Technol. 2024 Feb 22. doi: 10.1021/acs.est.3c09797. Online ahead of print.ABSTRACTGlobal wildfire activity has increased since the 1970s and is projected to intensify throughout the 21st century. Wildfires change the composition and biodegradability of soil organic matter (SOM) which contains nutrients that fuel microbial metabolism. Though persistent forms of SOM often increase postfire, the response of more biodegradable SOM remains unclear. Here we simulated severe wildfires through a controlled "pyrocosm" approach to identify biodegradable sources of SOM and characterize the soil metabolome immediately postfire. Using microbial amplicon (16S/ITS) sequencing and gas chromatography-mass spectrometry, heterotrophic microbes (Actinobacteria, Firmicutes, and Protobacteria) and specific metabolites (glycine, protocatechuate, citric cycle intermediates) were enriched in burned soils, indicating that burned soils contain a variety of substrates that support microbial metabolism. Molecular formulas assigned by 21 T Fourier transform ion cyclotron resonance mass spectrometry showed that SOM in burned soil was lower in molecular weight and featured 20 to 43% more nitrogen-containing molecular formulas than unburned soil. We also measured higher water extractable organic carbon concentrations and higher CO2 efflux in burned soils. The observed enrichment of biodegradable SOM and microbial heterotrophs demonstrates the resilience of these soils to severe burning, providing important implications for postfire soil microbial and plant recolonization and ecosystem recovery.PMID:38385432 | DOI:10.1021/acs.est.3c09797

Influence of cultivation substrate on antioxidant activities and triterpenoid profiles of the fruiting body of <em>Ganoderma lucidum</em>

Thu, 22/02/2024 - 12:00
Front Nutr. 2024 Feb 7;11:1329579. doi: 10.3389/fnut.2024.1329579. eCollection 2024.ABSTRACTINTRODUCTION: The fruiting body of Ganoderma lucidum has been believed to possess a wide range of therapeutic effects. There are two main methods for artificial cultivation of G. lucidum to produce the fruiting body, namely wood log cultivation and substitute cultivation. The impact of cultivation substrates on the composition of bioactive compounds remains largely unexplored. This study aims to compare the antioxidant activities and triterpenoid profiles of the fruiting bodies of G. lucidum that cultivated through wood log cultivation (WGL) and substitute cultivation (SGL) methods.METHODS: The antioxidant activities, including the DPPH radical scavenging, hydroxyl radical scavenging, superoxide radical scavenging, and total antioxidant activities, were assessed in both WGL and SGL samples. Furthermore, the UHPLC-Q-Orbitrap-MS technique was employed to compare their phytochemical profiles, with a specific emphasis on triterpenoid constituents.RESULTS AND DISCUSSION: It was found that WGL samples exhibited significantly higher total triterpenoid content, DPPH radical scavenging activity, and total antioxidant activity. Furthermore, an untargeted metabolomics approach employing UHPLC-Q-Orbitrap-MS tentatively identified a total of 96 triterpenoids. Distinguishingly different triterpenoid profiles between the two types of G. lucidum samples were revealed via the utilization of principal component analysis (PCA) and hierarchical cluster analysis (HCA). Specifically, 17 triterpenoids showed significant differences. Of these triterpenoids, 6 compounds, such as ganosporelactone B, ganoderol A, ganoderic acid A, ganoderic acid alpha, were significantly higher in SGL samples; 11 compounds, such as lucidenic acid A, lucidenic acid D1, lucidenic acid F, lucidenic acid G, lucidenic acid J, ganoderic acid E, and ganoderic acid O, were significantly higher in WGL samples. These findings expand our knowledge regarding the impact of cultivation substrate on the antioxidant activities and triterpenoid profiles of G. lucidum, and offer practical implications for its cultivation.PMID:38385012 | PMC:PMC10879320 | DOI:10.3389/fnut.2024.1329579

Multi-omics analysis on the mechanism of the effect of Isatis leaf on the growth performance of fattening sheep

Thu, 22/02/2024 - 12:00
Front Vet Sci. 2024 Feb 7;11:1332457. doi: 10.3389/fvets.2024.1332457. eCollection 2024.ABSTRACTINTRODUCTION: This study evaluated the effects of Isatis Leaf (ISL) on the growth performance, gastrointestinal tissue morphology, rumen and intestinal microbiota, rumen, serum and urine metabolites, and rumen epithelial tissue transcriptome of fattening sheep.METHODS: Twelve 3.5-month-old healthy fattening sheep were randomly divided into two groups, each with 6 replicates, and fed with basal diet (CON) and basal diet supplemented with 80 g/kg ISL for 2.5 months. Gastrointestinal tract was collected for histological analysis, rumen fluid and feces were subjected to metagenomic analysis, rumen fluid, serum, and urine for metabolomics analysis, and rumen epithelial tissue for transcriptomics analysis.RESULTS: The results showed that in the ISL group, the average daily gain and average daily feed intake of fattening sheep were significantly lower than those of the CON group (P < 0.05), and the rumen ammonia nitrogen level was significantly higher than that of the CON group (P < 0.01). The thickness of the reticulum and abomasum muscle layer was significantly increased (P < 0.05). At the genus level, the addition of ISL modified the composition of rumen and fecal microorganisms, and the relative abundance of Methanobrevibacter and Centipeda was significantly upregulated in rumen microorganisms, The relative abundance of Butyrivibrio, Saccharofermentans, Mogibacterium, and Pirellula was significantly downregulated (P < 0.05). In fecal microorganisms, the relative abundance of Papillibacter, Pseudoflavonifractor, Butyricicoccus, Anaerovorax, and Methanocorpusculum was significantly upregulated, while the relative abundance of Roseburia, Coprococcus, Clostridium XVIII, Butyrivibrio, Parasutterella, Macellibacteroides, and Porphyromonas was significantly downregulated (P < 0.05). There were 164, 107, and 77 different metabolites in the rumen, serum, and urine between the ISL and CON groups (P < 0.05). The differential metabolic pathways mainly included thiamine metabolism, niacin and nicotinamide metabolism, vitamin B6 metabolism, taurine and taurine metabolism, beta-Alanine metabolism and riboflavin metabolism. These metabolic pathways were mainly involved in the regulation of energy metabolism and immune function in fattening sheep. Transcriptome sequencing showed that differentially expressed genes were mainly enriched in cellular physiological processes, development, and immune regulation.CONCLUSION: In summary, the addition of ISL to the diet had the effect of increasing rumen ammonia nitrogen levels, regulating gastrointestinal microbiota, promoting body fat metabolism, and enhancing immunity in fattening sheep.PMID:38384949 | PMC:PMC10879442 | DOI:10.3389/fvets.2024.1332457

Metabolomic biomarkers in liquid biopsy: accurate cancer diagnosis and prognosis monitoring

Thu, 22/02/2024 - 12:00
Front Oncol. 2024 Feb 7;14:1331215. doi: 10.3389/fonc.2024.1331215. eCollection 2024.ABSTRACTLiquid biopsy, a novel detection method, has recently become an active research area in clinical cancer owing to its unique advantages. Studies on circulating free DNA, circulating tumor cells, and exosomes obtained by liquid biopsy have shown great advances and they have entered clinical practice as new cancer biomarkers. The metabolism of the body is dynamic as cancer originates and progresses. Metabolic abnormalities caused by cancer can be detected in the blood, sputum, urine, and other biological fluids via systemic or local circulation. A considerable number of recent studies have focused on the roles of metabolic molecules in cancer. The purpose of this review is to provide an overview of metabolic markers from various biological fluids in the latest clinical studies, which may contribute to cancer screening and diagnosis, differentiation of cancer typing, grading and staging, and prediction of therapeutic response and prognosis.PMID:38384814 | PMC:PMC10879439 | DOI:10.3389/fonc.2024.1331215

Baselining physiological parameters in three muscles across three equine breeds. What can we learn from the horse?

Thu, 22/02/2024 - 12:00
Front Physiol. 2024 Feb 7;15:1291151. doi: 10.3389/fphys.2024.1291151. eCollection 2024.ABSTRACTMapping-out baseline physiological muscle parameters with their metabolic blueprint across multiple archetype equine breeds, will contribute to better understanding their functionality, even across species. Aims: 1) to map out and compare the baseline fiber type composition, fiber type and mean fiber cross-sectional area (fCSA, mfCSA) and metabolic blueprint of three muscles in 3 different breeds 2) to study possible associations between differences in histomorphological parameters and baseline metabolism. Methods: Muscle biopsies [m. pectoralis (PM), m. vastus lateralis (VL) and m. semitendinosus (ST)] were harvested of 7 untrained Friesians, 12 Standardbred and 4 Warmblood mares. Untargeted metabolomics was performed on the VL and PM of Friesian and Warmblood horses and the VL of Standardbreds using UHPLC/MS/MS and GC/MS. Breed effect on fiber type percentage and fCSA and mfCSA was tested with Kruskal-Wallis. Breeds were compared with Wilcoxon rank-sum test, with Bonferroni correction. Spearman correlation explored the association between the metabolic blueprint and morphometric parameters. Results: The ST was least and the VL most discriminative across breeds. In Standardbreds, a significantly higher proportion of type IIA fibers was represented in PM and VL. Friesians showed a significantly higher representation of type IIX fibers in the PM. No significant differences in fCSA were present across breeds. A significantly larger mfCSA was seen in the VL of Standardbreds. Lipid and nucleotide super pathways were significantly more upregulated in Friesians, with increased activity of short and medium-chain acylcarnitines together with increased abundance of long chain and polyunsaturated fatty acids. Standardbreds showed highly active xenobiotic pathways and high activity of long and very long chain acylcarnitines. Amino acid metabolism was similar across breeds, with branched and aromatic amino acid sub-pathways being highly active in Friesians. Carbohydrate, amino acid and nucleotide super pathways and carnitine metabolism showed higher activity in Warmbloods compared to Standardbreds. Conclusion: Results show important metabolic differences between equine breeds for lipid, amino acid, nucleotide and carbohydrate metabolism and in that order. Mapping the metabolic profile together with morphometric parameters provides trainers, owners and researchers with crucial information to develop future strategies with respect to customized training and dietary regimens to reach full potential in optimal welfare.PMID:38384798 | PMC:PMC10879303 | DOI:10.3389/fphys.2024.1291151

NO enhances the adaptability to high-salt environments by regulating osmotic balance, antioxidant defense, and ion homeostasis in eelgrass based on transcriptome and metabolome analysis

Thu, 22/02/2024 - 12:00
Front Plant Sci. 2024 Feb 7;15:1343154. doi: 10.3389/fpls.2024.1343154. eCollection 2024.ABSTRACTINTRODUCTION: Eelgrass is a typical marine angiosperm that exhibits strong adaptability to high-salt environments. Previous studies have shown that various growth and physiological indicators were significantly affected after the nitrate reductase (NR) pathway for nitric oxide (NO) synthesis in eelgrass was blocked.METHODS: To analyze the molecular mechanism of NO on the adaptability to high-salt environment in eelgrass, we treated eelgrass with artificial seawater (control group) and artificial seawater with 1 mM/L Na2WO4 (experimental group). Based on transcriptomics and metabolomics, we explored the molecular mechanism of NO affecting the salt tolerance of eelgrass.RESULTS: We obtained 326, 368, and 859 differentially expressed genes (DEGs) by transcriptome sequencing in eelgrass roots, stems, and leaves, respectively. Meanwhile, we obtained 63, 52, and 36 differentially accumulated metabolites (DAMs) by metabolomics in roots, stems, and leaves, respectively. Finally, through the combined analysis of transcriptome and metabolome, we found that the NO regulatory mechanism of roots and leaves of eelgrass is similar to that of terrestrial plants, while the regulatory mechanism of stems has similar and unique features.DISCUSSION: NO in eelgrass roots regulates osmotic balance and antioxidant defense by affecting genes in transmembrane transport and jasmonic acid-related pathways to improve the adaptability of eelgrass to high-salt environments. NO in eelgrass leaves regulates the downstream antioxidant defense system by affecting the signal transduction of plant hormones. NO in the stems of eelgrass regulates ion homeostasis by affecting genes related to ion homeostasis to enhance the adaptability of eelgrass to high-salt environments. Differently, after the NO synthesis was inhibited, the glyoxylate and dicarboxylate metabolism, as well as the tricarboxylic acid (TCA) cycle, was regulated by glucose metabolism as a complementary effect to cope with the high-salt environment in the stems of eelgrass. These are studies on the regulatory mechanism of NO in eelgrass, providing a theoretical basis for the study of the salt tolerance mechanism of marine plants and the improvement of terrestrial crop traits. The key genes discovered in this study can be applied to increase salt tolerance in terrestrial crops through cloning and molecular breeding methods in the future.PMID:38384762 | PMC:PMC10880190 | DOI:10.3389/fpls.2024.1343154

Effects of continuous monoculture on rhizosphere soil nutrients, growth, physiological characteristics, hormone metabolome of Casuarina equisetifolia and their interaction analysis

Thu, 22/02/2024 - 12:00
Heliyon. 2024 Feb 13;10(4):e26078. doi: 10.1016/j.heliyon.2024.e26078. eCollection 2024 Feb 29.ABSTRACTContinuous planting is unavoidable in agricultural production, but continuous planting affects plant growth and physiological characteristics. In this study, we analyzed rhizosphere soil nutrients, physiological characteristics, hormone metabolome changes and their interactions of Casuarina equisetifolia (C. equisetifolia) with the increase of continuous planting number. The results found that C. equisetifolia root was significantly inhibited, the plant height was dwarfed and the biomass was significantly reduced as continuous planting number increased. Secondly, continuous planting caused a decrease in the rhizosphere soil nutrient transformation capacity, and a significant decrease in the total soil nutrient and available nutrient content. Analysis of physiological indexes showed that continuous planting resulted in a decrease in nitrogen, phosphorus, and potassium content, a decrease in the activity of physiological indexes of resistance, and a decrease in photosynthetic capacity of C. equisetifolia leaves. Hormone metabolome analysis showed that continuous planting critically affected the accumulation of five characteristic hormones in C. equisetifolia leaves, in which salicylic acid 2-O-β-glucoside (SAG), 2-oxindole-3-acetic acid (OxIAA), trans-zeatin-O-glucoside (tZOG) and gibberellin A3 (GA3) content decreased significantly while abscisic acid (ABA) content increased significantly. In conclusion, continuous planting lowered the rhizosphere soil nutrient transformation capacity of C. equisetifolia, lowered the soil available nutrient content, inhibited their root growth, and hindered the nutrient uptake and transportation by the root, thus led to the decrease of the nutrient accumulation capacity in the leaves of C. equisetifolia, and the decrease of SAG, OxIAA, and tZOG, GA3 synthesis ability decreased, ABA accumulated in large quantities, C. equisetifolia resistance and photosynthesis ability decreased, and their growth was impeded. This study provides insights for the effective management of continuous planting in the cultivation of C. equisetifolia.PMID:38384578 | PMC:PMC10878944 | DOI:10.1016/j.heliyon.2024.e26078

Metabolomics unveils the exacerbating role of arachidonic acid metabolism in atherosclerosis

Thu, 22/02/2024 - 12:00
Front Mol Biosci. 2024 Feb 7;11:1297437. doi: 10.3389/fmolb.2024.1297437. eCollection 2024.ABSTRACTAtherosclerosis is a complex vascular disorder characterized by the deposition of lipids, inflammatory cascades, and plaque formation in arterial walls. A thorough understanding of its causes and progression is necessary to develop effective diagnostic and therapeutic strategies. Recent breakthroughs in metabolomics have provided valuable insights into the molecular mechanisms and genetic factors involved in atherosclerosis, leading to innovative approaches for preventing and treating the disease. In our study, we analyzed clinical serum samples from both atherosclerosis patients and animal models using laser desorption ionization mass spectrometry. By employing methods such as orthogonal partial least-squares discrimination analysis (OPLS-DA), heatmaps, and volcano plots, we can accurately classify atherosclerosis (AUC = 0.892) and identify key molecules associated with the disease. Specifically, we observed elevated levels of arachidonic acid and its metabolite, leukotriene B4, in atherosclerosis. By inhibiting arachidonic acid and monitoring its downstream metabolites, we discovered the crucial role of this metabolic pathway in regulating atherosclerosis. Metabolomic research provides detailed insights into the metabolic networks involved in atherosclerosis development and reveals the close connection between abnormal metabolism and the disease. These studies offer new possibilities for precise diagnosis, treatment, and monitoring of disease progression, as well as evaluating the effectiveness of therapeutic interventions.PMID:38384498 | PMC:PMC10879346 | DOI:10.3389/fmolb.2024.1297437

A systematic review and meta-analysis of proteomic and metabolomic alterations in anaphylaxis reactions

Thu, 22/02/2024 - 12:00
Front Immunol. 2024 Feb 7;15:1328212. doi: 10.3389/fimmu.2024.1328212. eCollection 2024.ABSTRACTBACKGROUND: Anaphylaxis manifests as a severe immediate-type hypersensitivity reaction initiated through the immunological activation of target B-cells by allergens, leading to the release of mediators. However, the well-known underlying pathological mechanisms do not fully explain the whole variety of clinical and immunological presentations. We performed a systemic review of proteomic and metabolomic studies and analyzed the extracted data to improve our understanding and identify potential new biomarkers of anaphylaxis.METHODS: Proteomic and metabolomic studies in both human subjects and experimental models were extracted and selected through a systematic search conducted on databases such as PubMed, Scopus, and Web of Science, up to May 2023.RESULTS: Of 137 retrieved publications, we considered 12 for further analysis, including seven on proteome analysis and five on metabolome analysis. A meta-analysis of the four human studies identified 118 proteins with varying expression levels in at least two studies. Beside established pathways of mast cells and basophil activation, functional analysis of proteomic data revealed a significant enrichment of biological processes related to neutrophil activation and platelet degranulation and metabolic pathways of arachidonic acid and icosatetraenoic acid. The pathway analysis highlighted also the involvement of neutrophil degranulation, and platelet activation. Metabolome analysis across different models showed 13 common metabolites, including arachidonic acid, tryptophan and lysoPC(18:0) lysophosphatidylcholines.CONCLUSION: Our review highlights the underestimated role of neutrophils and platelets in the pathological mechanisms of anaphylactic reactions. These findings, derived from a limited number of publications, necessitate confirmation through human studies with larger sample sizes and could contribute to the development of new biomarkers for anaphylaxis.SYSTEMATIC REVIEW REGISTRATION: https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42024506246.PMID:38384462 | PMC:PMC10879545 | DOI:10.3389/fimmu.2024.1328212

Hyperacetylated histone H4 is a source of carbon contributing to lipid synthesis

Thu, 22/02/2024 - 12:00
EMBO J. 2024 Feb 21. doi: 10.1038/s44318-024-00053-0. Online ahead of print.ABSTRACTHistone modifications commonly integrate environmental cues with cellular metabolic outputs by affecting gene expression. However, chromatin modifications such as acetylation do not always correlate with transcription, pointing towards an alternative role of histone modifications in cellular metabolism. Using an approach that integrates mass spectrometry-based histone modification mapping and metabolomics with stable isotope tracers, we demonstrate that elevated lipids in acetyltransferase-depleted hepatocytes result from carbon atoms derived from deacetylation of hyperacetylated histone H4 flowing towards fatty acids. Consistently, enhanced lipid synthesis in acetyltransferase-depleted hepatocytes is dependent on histone deacetylases and acetyl-CoA synthetase ACSS2, but not on the substrate specificity of the acetyltransferases. Furthermore, we show that during diet-induced lipid synthesis the levels of hyperacetylated histone H4 decrease in hepatocytes and in mouse liver. In addition, overexpression of acetyltransferases can reverse diet-induced lipogenesis by blocking lipid droplet accumulation and maintaining the levels of hyperacetylated histone H4. Overall, these findings highlight hyperacetylated histones as a metabolite reservoir that can directly contribute carbon to lipid synthesis, constituting a novel function of chromatin in cellular metabolism.PMID:38383863 | DOI:10.1038/s44318-024-00053-0

Developing a Radiomics Atlas Dataset of normal Abdominal and Pelvic computed Tomography (RADAPT)

Wed, 21/02/2024 - 12:00
J Imaging Inform Med. 2024 Feb 21. doi: 10.1007/s10278-024-01028-7. Online ahead of print.ABSTRACTAtlases of normal genomics, transcriptomics, proteomics, and metabolomics have been published in an attempt to understand the biological phenotype in health and disease and to set the basis of comprehensive comparative omics studies. No such atlas exists for radiomics data. The purpose of this study was to systematically create a radiomics dataset of normal abdominal and pelvic radiomics that can be used for model development and validation. Young adults without any previously known disease, aged > 17 and ≤ 36 years old, were retrospectively included. All patients had undergone CT scanning for emergency indications. In case abnormal findings were identified, the relevant anatomical structures were excluded. Deep learning was used to automatically segment the majority of visible anatomical structures with the TotalSegmentator model as applied in 3DSlicer. Radiomics features including first order, texture, wavelet, and Laplacian of Gaussian transformed features were extracted with PyRadiomics. A Github repository was created to host the resulting dataset. Radiomics data were extracted from a total of 531 patients with a mean age of 26.8 ± 5.19 years, including 250 female and 281 male patients. A maximum of 53 anatomical structures were segmented and used for subsequent radiomics data extraction. Radiomics features were derived from a total of 526 non-contrast and 400 contrast-enhanced (portal venous) series. The dataset is publicly available for model development and validation purposes.PMID:38383807 | DOI:10.1007/s10278-024-01028-7

Pages