Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Research progress of deep learning applications in mass spectrometry imaging data analysis

Fri, 05/07/2024 - 12:00
Se Pu. 2024 Jul;42(7):669-680. doi: 10.3724/SP.J.1123.2023.10035.ABSTRACTMass spectrometry imaging (MSI) is a promising method for characterizing the spatial distribution of compounds. Given the diversified development of acquisition methods and continuous improvements in the sensitivity of this technology, both the total amount of generated data and complexity of analysis have exponentially increased, rendering increasing challenges of data postprocessing, such as large amounts of noise, background signal interferences, as well as image registration deviations caused by sample position changes and scan deviations, and etc. Deep learning (DL) is a powerful tool widely used in data analysis and image reconstruction. This tool enables the automatic feature extraction of data by building and training a neural network model, and achieves comprehensive and in-depth analysis of target data through transfer learning, which has great potential for MSI data analysis. This paper reviews the current research status, application progress and challenges of DL in MSI data analysis, focusing on four core stages: data preprocessing, image reconstruction, cluster analysis, and multimodal fusion. The application of a combination of DL and mass spectrometry imaging in the study of tumor diagnosis and subtype classification is also illustrated. This review also discusses trends of development in the future, aiming to promote a better combination of artificial intelligence and mass spectrometry technology.PMID:38966975 | DOI:10.3724/SP.J.1123.2023.10035

GC-MS validation and analysis of targeted plasma metabolites related to carbonyl stress in type 2 diabetes mellitus patients with and without acute coronary syndrome

Fri, 05/07/2024 - 12:00
Biomed Chromatogr. 2024 Jul 5:e5952. doi: 10.1002/bmc.5952. Online ahead of print.ABSTRACTMethylglyoxal (MG) is responsible for advanced glycation end-product formation, the mechanisms leading to diabetes pathogenesis and complications like acute coronary syndrome (ACS). Sugar metabolites, amino acids and fatty acids are possible substrates for MG. The study aimed to measure plasma MG substrate levels using a validated gas chromatography-mass spectrometry (GC-MS) method and explore their association with ACS risk in type 2 diabetes mellitus (T2DM). The study included 150 T2DM patients with ACS as cases and 150 T2DM without ACS as controls for the analysis of glucose, fructose, ribulose, sorbitol, glycerol, pyruvate, lactate, glycine, serine, threonine, C16:0, C16:1, C18:0, C18:1, C18:2, C18:3, C20:0 and C22:6 by GC-MS. Validated GC-MS methods were accurate, precise and sensitive. Cases significantly differed in plasma MG and metabolite levels except for lactate, C16:0, C18:0, C18:2, and C18:3 levels compared with controls. On multivariable logistic regression, plasma C20:0, C18:1, glycine and glycerol levels had increased odds of ACS risk. On multivariate receiver operating characteristic analysis, a model containing plasma C20:0, C16:1, C18:1, C18:2, serine, glycerol, lactate and threonine levels had the highest area under the curve value (0.932) for ACS diagnosis. In conclusion, plasma C20:0, C16:1, C18:1, glycine, glycerol and sorbitol levels were associated with ACS risk in T2DM.PMID:38966927 | DOI:10.1002/bmc.5952

Jasmonate enhances cold acclimation in jojoba by promoting flavonol synthesis

Fri, 05/07/2024 - 12:00
Hortic Res. 2024 May 3;11(7):uhae125. doi: 10.1093/hr/uhae125. eCollection 2024 Jul.ABSTRACTJojoba is an industrial oil crop planted in tropical arid areas, and its low-temperature sensitivity prevents its introduction into temperate areas. Studying the molecular mechanisms associated with cold acclimation in jojoba is advantageous for developing breeds with enhanced cold tolerance. In this study, metabolomic analysis revealed that various flavonols accumulate in jojoba during cold acclimation. Time-course transcriptomic analysis and weighted correlation network analysis (WGCNA) demonstrated that flavonol biosynthesis and jasmonates (JAs) signaling pathways played crucial roles in cold acclimation. Combining the biochemical and genetic analyses showed that ScMYB12 directly activated flavonol synthase gene (ScFLS). The interaction between ScMYB12 and transparent testa 8 (ScTT8) promoted the expression of ScFLS, but the negative regulator ScJAZ13 in the JA signaling pathway interacted with ScTT8 to attenuate the transcriptional activity of the ScTT8 and ScMYB12 complex, leading to the downregulation of ScFLS. Cold acclimation stimulated the production of JA in jojoba leaves, promoted the degradation of ScJAZ13, and activated the transcriptional activity of ScTT8 and ScMYB12 complexes, leading to the accumulation of flavonols. Our findings reveal the molecular mechanism of JA-mediated flavonol biosynthesis during cold acclimation in jojoba and highlight the JA pathway as a promising means for enhancing cold tolerance in breeding efforts.PMID:38966867 | PMC:PMC11220180 | DOI:10.1093/hr/uhae125

Chemical tools for profiling the intracellular ADP-ribosylated proteome

Fri, 05/07/2024 - 12:00
RSC Chem Biol. 2024 May 22;5(7):640-651. doi: 10.1039/d4cb00043a. eCollection 2024 Jul 3.ABSTRACTThe post-translational modification (PTM) ADP-ribosylation plays an important role in cell signalling and regulating protein function and has been implicated in the development of multiple diseases, including breast and ovarian cancers. Studying the underlying mechanisms through which this PTM contributes towards disease development, however, has been hampered by the lack of appropriate tools for reliable identification of physiologically relevant ADP-ribosylated proteins in a live-cell environment. Herein, we explore the application of an alkyne-tagged proprobe, 6Yn-ProTide-Ad (6Yn-Pro) as a chemical tool for the identification of intracellular ADP-ribosylated proteins through metabolic labelling. We applied targeted metabolomics and chemical proteomics in HEK293T cells treated with 6Yn-Pro to demonstrate intracellular metabolic conversion of the probe into ADP-ribosylation cofactor 6Yn-NAD+, and subsequent labelling and enrichment of PARP1 and multiple known ADP-ribosylated proteins in cells under hydrogen peroxide-induced stress. We anticipate that the approach and methodology described here will be useful for future identification of novel intracellular ADP-ribosylated proteins.PMID:38966672 | PMC:PMC11221532 | DOI:10.1039/d4cb00043a

Effects of nanoselenium on the performance, blood indices, and milk metabolites of dairy cows during the peak lactation period

Fri, 05/07/2024 - 12:00
Front Vet Sci. 2024 Jun 20;11:1418165. doi: 10.3389/fvets.2024.1418165. eCollection 2024.ABSTRACTTo compare the impact of nanoselenium and sodium selenite on the performance, blood indices, and milk metabolites of dairy cows during the peak lactation period, two groups of dairy cows under the same conditions were selected as the control group (CON group) and treatment group (NSe group) for a 38-day (10 days for adaptation and 28 days for sampling) experiment. The control group (CON) was provided a basal diet +3.3 g/d of sodium selenite (purity1%), whereas the nanoselenium group (NSe) was offered the same diet +10 mL/d of nanoselenium (selenium concentration 1,500 mg/L). The results showed that NSe significantly increased the milk yield, milk selenium content, and feed efficiency (p < 0.05), but had no significant effect on other milk components (p > 0.05). NSe significantly increased blood urea nitrogen (BUN) and alkaline phosphatase (ALP) (p < 0.05), but had no significant effects on malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), blood total antioxidant capacity (T-AOC), or blood selenium (p > 0.05). In addition, the nontargeted metabolomics of the milk was determined by LC-MS technology, and the differentially abundant metabolites and their enrichment pathways were screened. According to these findings, NSe considerably increased the contents of cetylmannoside, undecylenoic acid, 3-hydroxypentadecanoic acid, 16-hydroxypentadecanoic acid, threonic acid, etc., but decreased the contents of galactaric acid, mesaconic acid, CDP-glucose etc. Furthermore, the enriched metabolic pathways that were screened with an impact value greater than 0.1 included metabolism of niacin and niacinamide, pyruvate, citrate cycle, riboflavin, glycerophospholipid, butanoate and tyrosine. Pearson correlation analysis also revealed a relationship between different milk metabolites and blood selenium, as well as between milk selenium and blood biochemical indices. In conclusion, compared with sodium selenite, nanoselenium improves the milk yield, feed efficiency, and milk selenium content of dairy cows and regulates milk metabolites and related metabolic pathways in Holstein dairy cows during the peak lactation period, which has certain application prospects in dairy production.PMID:38966561 | PMC:PMC11222674 | DOI:10.3389/fvets.2024.1418165

Research on the anti-aging mechanisms of Panax ginseng extract in mice: a gut microbiome and metabolomics approach

Fri, 05/07/2024 - 12:00
Front Pharmacol. 2024 Jun 20;15:1415844. doi: 10.3389/fphar.2024.1415844. eCollection 2024.ABSTRACTIntroduction: Aged-related brain damage and gut microbiome disruption are common. Research affirms that modulating the microbiota-gut-brain axis can help reduce age-related brain damage. Methods: Ginseng, esteemed in traditional Chinese medicine, is recognized for its anti-aging capabilities. However, previous Ginseng anti-aging studies have largely focused on diseased animal models. To this end, efforts were hereby made to explore the potential neuroprotective effects of fecal microbiota transplantation (FMT) from Ginseng-supplemented aged mice to those pre-treated with antibiotics. Results: As a result, FMT with specific modifications in natural aging mice improved animal weight gain, extended the telomere length, anti-oxidative stress in brain tissue, regulated the serum levels of cytokine, and balanced the proportion of Treg cells. Besides, FMT increased the abundance of beneficial bacteria of Lachnospiraceae, Dubosiella, Bacteroides, etc. and decreased the levels of potential pathogenic bacteria of Helicobacter and Lachnoclostridium in the fecal samples of natural aged mice. This revealed that FMT remarkably reshaped gut microbiome. Additionally, FMT-treated aged mice showed increased levels of metabolites of Ursolic acid, β-carotene, S-Adenosylmethionine, Spermidine, Guanosine, Celecoxib, Linoleic acid, etc., which were significantly positively correlated with critical beneficial bacteria above. Additionally, these identified critical microbiota and metabolites were mainly enriched in the pathways of Amino acid metabolism, Lipid metabolism, Nucleotide metabolism, etc. Furthermore, FMT downregulated p53/p21/Rb signaling and upregulated p16/p14, ATM/synapsin I/synaptophysin/PSD95, CREB/ERK/AKT signaling in brain damage following natural aging. Discussion: Overall, the study demonstrates that reprogramming of gut microbiota by FMT impedes brain damage in the natural aging process, possibly through the regulation of microbiota-gut-brain axis.PMID:38966558 | PMC:PMC11222675 | DOI:10.3389/fphar.2024.1415844

Shenfu injection improves isoproterenol-induced heart failure in rats by modulating co-metabolism and regulating the trimethylamine-N-oxide - inflammation axis

Fri, 05/07/2024 - 12:00
Front Pharmacol. 2024 Jun 20;15:1412300. doi: 10.3389/fphar.2024.1412300. eCollection 2024.ABSTRACTHeart failure (HF) is a chronic condition that progressively worsens and continues to be a major financial burden and public health concern. The "gut-heart" axis provides an innovative perspective and therapeutic strategy for preventing and treating heart failure. Shenfu injection (SFI) is a Traditional Chinese Medicine-based treatment demonstrating potential as a therapeutic strategy for heart failure. However, the precise therapeutic mechanisms of SFI in heart failure are not completely characterized. In this study, HF models were established utilizing subcutaneous multipoint injection of isoproterenol (ISO) at a dosage of 5 mg kg-1·d-1 for 7 days. Serum levels of inflammatory biomarkers were quantified using protein microarrays. Rat feces were analyzed using untargeted metabolomics research and 16S rRNA sequencing. The link between gut microbiota and metabolites was examined using a MetOrigin and Spearman correlation analysis. Our results show that Shenfu injection effectively enhances cardiac function in rats with ISO-induced heart failure by potentially modulating pro-/anti-inflammatory imbalance and reducing serum and urine Trimethylamine-N-oxide (TMAO) levels. Moreover, SFI significantly increases the abundance of Bacteroidota at the phylum level, thereby improving disrupted gut microbiota composition. Additionally, SFI supplementation enriches specific genera known for their capacity to produce short-chain fatty acids. SFI was found to be associated with three key metabolic pathways, as revealed by fecal metabonomics analysis, including the pentose phosphate pathway, pyrimidine metabolism, and purine metabolism. Metabolite tracing analysis revealed that Taurine and hypotaurine metabolism was found to be specific to the microbial community. The biosynthesis of Pyrimidine metabolism, Purine metabolism, beta-alanine metabolism, Naphthalene degradation, Pantothenate, and CoA biosynthesis were identified as co-metabolic pathways between microbes and host. The Spearman correlation analysis was also significantly correlated to differentially expressed metabolites regulated by SFI and the gut microbiota. These results suggest that SFI improves ISO-induced heart failure by modulating co-metabolism and regulating the TMAO-inflammation axis.PMID:38966553 | PMC:PMC11222397 | DOI:10.3389/fphar.2024.1412300

Spatial specificity of metabolism regulation of abscisic acid-imposed seed germination inhibition in Korean pine (Pinus koraiensis sieb et zucc)

Fri, 05/07/2024 - 12:00
Front Plant Sci. 2024 Jun 20;15:1417632. doi: 10.3389/fpls.2024.1417632. eCollection 2024.ABSTRACTINTRODUCTION: Abscisic acid (ABA) can negatively regulate seed germination, but the mechanisms of ABA-mediated metabolism modulation are not well understood. Moreover, it remains unclear whether metabolic pathways vary with the different tissue parts of the embryo, such as the radicle, hypocotyl and cotyledon.METHODS: In this report, we performed the first comprehensive metabolome analysis of the radicle and hypocotyl + cotyledon in Pinus koraiensis seeds in response to ABA treatment during germination.RESULTS AND DISCUSSION: Metabolome profiling showed that following ABA treatment, 67 significantly differentially accumulated metabolites in the embryo were closely associated with pyrimidine metabolism, phenylalanine metabolism, cysteine and methionine metabolism, galactose metabolism, terpenoid backbone biosynthesis, and glutathione metabolism. Meanwhile, 62 metabolites in the hypocotyl + cotyledon were primarily involved in glycerophospholipid metabolism and glycolysis/gluconeogenesis. We can conclude that ABA may inhibit Korean pine seed germination primarily by disrupting the biosynthesis of certain plant hormones mediated by cysteine and methionine metabolism and terpenoid backbone biosynthesis, as well as reducing the reactive oxygen species scavenging ability regulated by glutathione metabolism and shikimate pathway in radicle. ABA may strongly disrupt the structure and function of cellular membranes due to alterations in glycerophospholipid metabolism, and weaken glycolysis/gluconeogenesis in the hypocotyl + cotyledon, both of which are major contributors to ABA-mediated inhibition of seed germination. These results highlight that the spatial modulation of metabolic pathways in Pinus koraiensis seeds underlies the germination response to ABA.PMID:38966139 | PMC:PMC11222580 | DOI:10.3389/fpls.2024.1417632

Skeletal Muscle Proteome Modifications following Antibiotic-Induced Microbial Disturbances in Cancer Cachexia

Fri, 05/07/2024 - 12:00
J Proteome Res. 2024 Jul 5;23(7):2452-2473. doi: 10.1021/acs.jproteome.4c00143. Epub 2024 Jun 19.ABSTRACTCancer cachexia is an involuntary loss of body weight, mostly of skeletal muscle. Previous research favors the existence of a microbiota-muscle crosstalk, so the aim of the study was to evaluate the impact of microbiota alterations induced by antibiotics on skeletal muscle proteins expression. Skeletal muscle proteome changes were investigated in control (CT) or C26 cachectic mice (C26) with or without antibiotic treatment (CT-ATB or C26-ATB, n = 8 per group). Muscle protein extracts were divided into a sarcoplasmic and myofibrillar fraction and then underwent label-free liquid chromatography separation, mass spectrometry analysis, Mascot protein identification, and METASCAPE platform data analysis. In C26 mice, the atrogen mafbx expression was 353% higher than CT mice and 42.3% higher than C26-ATB mice. No effect on the muscle protein synthesis was observed. Proteomic analyses revealed a strong effect of antibiotics on skeletal muscle proteome outside of cachexia, with adaptative processes involved in protein folding, growth, energy metabolism, and muscle contraction. In C26-ATB mice, proteome adaptations observed in CT-ATB mice were blunted. Differentially expressed proteins were involved in other processes like glucose metabolism, oxidative stress response, and proteolysis. This study confirms the existence of a microbiota-muscle axis, with a muscle response after antibiotics that varies depending on whether cachexia is present.PMID:38965921 | DOI:10.1021/acs.jproteome.4c00143

Anion Exchange Chromatography-Mass Spectrometry to Characterize Proteoforms of Alpha-1-Acid Glycoprotein during and after Pregnancy

Fri, 05/07/2024 - 12:00
J Proteome Res. 2024 Jul 5;23(7):2431-2440. doi: 10.1021/acs.jproteome.4c00107. Epub 2024 Jun 19.ABSTRACTAlpha-1-acid glycoprotein (AGP) is a heterogeneous glycoprotein fulfilling key roles in many biological processes, including transport of drugs and hormones and modulation of inflammatory and immune responses. The glycoform profile of AGP is known to change depending on (patho)physiological states such as inflammatory diseases or pregnancy. Besides complexity originating from five N-glycosylation sites, the heterogeneity of the AGP further expands to genetic variants. To allow in-depth characterization of this intriguing protein, we developed a method using anion exchange chromatography (AEX) coupled to mass spectrometry (MS) revealing the presence of over 400 proteoforms differing in their glycosylation or genetic variants. More precisely, we could determine that AGP mainly consists of highly sialylated higher antennary structures with on average 16 sialic acids and 0 or 1 fucose per protein. Interestingly, a slightly higher level of fucosylation was observed for AGP1 variants compared to that of AGP2. Proteoform assignment was supported by integrating data from complementary MS-based approaches, including AEX-MS of an exoglycosidase-treated sample and glycopeptide analysis after tryptic digestion. The developed analytical method was applied to characterize AGP from plasma of women during and after pregnancy, revealing differences in glycosylation profiles, specifically in the number of antennae, HexHexNAc units, and sialic acids.PMID:38965920 | DOI:10.1021/acs.jproteome.4c00107

Genetic causality and metabolite pathway identifying the relationship of blood metabolites and psoriasis

Fri, 05/07/2024 - 12:00
Skin Res Technol. 2024 Jul;30(7):e13840. doi: 10.1111/srt.13840.ABSTRACTBACKGROUND: Psoriasis is a chronic inflammatory disease that causes significant disability. However, little is known about the underlying metabolic mechanisms of psoriasis. Our study aims to investigate the causality of 975 blood metabolites with the risk of psoriasis.MATERIALS AND METHODS: We mainly applied genetic analysis to explore the possible associations between 975 blood metabolites and psoriasis. The inverse variance weighted (IVW) method was used as the primary analysis to assess the possible association of blood metabolites with psoriasis. Moreover, generalized summary-data-based Mendelian randomization (GSMR) was used as a supplementary analysis. In addition, linkage disequilibrium score regression (LDSC) was used to investigate their genetic correction further. Metabolic pathway analysis of the most suggested metabolites was also performed using MetaboAnalyst 5.0.RESULTS: In our primary analysis, 17 metabolites, including unsaturated fatty acids, phospholipids, and triglycerides traits, were selected as potential factors in psoriasis, with odd ratios (OR) ranging from 0.986 to 1.01. The GSMR method confirmed the above results (β = 0.001, p < 0.05). LDSC analysis mainly suggested the genetic correlation of psoriasis with genetic correlations (rg) from 0.088 to 0.155. Based on the selected metabolites, metabolic pathway analysis suggested seven metabolic pathways including ketone body that may be prominent pathways for metabolites in psoriasis.CONCLUSION: Our study supports the causal role of unsaturated fatty acid properties and lipid traits with psoriasis. These properties may be regulated by the ketone body metabolic pathway.PMID:38965811 | DOI:10.1111/srt.13840

A genome-wide CRISPR screen reveals that antagonism of glutamine metabolism sensitizes head and neck squamous cell carcinoma to ferroptotic cell death

Thu, 04/07/2024 - 12:00
Cancer Lett. 2024 Jul 2:217089. doi: 10.1016/j.canlet.2024.217089. Online ahead of print.ABSTRACTGlutamine is a conditionally essential amino acid for the growth and survival of rapidly proliferating cancer cells. Many cancers are addicted to glutamine, and as a result, targeting glutamine metabolism has been explored clinically as a therapeutic approach. Glutamine-catalyzing enzymes are highly expressed in primary and metastatic head and neck squamous cell carcinoma (HNSCC). However, the nature of the glutamine-associated pathways in this aggressive cancer type has not been elucidated. Here, we explored the therapeutic potential of a broad glutamine antagonist, DRP-104 (sirpiglenastat), in HNSCC tumors and aimed at shedding light on glutamine-dependent pathways in this disease. We observed a potent antitumoral effect of sirpiglenastat in HPV- and HPV+ HNSCC xenografts. We conducted a whole-genome CRISPR screen and metabolomics analyses to identify mechanisms of sensitivity and resistance to glutamine metabolism blockade. These approaches revealed that glutamine metabolism blockade results in the rapid buildup of polyunsaturated fatty acids (PUFAs) via autophagy nutrient-sensing pathways. Finally, our analysis demonstrated that GPX4 mediates the protection of HNSCC cells from accumulating toxic lipid peroxides; hence, glutamine blockade sensitizes HNSCC cells to ferroptosis cell death upon GPX4 inhibition. These findings demonstrate the therapeutic potential of sirpiglenastat in HNSCC and establish a novel link between glutamine metabolism and ferroptosis, which may be uniquely translated into targeted glutamine-ferroptosis combination therapies.PMID:38964731 | DOI:10.1016/j.canlet.2024.217089

MCT1-dependent lactate recycling is a metabolic vulnerability in colorectal cancer cells upon acquired resistance to anti-EGFR targeted therapy

Thu, 04/07/2024 - 12:00
Cancer Lett. 2024 Jul 2:217091. doi: 10.1016/j.canlet.2024.217091. Online ahead of print.ABSTRACTDespite the implementation of personalized medicine, patients with metastatic CRC (mCRC) still have a dismal overall survival due to the frequent occurrence of acquired resistance mechanisms thereby leading to clinical relapse. Understanding molecular mechanisms that support acquired resistance to anti-EGFR targeted therapy in mCRC is therefore clinically relevant and key to improving patient outcomes. Here, we observe distinct metabolic changes between cetuximab-resistant CRC cell populations, with in particular an increased glycolytic activity in KRAS-mutant cetuximab-resistant CRC cells (LIM1215 and OXCO2) but not in KRAS-amplified resistant DiFi cells. We show that cetuximab-resistant LIM1215 and OXCO2 cells have the capacity to recycle glycolysis-derived lactate to sustain their growth capacity. This is associated with an upregulation of the lactate importer MCT1 at both transcript and protein levels. Pharmacological inhibition of MCT1, with AR-C155858, reduces the uptake and oxidation of lactate and impairs growth capacity in cetuximab-resistant LIM1215 cells both in vitro and in vivo. This study identifies MCT1-dependent lactate utilization as a clinically actionable, metabolic vulnerability to overcome KRAS-mutant-mediated acquired resistance to anti-EGFR therapy in CRC.PMID:38964730 | DOI:10.1016/j.canlet.2024.217091

IMPACT OF A LEGUMES DIET ON THE HUMAN GUT MICROBIOME ARTICULATED WITH FECAL AND PLASMA METABOLOMES: A PILOT STUDY

Thu, 04/07/2024 - 12:00
Clin Nutr ESPEN. 2024 Jul 2:S2405-4577(24)00197-9. doi: 10.1016/j.clnesp.2024.06.051. Online ahead of print.ABSTRACTBACKGROUND & AIMS: Legumes intake is known to be associated with several health benefits the origins of which is still a matter of debate. This paper addresses a pilot small cohort to probe for metabolic aspects of the interplay between legumes intake, human metabolism and gut microbiota.METHODS: Untargeted nuclear magnetic resonance (NMR) metabolomics of blood plasma and fecal extracts was carried out, in tandem with qPCR analysis of feces, to assess the impact of an 8-week pilot legumes diet intervention on the fecal and plasma metabolomes and gut microbiota of 19 subjects.RESULTS: While the high inter-individual variability hindered the detection of statistically significant changes in the gut microbiome, increased fecal glucose and decreased threonine levels were noted. Correlation analysis between the microbiome and fecal metabolome lead to putative hypotheses regarding the metabolic activities of prevalent bacteria groups (Clostridium leptum subgroup, Roseburia spp., and F. prausnitzii). These included elevated fecal glucose as a preferential energy source, the involvement of valerate/isovalerate and reduced protein degradation in gut microbiota. Plasma metabolomics advanced mannose and betaine as potential markers of legume intake and unveiled a decrease in formate and ketone bodies, the latter suggesting improved energy utilization through legume carbohydrates. Amino acid metabolism was also apparently affected, as suggested by lowered urea, histidine and threonine levels.CONCLUSIONS: Despite the high inter-individual gut microbiome variability characterizing the small cohort addressed, combination of microbiological measurements and untargeted metabolomics unveiled several metabolic effects putatively related to legumes intake. If confirmed in larger cohorts, our findings will support the inclusion of legumes in diets and contribute valuable new insight into the origins of associated health benefits.PMID:38964655 | DOI:10.1016/j.clnesp.2024.06.051

Investigation into the anti-inflammatory mechanism of Pothos chinensis (Raf.) Merr. by regulating TLR4/MyD88/NF-kappaB pathway: Integrated network pharmacology, serum pharmacochemistry, and metabolomics

Thu, 04/07/2024 - 12:00
J Ethnopharmacol. 2024 Jul 2:118520. doi: 10.1016/j.jep.2024.118520. Online ahead of print.ABSTRACTETHNOPHARMACOLOGICAL RELEVANCE: Inflammation is directly related to disease progression and contributes significantly to the global burden of disease. Pothos chinensis (Raf.) Merr. (PCM) is commonly used in Yao medicine in China to treat tumors, and orthopedic illnesses such as knee osteoarthritis, and rheumatic bone discomfort. PCM was found to have significant anti-inflammatory properties in previous studies.AIM OF THE STUDY: To explore the active compounds of PCM and their anti-inflammatory pharmacological mechanisms through an integrated strategy of serum pharmacochemistry, network pharmacology, and serum metabolomics.MATERIALS AND METHODS: The qualitative and quantitative analyses of the chemical components of PCM were performed using UPLC-QTOF-MS/MS and UPLC, respectively, and the prototype components of PCM absorbed into the blood were analyzed. Based on the characterized absorbed into blood components, potential targets and signaling pathways of PCM anti-inflammatory were found using network pharmacology. Furthermore, metabolomics studies using UPLC-QTOF-MS/MS identified biomarkers and metabolic pathways related to the anti-inflammatory effects of PCM. Finally, the hypothesized mechanisms were verified by in vivo and in vitro experiments.RESULTS: Forty chemical components from PCM were identified for the first time, and seven of them were quantitatively analyzed, while five serum migratory prototype components were found. Network pharmacology KEGG enrichment analysis revealed that arachidonic acid metabolism, Tyrosine metabolism, TNF signaling pathway, NF-κB signaling pathway, and phenylalanine metabolism were the main signaling pathways of PCM anti-inflammatory. Pharmacodynamic results showed that PCM ameliorated liver injury and inflammatory cell infiltration and downregulated protein expression of IL-1β, NF-κB p65, and MyD88 in the liver. Metabolomics studies identified 53 different serum metabolites, mainly related to purine and pyrimidine metabolism, phenylalanine metabolism, primary bile acid biosynthesis, and glycerophospholipid metabolism. The comprehensive results demonstrated that the anti-inflammatory modulatory network of PCM was related to 5 metabolites, 3 metabolic pathways, 7 targets, and 4 active components of PCM. In addition, molecular docking identified the binding ability between the active ingredients and the core targets, and the anti-inflammatory efficacy of the active ingredients was verified by in vitro experiments.CONCLUSION: Our study demonstrated the anti-inflammatory effect of PCM, and these findings provide new insights into the active ingredients and metabolic mechanisms of PCM in anti-inflammation.PMID:38964626 | DOI:10.1016/j.jep.2024.118520

Proceedings of the EuBIC-MS developers meeting 2023

Thu, 04/07/2024 - 12:00
J Proteomics. 2024 Jul 2:105246. doi: 10.1016/j.jprot.2024.105246. Online ahead of print.ABSTRACTThe 2023 European Bioinformatics Community for Mass Spectrometry (EuBIC-MS) Developers Meeting was held from January 15th to January 20th, 2023, in Congressi Stefano Franscin at Monte Verità in Ticino, Switzerland. The participants were scientists and developers working in computational mass spectrometry (MS), metabolomics, and proteomics. The 5-day program was split between introductory keynote lectures and parallel hackathon sessions focusing on "Artificial Intelligence in proteomics" to stimulate future directions in the MS-driven omics areas. During the latter, the participants developed bioinformatics tools and resources addressing outstanding needs in the community. The hackathons allowed less experienced participants to learn from more advanced computational MS experts and actively contribute to highly relevant research projects. We successfully produced several new tools applicable to the proteomics community by improving data analysis and facilitating future research.PMID:38964537 | DOI:10.1016/j.jprot.2024.105246

Mutagenesis and fluorescence-activated cell sorting of oleaginous Saccharomyces cerevisiae and the multi-omics analysis of its high lipid accumulation mechanisms

Thu, 04/07/2024 - 12:00
Bioresour Technol. 2024 Jul 2:131062. doi: 10.1016/j.biortech.2024.131062. Online ahead of print.ABSTRACTAcquiring lipid-producing strains of Saccharomyces cerevisiae is necessary for producing high-value palmitoleic acid. This study sought to generate oleaginous S. cerevisiae mutants through a combination of zeocin mutagenesis and fluorescence-activated cell sorting, and then to identify key mutations responsible for enhanced lipid accumulation by multi-omics sequencing. Following three consecutive rounds of mutagenesis and sorting, a mutant, MU310, with the lipid content of 44%, was successfully obtained. Transcriptome and targeted metabolome analyses revealed that a coordinated response involving fatty acid precursor biosynthesis, nitrogen metabolism, pentose phosphate pathway, ethanol conversion, amino acid metabolism and fatty acid β-oxidation was crucial for promoting lipid accumulation. The carbon fluxes of acetyl-CoA and NADPH in lipid biosynthesis were boosted in these pathways. Certain transcriptional regulators may also play significant roles in modulating lipid biosynthesis. Results of this study provide high-quality resource for palmitoleic acid production and deepen the understanding of lipid synthesis in yeast.PMID:38964514 | DOI:10.1016/j.biortech.2024.131062

Disruption of the peripheral biological clock may play a role in sleep deprivation-induced dysregulation of lipid metabolism in both the daytime and nighttime phases

Thu, 04/07/2024 - 12:00
Biochim Biophys Acta Mol Cell Biol Lipids. 2024 Jul 2:159530. doi: 10.1016/j.bbalip.2024.159530. Online ahead of print.ABSTRACTSTUDY OBJECTIVES: This study aimed to examine the effect of sleep deprivation (SD) on lipid metabolism or lipid metabolism regulation in the liver and white adipose tissue (WAT) during the light and dark phases and explored the possible mechanisms underlying the diurnal effect of SD on lipid metabolism associated with clock genes.METHODS: Male C57BL/6J mice aged 2 months were deprived of sleep daily for 20 h for ten consecutive days with weakly forced locomotion. The body weights and food consumption levels of the SD and control mice were recorded, and the mice were then sacrificed at ZT (zeitgeber time) 2 and ZT 14. The peripheral clock genes, enzymes involved in fat synthesis and catabolism in the WAT, and melatonin signalling pathway-mediated lipid metabolism in the liver were assessed. Untargeted metabolomics and tandem mass tag (TMT) proteomics were used to identify differential lipid metabolism pathways in the liver.RESULTS: Bodyweight gain and daily food consumption were dramatically elevated after SD. Profound disruptions in the diurnal regulation of the hepatic peripheral clock and enzymes involved in fat synthesis and catabolism in the WAT were observed, with a strong emphasis on hepatic lipid metabolic pathways, while melatonin signalling pathway-mediated lipid metabolism exhibited moderate changes.CONCLUSIONS: In mice, ten consecutive days of SD increased body weight gain and daily food consumption. In addition, SD profoundly disrupted lipid metabolism in the WAT and liver during the light and dark periods. These diurnal changes may be related to disorders of the peripheral biological clock.PMID:38964437 | DOI:10.1016/j.bbalip.2024.159530

Advances in Omics-Based Biomarker Discovery for Biliary Tract Malignancy Diagnosis:A Narrative Review

Thu, 04/07/2024 - 12:00
Mol Cell Probes. 2024 Jul 2:101970. doi: 10.1016/j.mcp.2024.101970. Online ahead of print.ABSTRACTBiliary tract neoplasms, which originate from the intrahepatic or extrahepatic biliary epithelium, are relatively rare but diagnostically challenging types of tumours, and their morbidity and mortality have increased in recent years. Due to ineffective early diagnostic methods, once detected, patients are in an advanced stage with a poor prognosis and few treatment options. With the development of omics technologies, the associations between microorganisms, bile acid and salts, noncoding RNAs and biliary tract malignancies have been gradually revealed, providing new methods for the discovery of diagnostic biomarkers. Here, we review the research advances in microbiomics, transcriptomics, metabolomics, and proteomics in the discovery of diagnostic biomarkers for biliary tract malignancies.PMID:38964426 | DOI:10.1016/j.mcp.2024.101970

Multi-omics revealed anti-fatigue property of polyphenol from areca nut

Thu, 04/07/2024 - 12:00
Phytomedicine. 2024 Jun 21;132:155838. doi: 10.1016/j.phymed.2024.155838. Online ahead of print.ABSTRACTBACKGROUND: Areca nut polyphenols (AP) that extracted from areca nut, have been demonstrated for their potential of anti-fatigue effects. However, the underlying mechanisms for the anti-fatigue properties of AP has not been fully elucidated to date. Previous studies have predominantly concentrated on single aspects, such as antioxidation and anti-inflammation, yet have lacked comprehensive multi-dimensional analyses.PURPOSE: To explore the underlying mechanism of AP in exerting anti-fatigue effects.METHODS: In this study, we developed a chronic sleep deprivation-induced fatigue model and used physiological, hematological, and biochemical indicators to evaluate the anti- fatigue efficacy of AP. Additionally, a multi-omics approach was employed to reveal the anti-fatigue mechanisms of AP from the perspective of microbiome, metabolome, and proteome.RESULTS: The detection of physiology, hematology and biochemistry index indicated that AP markedly alleviate mice fatigue state induced by sleep deprivation. The 16S rRNA sequencing showed the AP promoted the abundance of probiotics (Odoribacter, Dubosiella, Marvinbryantia, and Eubacterium) and suppressed harmful bacteria (Ruminococcus). On the other hand, AP was found to regulate the expression of colonic proteins, such as increases of adenosine triphosphate (ATP) synthesis and mitochondrial function related proteins, including ATP5A1, ATP5O, ATP5L, ATP5H, NDUFA, NDUFB, NDUFS, and NDUFV. Serum metabolomic analysis revealed AP upregulated the levels of anti-fatigue amino acids, such as taurine, leucine, arginine, glutamine, lysine, and l-proline. Hepatic proteins express levels, especially tricarboxylic acid (TCA) cycle (CS, SDHB, MDH2, and DLST) and redox-related proteins (SOD1, SOD2, GPX4, and PRDX3), were significantly recovered by AP administration. Spearman correlation analysis uncovered the strong correlation between microbiome, metabolome and proteome, suggesting the anti-fatigue effects of AP is attribute to the energy homeostasis and redox balance through gut-liver axis.CONCLUSION: AP increased colonic ATP production and improve mitochondrial function by regulating gut microbiota, and further upregulated anti-fatigue amino acid levels in the blood. Based on the gut-liver axis, AP upregulated the hepatic tricarboxylic acid cycle and oxidoreductase-related protein expression, regulating energy homeostasis and redox balance, and ultimately exerting anti-fatigue effects. This study provides insights into the anti-fatigue mechanisms of AP, highlighting its potential as a therapeutic agent.PMID:38964153 | DOI:10.1016/j.phymed.2024.155838

Pages