PubMed
Ectoine maintains the flavor and nutritional quality of broccoli during postharvest storage
Food Chem. 2024 Jun 28;458:140204. doi: 10.1016/j.foodchem.2024.140204. Online ahead of print.ABSTRACTThe bacterial derived osmolyte ectoine has been shown to stabilize cell structure and function, a property that may help to extend the shelf life of broccoli. The impact of ectoine on broccoli stored for 4 d at 20 °C and 90% relative humidity was investigated. Results indicated that 0.20% ectoine treatment maintained the quality of broccoli, by reducing rate of respiration and ethylene generation, while increasing the levels of total phenolics, flavonoids, TSS, soluble protein, and vitamin C, relative to control. Headspace-gas chromatography-mass spectrometry, transcriptomic and metabolomic analyses revealed that ectoine stabilized aroma components in broccoli by maintaining level of volatile compounds and altered the expression of genes and metabolites associated with sulfur metabolism, as well as fatty acid and amino acid biosynthesis pathways. These findings provide a greater insight into how ectoine preserves the flavor and nutritional quality of broccoli, thus, extending its shelf life.PMID:38964092 | DOI:10.1016/j.foodchem.2024.140204
Integrated multi-omic analysis reveals the carbon metabolism-mediated regulation of polysaccharide biosynthesis by suitable light intensity in Bletilla striata leaves
Plant Physiol Biochem. 2024 Jun 27;214:108872. doi: 10.1016/j.plaphy.2024.108872. Online ahead of print.ABSTRACTBletilla striata, valued for its medicinal and ornamental properties, remains largely unexplored in terms of how light intensity affects its physiology, biochemistry, and polysaccharide formation. In this 5-month study, B. striata plants were exposed to three different light intensities: low light (LL) (5-20 μmol m-2·s-1), middle light (ML) (200 μmol m-2·s-1), and high light (HL) (400 μmol m-2·s-1). The comprehensive assessment included growth, photosynthetic apparatus, chlorophyll fluorescence electron transport, and analysis of differential metabolites based on the transcriptome and metabolome data. The results indicated that ML resulted in the highest plant height and total polysaccharide content, enhanced photosynthetic apparatus performance and light energy utilization, and stimulated carbon metabolism and carbohydrate accumulation. HL reduced Chl content and photosynthetic apparatus functionality, disrupted OEC activity and electron transfer, stimulated carbon metabolism and starch and glucose accumulation, and hindered energy metabolism related to carbohydrate degradation and oxidation. In contrast, LL facilitated leaf growth and increased chlorophyll content but decreased plant height and total polysaccharide content, compromised the photosynthetic apparatus, hampered light energy utilization, stimulated energy metabolism related to carbohydrate degradation and oxidation, and inhibited carbon metabolism and carbohydrate synthesis. Numerous genes in carbon metabolism were strongly related to polysaccharide metabolites. The katE and cysK genes in carbon metabolism were strongly related not only to polysaccharide metabolites, but also to genes involved in polysaccharide biosynthesis. Our results highlight that light intensity plays a crucial role in affecting polysaccharide biosynthesis in B. striata, with carbon metabolism acting as a mediator under suitable light intensity conditions.PMID:38964087 | DOI:10.1016/j.plaphy.2024.108872
Biodegradation of humic acids by Streptomyces rochei to promote the growth and yield of corn
Microbiol Res. 2024 Jul 2;286:127826. doi: 10.1016/j.micres.2024.127826. Online ahead of print.ABSTRACTHumic acids (HAs) are organic macromolecules that play an important role in improving soil properties, plant growth and agronomic parameters. However, the feature of relatively complex aromatic structure makes it difficult to be degraded, which restricts the promotion to the crop growth. Thus, exploring microorganisms capable of degrading HAs may be a potential solution. Here, a HAs-degrading strain, Streptomyces rochei L1, and its potential for biodegradation was studied by genomics, transcriptomics, and targeted metabolomics analytical approaches. The results showed that the high molecular weight HAs were cleaved to low molecular aliphatic and aromatic compounds and their derivatives. This cleavage may be associated with the laccase (KatE). In addition, the polysaccharide deacetylase (PdgA) catalyzes the removal of acetyl groups from specific sites on the HAs molecule, resulting in structural changes. The field experiment showed that the degraded HAs significantly promote the growth of corn seedlings and increase the corn yield by 3.6 %. The HAs-degrading products, including aromatic and low molecular weight aliphatic substances as well as secondary metabolites from S. rochei L1, might be the key components responsible for the corn promotion. Our findings will advance the application of HAs as soil nutrients for the green and sustainable agriculture.PMID:38964074 | DOI:10.1016/j.micres.2024.127826
Jianpi Jiedu decoction suppresses colorectal cancer growth by inhibiting M2 polarization of TAMs through the tryptophan metabolism-AhR pathway
Int Immunopharmacol. 2024 Jul 3;138:112610. doi: 10.1016/j.intimp.2024.112610. Online ahead of print.ABSTRACTBACKGROUND: Traditional Chinese medicine, JianpiJiedu decoction (JPJDF), has been utilized in colorectal cancer (CRC) treatment for over forty years. The potential of JPJDF to inhibit CRC through modulation of intestinal microbiota and their metabolites remains uncertain.AIMS: This study aims to further investigate the therapeutic mechanisms of JPJDF in CRC.METHODS: CAC mouse models were developed using azoxymethane (AOM) and dextran sulfate sodium (DSS). Intestinal tissues and contents underwent 16S rRNA gene sequencing and untargeted metabolomics analysis. Serum levels of IL-1β and TNF-α were measured using ELISA. Immunohistochemistry was utilized to assess the expression of Ki67, ZO-1, Occludin, CD68, and CD206. Furthermore, western blotting was performed to evaluate the protein expression of AhR and NF-κB.RESULTS: JPJDF inhibited colorectal tumourigenesis in AOM/DSS treated mice, while also suppressing tumor cell proliferation and upregulating the expression of tight junction proteins. The results of 16S rRNA gene sequencing analysis revealed that JPJDF altered intestinal microbiota composition by increasing the abundance of beneficial bacteria. Additionally, JPJDF reduced tryptophan metabolites, effectively alleviating inflammation and significantly restoring intestinal barrier function in CAC mice. Molecular biology experiments confirmed that JPJDF suppressed the expression levels of AhR and M2-type tumor-associated macrophages, thereby promoting anti-tumor immunity and exerting inhibitory effects on CAC growth.CONCLUSION: JPJDF can regulate the tryptophan metabolism-AhR pathway by modulating the gut microbiota, reducing intestinal inflammation, improving intestinal barrier function, enhancing anti-tumor immunity, and effectively inhibiting CAC growth.PMID:38963982 | DOI:10.1016/j.intimp.2024.112610
Integrated transcriptome and metabolome analysis reveals the molecular responses of Pardosa pseudoannulata to hypoxic environments
BMC Zool. 2024 Jul 4;9(1):15. doi: 10.1186/s40850-024-00206-y.ABSTRACTTerrestrial organisms are likely to face hypoxic stress during natural disasters such as floods or landslides, which can lead to inevitable hypoxic conditions for those commonly residing within soil. Pardosa pseudoannulata often inhabits soil crevices and has been extensively studied, yet research on its response to hypoxic stress remains unclear. Therefore, we investigated the adaptive strategies of Pardosa pseudoannulata under hypoxic stress using metabolomics and transcriptomics approaches. The results indicated that under hypoxic stress, metabolites related to energy and antioxidants such as ATP, D-glucose 6-phosphate, flavin adenine dinucleotide (FAD), and reduced L-glutathione were significantly differentially expressed. Pathways such as the citric acid (TCA) cycle and oxidative phosphorylation were significantly enriched. Transcriptome analysis and related assessments also revealed a significant enrichment of pathways associated with energy metabolism, suggesting that Pardosa pseudoannulata primarily copes with hypoxic environments by modulating energy metabolism and antioxidant-related substances.PMID:38965564 | DOI:10.1186/s40850-024-00206-y
Dysregulated proteasome activity and steroid hormone biosynthesis are associated with mortality among patients with acute COVID-19
J Transl Med. 2024 Jul 4;22(1):626. doi: 10.1186/s12967-024-05342-0.ABSTRACTThe persistence of coronavirus disease 2019 (COVID-19)-related hospitalization severely threatens medical systems worldwide and has increased the need for reliable detection of acute status and prediction of mortality. We applied a systems biology approach to discover acute-stage biomarkers that could predict mortality. A total 247 plasma samples were collected from 103 COVID-19 (52 surviving COVID-19 patients and 51 COVID-19 patients with mortality), 51 patients with other infectious diseases (IDCs) and 41 healthy controls (HCs). Paired plasma samples were obtained from survival COVID-19 patients within 1 day after hospital admission and 1-3 days before discharge. There were clear differences between COVID-19 patients and controls, as well as substantial differences between the acute and recovery phases of COVID-19. Samples from patients in the acute phase showed suppressed immunity and decreased steroid hormone biosynthesis, as well as elevated inflammation and proteasome activation. These findings were validated by enzyme-linked immunosorbent assays and metabolomic analyses in a larger cohort. Moreover, excessive proteasome activity was a prominent signature in the acute phase among patients with mortality, indicating that it may be a key cause of poor prognosis. Based on these features, we constructed a machine learning panel, including four proteins [C-reactive protein (CRP), proteasome subunit alpha type (PSMA)1, PSMA7, and proteasome subunit beta type (PSMB)1)] and one metabolite (urocortisone), to predict mortality among COVID-19 patients (area under the receiver operating characteristic curve: 0.976) on the first day of hospitalization. Our systematic analysis provides a novel method for the early prediction of mortality in hospitalized COVID-19 patients.PMID:38965561 | DOI:10.1186/s12967-024-05342-0
Impact of therapeutic inhibition of oncogenic cell signaling tyrosine kinase on cell metabolism: in vivo-detectable metabolic biomarkers of inhibition
J Transl Med. 2024 Jul 4;22(1):622. doi: 10.1186/s12967-024-05371-9.ABSTRACTBACKGROUND: Inhibition of kinases is the ever-expanding therapeutic approach to various types of cancer. Typically, assessment of the treatment response is accomplished by standard, volumetric imaging procedures, performed weeks to months after the onset of treatment, given the predominantly cytostatic nature of the kinase inhibitors, at least when used as single agents. Therefore, there is a great clinical need to develop new monitoring approaches to detect the response to kinase inhibition much more promptly. Noninvasive 1H magnetic resonance spectroscopy (MRS) can measure in vitro and in vivo concentration of key metabolites which may potentially serve as biomarkers of response to kinase inhibition.METHODS: We employed mantle cell lymphoma (MCL) cell lines demonstrating markedly diverse sensitivity of inhibition of Bruton's tyrosine kinase (BTK) regarding their growth and studied in-depth effects of the inhibition on various aspects of cell metabolism including metabolite synthesis using metabolomics, glucose and oxidative metabolism by Seahorse XF technology, and concentration of index metabolites lactate, alanine, total choline and taurine by 1H MRS.RESULTS: Effective BTK inhibition profoundly suppressed key cell metabolic pathways, foremost pyrimidine and purine synthesis, the citrate (TCA) cycle, glycolysis, and pyruvate and glutamine/alanine metabolism. It also inhibited glycolysis and amino acid-related oxidative metabolism. Finally, it profoundly and quickly decreased concentration of lactate (a product of mainly glycolysis) and alanine (an indicator of amino acid metabolism) and, less universally total choline both in vitro and in vivo, in the MCL xenotransplant model. The decrease correlated directly with the degree of inhibition of lymphoma cell expansion and tumor growth.CONCLUSIONS: Our results indicate that BTK inhibition exerts a broad and profound suppressive effect on cell metabolism and that the affected index metabolites such as lactate, alanine may serve as early, sensitive, and reliable biomarkers of inhibition in lymphoma patients detectable by noninvasive MRS-based imaging method. This kind of imaging-based detection may also be applicable to other kinase inhibitors, as well as diverse lymphoid and non-lymphoid malignancies.PMID:38965536 | DOI:10.1186/s12967-024-05371-9
Polyamine and EIF5A hypusination downstream of c-Myc confers targeted therapy resistance in BRAF mutant melanoma
Mol Cancer. 2024 Jul 4;23(1):136. doi: 10.1186/s12943-024-02031-w.ABSTRACTBACKGROUND: BRAF inhibitors are widely employed in the treatment of melanoma with the BRAF V600E mutation. However, the development of resistance compromises their therapeutic efficacy. Diverse genomic and transcriptomic alterations are found in BRAF inhibitor resistant melanoma, posing a pressing need for convergent, druggable target that reverse therapy resistant tumor with different resistance mechanisms.METHODS: CRISPR-Cas9 screens were performed to identify novel target gene whose inhibition selectively targets A375VR, a BRAF V600E mutant cell line with acquired resistance to vemurafenib. Various in vitro and in vivo assays, including cell competition assay, water soluble tetrazolium (WST) assay, live-dead assay and xenograft assay were performed to confirm synergistic cell death. Liquid Chromatography-Mass Spectrometry analyses quantified polyamine biosynthesis and changes in proteome in vemurafenib resistant melanoma. EIF5A hypusination dependent protein translation and subsequent changes in mitochondrial biogenesis and activity were assayed by O-propargyl-puromycin labeling assay, mitotracker, mitoSOX labeling and seahorse assay. Bioinformatics analyses were used to identify the association of polyamine biosynthesis with BRAF inhibitor resistance and poor prognosis in melanoma patient cohorts.RESULTS: We elucidate the role of polyamine biosynthesis and its regulatory mechanisms in promoting BRAF inhibitor resistance. Leveraging CRISPR-Cas9 screens, we identify AMD1 (S-adenosylmethionine decarboxylase 1), a critical enzyme for polyamine biosynthesis, as a druggable target whose inhibition reduces vemurafenib resistance. Metabolomic and proteomic analyses reveal that polyamine biosynthesis is upregulated in vemurafenib-resistant cancer, resulting in enhanced EIF5A hypusination, translation of mitochondrial proteins and oxidative phosphorylation. We also identify that sustained c-Myc levels in vemurafenib-resistant cancer are responsible for elevated polyamine biosynthesis. Inhibition of polyamine biosynthesis or c-Myc reversed vemurafenib resistance both in vitro cell line models and in vivo in a xenograft model. Polyamine biosynthesis signature is associated with poor prognosis and shorter progression free survival after BRAF/MAPK inhibitor treatment in melanoma cohorts, highlighting the clinical relevance of our findings.CONCLUSIONS: Our findings delineate the molecular mechanisms involving polyamine-EIF5A hypusination-mitochondrial respiration pathway conferring BRAF inhibitor resistance in melanoma. These targets will serve as effective therapeutic targets that can maximize the therapeutic efficacy of existing BRAF inhibitors.PMID:38965534 | DOI:10.1186/s12943-024-02031-w
Urinary metabolomics signature of animal and plant protein intake and its association with 24-h blood pressure: the African-PREDICT study
Hypertens Res. 2024 Jul 4. doi: 10.1038/s41440-024-01767-8. Online ahead of print.ABSTRACTThe contrasting relationships of plant and animal protein intake with blood pressure (BP) may be partially attributed to the differential non-protein (e.g., saturated fat and fibre) and amino acid (AA) compositions. This study determined whether animal and plant protein intake were related to differential metabolomic profiles associated with BP. This study included 1008 adults from the African-PREDICT study (aged 20-30 years). Protein intake was determined using 24-h dietary recalls. Twenty-four-hour ambulatory BP was measured. Amino acids and acylcarnitines were analysed in spot urine samples using liquid chromatography-tandem mass spectrometry-based metabolomics. Participants with a low plant, high animal protein intake had higher SBP (by 3 mmHg, p = 0.011) than those with high plant, low animal protein intake (low-risk group). We found that the relationships of plant and animal protein intake with 24-h SBP were partially mediated by BMI and saturated fat intake, which were independently associated with SBP. Protein intake was therefore not related to SBP in multiple regression analysis after adjusting for confounders. In the low-risk group, methionine (Std. β = -0.217; p = 0.034), glutamic acid (Std. β = -0.220; p = 0.031), glycine (Std. β = -0.234; p = 0.025), and proline (Std. β = -0.266; p = 0.010) were inversely related to SBP, and beta-alanine (Std. β = -0.277; p = 0.020) to DBP. Ultimately a diet high in animal and low in plant protein intake may contribute to higher BP by means of increased BMI and saturated fat intake. Conversely, higher levels of urinary AAs observed in adults consuming a plant rich diet may contribute to lower BP.PMID:38965426 | DOI:10.1038/s41440-024-01767-8
Gut microbiota metabolite tyramine ameliorates high-fat diet-induced insulin resistance via increased Ca<sup>2+</sup> signaling
EMBO J. 2024 Jul 4. doi: 10.1038/s44318-024-00162-w. Online ahead of print.ABSTRACTThe gut microbiota and their metabolites are closely linked to obesity-related diseases, such as type 2 diabetes, but their causal relationship and underlying mechanisms remain largely elusive. Here, we found that dysbiosis-induced tyramine (TA) suppresses high-fat diet (HFD)-mediated insulin resistance in both Drosophila and mice. In Drosophila, HFD increases cytosolic Ca2+ signaling in enterocytes, which, in turn, suppresses intestinal lipid levels. 16 S rRNA sequencing and metabolomics revealed that HFD leads to increased prevalence of tyrosine decarboxylase (Tdc)-expressing bacteria and resulting tyramine production. Tyramine acts on the tyramine receptor, TyrR1, to promote cytosolic Ca2+ signaling and activation of the CRTC-CREB complex to transcriptionally suppress dietary lipid digestion and lipogenesis in enterocytes, while promoting mitochondrial biogenesis. Furthermore, the tyramine-induced cytosolic Ca2+ signaling is sufficient to suppress HFD-induced obesity and insulin resistance in Drosophila. In mice, tyramine intake also improves glucose tolerance and insulin sensitivity under HFD. These results indicate that dysbiosis-induced tyramine suppresses insulin resistance in both flies and mice under HFD, suggesting a potential therapeutic strategy for related metabolic disorders, such as diabetes.PMID:38965418 | DOI:10.1038/s44318-024-00162-w
Application of spatial-omics to the classification of kidney biopsy samples in transplantation
Nat Rev Nephrol. 2024 Jul 4. doi: 10.1038/s41581-024-00861-x. Online ahead of print.ABSTRACTImprovement of long-term outcomes through targeted treatment is a primary concern in kidney transplant medicine. Currently, the validation of a rejection diagnosis and subsequent treatment depends on the histological assessment of allograft biopsy samples, according to the Banff classification system. However, the lack of (early) disease-specific tissue markers hinders accurate diagnosis and thus timely intervention. This challenge mainly results from an incomplete understanding of the pathophysiological processes underlying late allograft failure. Integration of large-scale multimodal approaches for investigating allograft biopsy samples might offer new insights into this pathophysiology, which are necessary for the identification of novel therapeutic targets and the development of tailored immunotherapeutic interventions. Several omics technologies - including transcriptomic, proteomic, lipidomic and metabolomic tools (and multimodal data analysis strategies) - can be applied to allograft biopsy investigation. However, despite their successful application in research settings and their potential clinical value, several barriers limit the broad implementation of many of these tools into clinical practice. Among spatial-omics technologies, mass spectrometry imaging, which is under-represented in the transplant field, has the potential to enable multi-omics investigations that might expand the insights gained with current clinical analysis technologies.PMID:38965417 | DOI:10.1038/s41581-024-00861-x
Anti-hyperuricemia effect of Clerodendranthus spicatus: a molecular biology study combined with metabolomics
Sci Rep. 2024 Jul 4;14(1):15449. doi: 10.1038/s41598-024-66454-7.ABSTRACTHyperuricemia (HUA), a metabolic disease caused by excessive production or decreased excretion of uric acid (UA), has been reported to be closely associated with a variety of UA transporters. Clerodendranthus spicatus (C. spicatus) is an herbal widely used in China for the treatment of HUA. However, the mechanism has not been clarified. Here, the rat model of HUA was induced via 10% fructose. The levels of biochemical indicators, including UA, xanthine oxidase (XOD), adenosine deaminase (ADA), blood urea nitrogen (BUN), and creatinine (Cre), were measured. Western blotting was applied to explore its effect on renal UA transporters, such as urate transporter1 (URAT1), glucose transporter 9 (GLUT9), and ATP-binding cassette super-family G member 2 (ABCG2). Furthermore, the effect of C. spicatus on plasma metabolites was identified by metabolomics. Our results showed that C. spicatus could significantly reduce the serum levels of UA, XOD, ADA and Cre, and improve the renal pathological changes in HUA rats. Meanwhile, C. spicatus significantly inhibited the expression of URAT1 and GLUT9, while increased the expression of ABCG2 in a dose-dependent manner. Metabolomics showed that 13 components, including 1-Palmitoyl-2-Arachidonoyl-sn-glycero-3-PE, Tyr-Leu and N-cis-15-Tetracosenoyl-C18-sphingosine, were identified as potential biomarkers for the UA-lowering effect of C. spicatus. In addition, pathway enrichment analysis revealed that arginine biosynthesis, biosynthesis of amino acids, pyrimidine metabolism and other metabolic pathways might be involved in the protection of C. spicatus against HUA. This study is the first to explore the mechanism of anti-HUA of C. spicatus through molecular biology and metabolomics analysis, which provides new ideas for the treatment of HUA.PMID:38965392 | DOI:10.1038/s41598-024-66454-7
Enterococcus faecalis-derived adenine enhances enterohaemorrhagic Escherichia coli Type 3 Secretion System-dependent virulence
Nat Microbiol. 2024 Jul 4. doi: 10.1038/s41564-024-01747-1. Online ahead of print.ABSTRACTInteractions between microbiota and enteric pathogens can promote colonization resistance or enhance pathogenesis. The pathobiont Enterococcus faecalis increases enterohaemorrhagic E. coli (EHEC) virulence by upregulating Type 3 Secretion System (T3SS) expression, effector translocation, and attaching and effacing (AE) lesion formation on enterocytes, but the mechanisms underlying this remain unknown. Using co-infection of organoids, metabolomics, supplementation experiments and bacterial genetics, here we show that co-culture of EHEC with E. faecalis increases the xanthine-hypoxanthine pathway activity and adenine biosynthesis. Adenine or E. faecalis promoted T3SS gene expression, while transcriptomics showed upregulation of adeP expression, which encodes an adenine importer. Mechanistically, adenine relieved High hemolysin activity (Hha)-dependent repression of T3SS gene expression in EHEC and promoted AE lesion formation in an AdeP-dependent manner. Microbiota-derived purines, such as adenine, support multiple beneficial host responses; however, our data show that this metabolite also increases EHEC virulence, highlighting the complexity of pathogen-microbiota-host interactions in the gut.PMID:38965331 | DOI:10.1038/s41564-024-01747-1
Illuminating the dark space of neutral glycosphingolipidome by selective enrichment and profiling at multi-structural levels
Nat Commun. 2024 Jul 4;15(1):5627. doi: 10.1038/s41467-024-50014-8.ABSTRACTGlycosphingolipids (GSLs) are essential components of cell membranes, particularly enriched in the nervous system. Altered molecular distributions of GSLs are increasingly associated with human diseases, emphasizing the significance of lipidomic profiling. Traditional GSL analysis methods are hampered by matrix effect from phospholipids and the difficulty in distinguishing structural isomers. Herein, we introduce a highly sensitive workflow that harnesses magnetic TiO2 nanoparticle-based selective enrichment, charge-tagging Paternò-Büchi reaction, and liquid chromatography-tandem mass spectrometry. This approach enables mapping over 300 distinct GSLs in brain tissues by defining sugar types, long chain bases, N-acyl chains, and the locations of desaturation and hydroxylation. Relative quantitation of GSLs across multiple structural levels provides evidence of dysregulated gene and protein expressions of FA2H and CerS2 in human glioma tissue. Based on the structural features of GSLs, our method accurately differentiates human glioma with/without isocitrate dehydrogenase genetic mutation, and normal brain tissue.PMID:38965283 | DOI:10.1038/s41467-024-50014-8
Metabolomics-based search for lung cancer markers among patients with different smoking status
Sci Rep. 2024 Jul 4;14(1):15444. doi: 10.1038/s41598-024-65835-2.ABSTRACTTobacco smoking is the main etiological factor of lung cancer (LC), which can also cause metabolome disruption. This study aimed to investigate whether the observed metabolic shift in LC patients was also associated with their smoking status. Untargeted metabolomics profiling was applied for the initial screening of changes in serum metabolic profile between LC and chronic obstructive pulmonary disease (COPD) patients, selected as a non-cancer group. Differences in metabolite profiles between current and former smokers were also tested. Then, targeted metabolomics methods were applied to verify and validate the proposed LC biomarkers. For untargeted metabolomics, a single extraction-dual separation workflow was applied. The samples were analyzed using a liquid chromatograph-high resolution quadrupole time-of-flight mass spectrometer. Next, the selected metabolites were quantified using liquid chromatography-triple-quadrupole mass spectrometry. The acquired data confirmed that patients' stratification based on smoking status impacted the discriminating ability of the identified LC marker candidates. Analyzing a validation set of samples enabled us to determine if the putative LC markers were truly robust. It demonstrated significant differences in the case of four metabolites: allantoin, glutamic acid, succinic acid, and sphingosine-1-phosphate. Our research showed that studying the influence of strong environmental factors, such as tobacco smoking, should be considered in cancer marker research since it reduces the risk of false positives and improves understanding of the metabolite shifts in cancer patients.PMID:38965272 | DOI:10.1038/s41598-024-65835-2
Decoding the biochemical dialogue: metabolomic insights into soybean defense strategies against diverse pathogens
Sci China Life Sci. 2024 Jul 1. doi: 10.1007/s11427-023-2596-1. Online ahead of print.ABSTRACTSoybean, a crucial global leguminous crop, confronts persistent threats from diverse pathogens, exerting a profound impact on global yields. While genetic dimensions of soybean-pathogen interactions have garnered attention, the intricate biochemical responses remain poorly elucidated. In this study, we applied targeted and untargeted liquid chromatography coupled to mass spectrometry (LC-MS) metabolite profiling to dissect the complex interplay between soybeans and five distinct pathogens. Our analysis uncovered 627 idMS/MS spectra, leading to the identification of four main modules, encompassing flavonoids, isoflavonoids, triterpenoids, and amino acids and peptides, alongside other compounds such as phenolics. Profound shifts were observed in both primary and secondary metabolism in response to pathogenic infections. Particularly notable were the bidirectional changes in total flavonoids across diverse pathogenic inoculations, while triterpenoids exhibited a general declining trend. Noteworthy among the highly inducible total flavonoids were known representative anti-pathogen compounds (glyceollin I), backbone forms of isoflavonoids (daidzein, genistein, glycitein, formononetin), and newly purified compounds in this study (prunin). Subsequently, we delved into the biological roles of these five compounds, validating their diverse functions against pathogens: prunin significantly inhibited the vegetative growth and virulence of Phytophthora sojae; genistein exhibited a pronounced inhibitory effect on the vegetative growth and virulence of Phomopsis longicolla; daidzein and formononetin displayed significant repressive effects on the virulence of P. longicolla. This study underscores the potent utility of metabolomic tools, providing in-depth insights into plant-pathogen interactions from a biochemical perspective. The findings not only contribute to plant pathology but also offer strategic pathways for bolstering plant resistance against diseases on a broader scale.PMID:38965141 | DOI:10.1007/s11427-023-2596-1
A comparative metabolomics analysis of Acai (Euterpe oleracea Mart.) fruit, food powder, and botanical dietary supplement extracts
Phytochem Anal. 2024 Jul 4. doi: 10.1002/pca.3416. Online ahead of print.ABSTRACTINTRODUCTION: Euterpe oleracea Mart. (açaí) is a botanical of interest to many who seek functional foods that provide antioxidant and anti-inflammatory properties. Cancer patients are increasingly taking botanical dietary supplements containing açaí to complement their conventional therapeutics, which may lead to serious adverse events. Before testing our açaí extracts in vitro for botanical-drug interactions, the goal is to chemically characterize our extracts for compounds whose biological activity in açaí is unknown.OBJECTIVE: The objective of this work was to develop a chemical fingerprinting method for untargeted characterization of açaí samples from a variety of sources, including food products and botanical dietary supplement capsules, made with multiple extraction solvents.METHODS: An optimized LC-MS method was generated for in-depth untargeted fingerprinting of chemical constituents in açaí extracts. Statistical analysis models were used to describe relationships between the açaí extracts based on molecular features found in both positive and negative mode ESI.RESULTS: In an attempt to elucidate the differences in metabolites among açaí extracts from different cultivars, we identified or tentatively identified 173 metabolites from the 16 extracts made from 6 different sources. Of these compounds, there are 138 reported in açaí for the first time. Statistical models showed similar yet distinct differences between the extracts tested based on the polarity of compounds present and the origin of the source material.CONCLUSION: A high-resolution mass spectrometry method was generated that allowed us to greatly characterize 16 complex extracts made from different sources of açaí with different extraction solvent polarities.PMID:38965051 | DOI:10.1002/pca.3416
The mechanism of SSO regulating SiO(2)-induced lipid metabolism disorders in macrophages was explored based on lipid metabolomics
Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2024 Jun 20;42(6):408-416. doi: 10.3760/cma.j.cn121094-20230704-00235.ABSTRACTObjective: To investigate the mechanism of Sulfo-N-succinimidyloleate (SSO) regulating lipid metabolism disorder induced by silicon dioxide (SiO(2)) . Methods: In March 2023, Rat alveolar macrophages NR8383 were cultured in vitro and randomly divided into control group (C), SSO exposure group (SSO), SiO(2) exposure group (SiO(2)) and SiO(2)+SSO exposure group (SiO(2)+SSO). NR8383 cells were exposure separately or jointly by SSO and SiO(2) for 36 h to construct cell models. Immunofluorescence and BODIPY 493/ 503 staining were used to detect cluster of differentiation (CD36) and intracellular lipid levels, the protein expression levels of CD36, liver X receptors (LXR), P-mammalian target of rapamycin (P-mTOR) and cholinephosphotransferase 1 (CHPT1) were detected by Western blot, respectively, and lipid metabolomics was used to screen for different lipid metabolites and enrichment pathways. Single-factor ANOVA was used for multi-group comparison, and LSD test was used for pair-to-group comparison. Results: SiO(2) caused the expression of CD36 and P-mTOR to increase (P=0.012, 0.020), the expression of LXR to decrease (P=0.005), and the intracellular lipid level to increase. After SSO treatment, CD36 expression decreased (P=0.023) and LXR expression increased (P=0.000) in SiO(2)+SSO exposure group compared with SiO(2) exposure group. Metabolomics identified 87 different metabolites in the C group and SiO(2) exposure group, 19 different metabolites in the SiO(2) exposure group and SiO(2)+SSO group, and 5 overlaps of different metabolites in the two comparison groups, they are PS (22∶1/14∶0), DG (O-16∶0/18∶0/0∶0), PGP (i-13∶0/i-20∶0), PC (18∶3/16∶0), and Sphinganine. In addition, the differential metabolites of the two comparison groups were mainly concentrated in the glycerophospholipid metabolism and sphingolipid metabolism pathways. The differential gene CHPT1 in glycerophospholipid metabolic pathway was verified, and the expression of CHPT1 decreased after SiO(2) exposure. Conclusion: SSO may improve SiO(2)-induced lipid metabolism disorders by regulating PS (22∶1/14∶0), DG (O-16∶0/18∶0/0∶0), PGP (i-13∶0/i-20∶0), PC (18∶3/16∶0), SPA, glycerophospholipid metabolism and sphingolipid metabolism pathways.PMID:38964904 | DOI:10.3760/cma.j.cn121094-20230704-00235
Causal relationship between gut microbiota and childhood obesity: A Mendelian randomization study and case-control study
Clin Nutr ESPEN. 2024 May 22;63:197-206. doi: 10.1016/j.clnesp.2024.05.012. Online ahead of print.ABSTRACTBACKGROUND: Gut microbiota and obesity are deeply interconnected. However, the causality in the relationship between these factors remains unclear. Therefore, this study aimed to elucidate the genetic relationship between gut microbiota and childhood obesity.METHODS: Genetic summary statistics for the gut microbiota were obtained from the MiBioGen consortium. Genome-wide association studies (GWAS) summary data for childhood obesity were obtained from North American, Australian, and European collaborative genome-wide meta-analyses. Mendelian randomization (MR) analyses were performed using the inverse variance weighting method. 16 children with obesity and 16 without obesity were included for clinical observation, and their weight, body mass index, blood lipid levels, and gut microbiology were assessed. Paired t-test was the primary method of data analysis, and statistical significance was set at P < 0.05.RESULTS: MR identified 16 causal relationships between the gut microbiome and childhood obesity. In the case-control study, we found that five gut microorganisms differed between children with and without obesity, whereas three gut microorganisms changed after weight loss in children with obesity.CONCLUSION: Our study provides new insights into the genetic mechanisms underlying gut microbiota and childhood obesity.TRIAL REGISTRATION NUMBER: ChiCTR2300072179.NAME OF REGISTRY: Change of intestinal flora and plasma metabolome in obese children and their weight loss intervention: a randomized controlled tria URL OF REGISTRY: https://www.chictr.org.cn/showproj.html.DATE OF REGISTRATION: 2023-06-06.DATE OF ENROLMENT OF THE FIRST PARTICIPANT TO THE TRIAL: 2023-06-07.PMID:38963766 | DOI:10.1016/j.clnesp.2024.05.012
The performance of metabolomics-based prediction scores for mortality in older patients with solid tumors
Geroscience. 2024 Jul 4. doi: 10.1007/s11357-024-01261-6. Online ahead of print.ABSTRACTPrognostic information is needed to balance benefits and risks of cancer treatment in older patients. Metabolomics-based scores were previously developed to predict 5- and 10-year mortality (MetaboHealth) and biological age (MetaboAge). This study aims to investigate the association of MetaboHealth and MetaboAge with 1-year mortality in older patients with solid tumors, and to study their predictive value for mortality in addition to established clinical predictors. This prospective cohort study included patients aged ≥ 70 years with a solid malignant tumor, who underwent blood sampling and a geriatric assessment before treatment initiation. The outcome was all-cause 1-year mortality. Of the 192 patients, the median age was 77 years. With each SD increase of MetaboHealth, patients had a 2.32 times increased risk of mortality (HR 2.32, 95% CI 1.59-3.39). With each year increase in MetaboAge, there was a 4% increased risk of mortality (HR 1.04, 1.01-1.07). MetaboHealth and MetaboAge showed an AUC of 0.66 (0.56-0.75) and 0.60 (0.51-0.68) for mortality prediction accuracy, respectively. The AUC of a predictive model containing age, primary tumor site, distant metastasis, comorbidity, and malnutrition was 0.76 (0.68-0.83). Addition of MetaboHealth increased AUC to 0.80 (0.74-0.87) (p = 0.09) and AUC did not change with MetaboAge (0.76 (0.69-0.83) (p = 0.89)). Higher MetaboHealth and MetaboAge scores were associated with 1-year mortality. The addition of MetaboHealth to established clinical predictors only marginally improved mortality prediction in this cohort with various types of tumors. MetaboHealth may potentially improve identification of older patients vulnerable for adverse events, but numbers were too small for definitive conclusions. The TENT study is retrospectively registered at the Netherlands Trial Register (NTR), trial number NL8107. Date of registration: 22-10-2019.PMID:38963649 | DOI:10.1007/s11357-024-01261-6