Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Changes in Rumen Microbiology and Metabolism of Tibetan Sheep with Different Lys/Met Ratios in Low-Protein Diets

Wed, 19/06/2024 - 12:00
Animals (Basel). 2024 May 22;14(11):1533. doi: 10.3390/ani14111533.ABSTRACTIn ruminants, supplementing appropriate amounts of amino acids improves growth, feed utilization efficiency, and productivity. This study aimed to assess the effects of different Lys/Met ratios on the ruminal microbial community and the metabolic profiling in Tibetan sheep using 16S rDNA sequencing and non-target metabolomics. Ninety-two-month-old Tibetan rams (initial weight = 15.37 ± 0.92 kg) were divided into three groups and fed lysine/methionine (Lys/Met) of 1:1 (LP-L), 2:1 (LP-M), and 3:1 (LP-H) in low-protein diet, respectively. Results: The T-AOC, GSH-Px, and SOD were significantly higher in the LP-L group than in LP-H and LP-M groups (p < 0.05). Cellulase activity was significantly higher in the LP-L group than in the LP-H group (p < 0.05). In the fermentation parameters, acetic acid concentration was significantly higher in the LP-L group than in the LP-H group (p < 0.05). Microbial sequencing analysis showed that Ace and Chao1 indicators were significantly higher in LP-L than in LP-H and LP-M (p < 0.05). At the genus level, the abundance of Rikenellaceae RC9 gut group flora and Succiniclasticum were significantly higher in LP-L than in LP-M group (p < 0.05). Non-target metabolomics analyses revealed that the levels of phosphoric acid, pyrocatechol, hydrocinnamic acid, banzamide, l-gulono-1,4-lactone, cis-jasmone, Val-Asp-Arg, and tropinone content were higher in LP-L. However, l-citrulline and purine levels were lower in the LP-L group than in the LP-M and LP-H groups. Banzamide, cis-jasmone, and Val-Asp-Arg contents were positively correlated with the phenotypic contents, including T-AOC, SOD, and cellulase. Phosphoric acid content was positively correlated with cellulase and lipase activities. In conclusion, the Met/Lys ratio of 1:1 in low-protein diets showed superior antioxidant status and cellulase activity in the rumen by modulating the microbiota and metabolism of Tibetan sheep.PMID:38891581 | DOI:10.3390/ani14111533

UV-B Radiation Disrupts Membrane Lipid Organization and Suppresses Protein Mobility of GmNARK in <em>Arabidopsis</em>

Wed, 19/06/2024 - 12:00
Plants (Basel). 2024 Jun 1;13(11):1536. doi: 10.3390/plants13111536.ABSTRACTWhile it is well known that plants interpret UV-B as an environmental cue and a potential stressor influencing their growth and development, the specific effects of UV-B-induced oxidative stress on the dynamics of membrane lipids and proteins remain underexplored. Here, we demonstrate that UV-B exposure notably increases the formation of ordered lipid domains on the plasma membrane (PM) and significantly alters the behavior of the Glycine max nodule autoregulation receptor kinase (GmNARK) protein in Arabidopsis leaves. The GmNARK protein was located on the PM and accumulated as small particles in the cytoplasm. We found that UV-B irradiation interrupted the lateral diffusion of GmNARK proteins on the PM. Furthermore, UV-B light decreases the efficiency of surface molecule internalization by clathrin-mediated endocytosis (CME). In brief, UV-B irradiation increased the proportion of the ordered lipid phase and disrupted clathrin-dependent endocytosis; thus, the endocytic trafficking and lateral mobility of GmNARK protein on the plasma membrane are crucial for nodule formation tuning. Our results revealed a novel role of low-intensity UV-B stress in altering the organization of the plasma membrane and the dynamics of membrane-associated proteins.PMID:38891343 | DOI:10.3390/plants13111536

Introgression of the Self-Pruning Gene into Dwarf Tomatoes to Obtain Salad-Type Determinate Growth Lines

Wed, 19/06/2024 - 12:00
Plants (Basel). 2024 May 31;13(11):1522. doi: 10.3390/plants13111522.ABSTRACTThe use of dwarf plants in tomato breeding has provided several advantages. However, there are no identified dwarf plants (dd) containing the self-pruning habit (spsp). The aim of this work was to obtain future generations, characterize the germplasm, and select potential dwarf plants with a determinate growth habit to obtain Salad-type lines. The work was started by carrying out hybridization, followed by the first, second, and third backcrosses. Once F2BC3 seeds became available, the introgression of the self-pruning gene (spsp) into dwarf plants (dd) began. Three strains of normal architecture and a determinate growth habit were hybridized with two strains of dwarf size and an indeterminate growth habit, thus yielding four hybrids. Additionally, donor genotype UFU MC TOM1, the commercial cultivar Santa Clara, and the wild accession Solanum pennellii were used in the experiment. Agronomic traits, fruit quality, metabolomics, and acylsugars content were evaluated, and dwarf plants with a determinate growth habit were selected. Hybrid 3 exhibited the highest yields. Visual differences between determinate and indeterminate dwarf plant seedlings were observed. It is suggested to carry out five self-pollinations of the best dwarf plant determined and subsequent hybridization with homozygous lines of normal plant architecture and determinate growth habit to obtain hybrids.PMID:38891329 | DOI:10.3390/plants13111522

MUP1 mediates urolithin A alleviation of chronic alcohol-related liver disease via gut-microbiota-liver axis

Tue, 18/06/2024 - 12:00
Gut Microbes. 2024 Jan-Dec;16(1):2367342. doi: 10.1080/19490976.2024.2367342. Epub 2024 Jun 18.ABSTRACTAlcohol-related liver disease (ALD) is recognized as a global health crisis, contributing to approximately 20% of liver cancer-associated fatalities. Dysbiosis of the gut microbiome is associated with the development of ALD, with the gut microbial metabolite urolithin A (UA) exhibiting a potential for alleviating liver symptoms. However, the protective efficacy of UA against ALD and its underlying mechanism mediated by microbiota remain elusive. In this study, we provide evidence demonstrating that UA effectively ameliorates alcohol-induced metabolic disorders and hepatic endoplasmic reticulum (ER) stress through a specific gut-microbiota-liver axis mediated by major urinary protein 1 (MUP1). Moreover, UA exhibited the potential to restore alcohol-induced dysbiosis of the intestinal microbiota by enriching the abundance of Bacteroides sartorii (B. sartorii), Parabacteroides distasonis (P. distasonis), and Akkermansia muciniphila (A. muciniphila), along with their derived metabolite propionic acid. Partial attenuation of the hepatoprotective effects exerted by UA was observed upon depletion of gut microbiota using antibiotics. Subsequently, a fecal microbiota transplantation (FMT) experiment was conducted to evaluate the microbiota-dependent effects of UA in ALD. FMT derived from mice treated with UA exhibited comparable efficacy to direct UA treatment, as it effectively attenuated ER stress through modulation of MUP1. It was noteworthy that strong associations were observed among the hepatic MUP1, gut microbiome, and metabolome profiles affected by UA. Intriguingly, oral administration of UA-enriched B. sartorii, P. distasonis, and A. muciniphila can enhance propionic acid production to effectively suppress ER stress via MUP1, mimicking UA treatment. Collectively, these findings elucidate the causal mechanism that UA alleviated ALD through the gut-microbiota-liver axis. This unique mechanism sheds light on developing novel microbiome-targeted therapeutic strategies against ALD.PMID:38889450 | DOI:10.1080/19490976.2024.2367342

Fulfilling the Promise of Breathomics: Considerations for the Discovery and Validation of Exhaled Volatile Biomarkers

Tue, 18/06/2024 - 12:00
Am J Respir Crit Care Med. 2024 Jun 18. doi: 10.1164/rccm.202305-0868TR. Online ahead of print.ABSTRACTThe exhaled breath represents an ideal matrix for non-invasive biomarker discovery, and exhaled metabolomics have the potential to be clinically useful in the era of precision medicine. In this concise translational review we will specifically address volatile organic compounds in the breath, with a view towards fulfilling the promise of these as actionable biomarkers, in particular for lung diseases. We review the literature paying attention to seminal work linked to key milestones in breath research; discuss potential applications for breath biomarkers across disease areas and healthcare systems, including the perspectives of industry; and outline critical aspects of study design that will need to be considered for any pivotal research going forward, if breath analysis is to provide robust validated biomarkers that meet the requirements for future clinical implementation.PMID:38889337 | DOI:10.1164/rccm.202305-0868TR

Metabolic Analysis of Intracellular Pathogenic Bacteria Using NMR

Tue, 18/06/2024 - 12:00
Methods Mol Biol. 2024;2813:95-105. doi: 10.1007/978-1-0716-3890-3_6.ABSTRACTPathogen proliferation and virulence depend on available nutrients, and these vary when the pathogen moves from outside of the host cell (extracellular) to the inside of the host cell (intracellular). Nuclear Magnetic Resonance (NMR) is a versatile analytical method, which lends itself for metabolic studies. In this chapter, we describe how 1H NMR can be combined with a cellular infection model to study the metabolic crosstalk between a bacterial pathogen and its host both in the extracellular and intracellular compartments. Central carbon metabolism is highlighted by using glucose labeled with the stable isotope 13C.PMID:38888772 | DOI:10.1007/978-1-0716-3890-3_6

Tyramine-Mediated Hyperactivity Modulates the Dietary Habits in Helicoverpa armigera

Tue, 18/06/2024 - 12:00
J Chem Ecol. 2024 Jun 18. doi: 10.1007/s10886-024-01515-9. Online ahead of print.ABSTRACTHelicoverpa armigera exhibits extensive variability in feeding habits and food selection. Neuronal regulation of H. armigera feeding behavior is primarily influenced by biogenic amines such as Tyramine (TA) and Octopamine (OA). The molecular responses of H. armigera to dietary challenges in the presence of TA or OA have yet to be studied. This investigation dissects the impact of OA and TA on H. armigera feeding choices and behaviors under non-host nutritional stress. It has been observed that feeding behavior remains unaltered during the exogenous administration of OA and TA through an artificial diet (AD). Ingestion of higher OA or TA concentrations leads to increased mortality. OA and TA treatment in combination with host and non-host diets results in the induction of feeding and higher locomotion toward food, particularly in the case of TA treatment. Increased expression of markers, prominin-like, and tachykinin-related peptide receptor-like transcripts further assessed increased locomotion activity. Insects subjected to a non-host diet with TA treatment exhibited increased feeding and overexpression of the feeding indicator, the Neuropeptide F receptor, and the feeding regulator, Sulfakinin, compared with other conditions. Expression of sensation and biogenic amine synthesis genesis elevated in insects fed a non-host diet in combination with OA or TA. Metabolomics analysis revealed a decreased concentration of the feeding behavior elicitor, dopamine, in insects fed a non-host diet containing TA. This work highlights the complex interplay between biogenic amine functions during dietary stress and suggests the role of tyramine in feeding promotion under stressed conditions.PMID:38888642 | DOI:10.1007/s10886-024-01515-9

Influence of plant growth-promoting bacteria on leaf carbon and nitrogen metabolism of two drought-stressed neotropical tree species: a metabolomic approach

Tue, 18/06/2024 - 12:00
Planta. 2024 Jun 18;260(1):31. doi: 10.1007/s00425-024-04460-9.ABSTRACTDeforestation of Atlantic Forest has caused prolonged drought events in the last decades. The need for reforestation is growing, and the development of native seedlings that are more tolerant to drought stress is necessary. A biotechnological tool that improves plant tolerance is the use of plant growth-promoting bacteria (PGPB) as inoculants. Two species of PGPB were inoculated in drought-stressed seedlings of two neotropical tree species that have been used in environmental restoration programs: Cecropia pachystachya and Cariniana estrellensis. Biometrical, physiological, and metabolomic parameters from carbon and nitrogen pathways were evaluated. We found that the PGPB positively influenced photosynthesis and growth parameters in both trees under drought. The enzymes activities, the tricarboxylic acid cycle intermediates, the amino acids, and protein contents were also influenced by the PGPB treatments. The results allowed us to find the specific composition of secondary metabolites of each plant species. This study provides evidence that there is not a single mechanism involved in drought tolerance and that the inoculation with PGPB promotes a broad-spectrum tolerance response in Neotropical trees. The inoculation with PGPB appears as an important strategy to improve drought tolerance in Atlantic Forest native trees and enhance environmental restoration programs' success. MAIN CONCLUSION: The association with plant growth-promoting bacteria improved the tolerance to drought in Neotropical trees through biochemical, physiological, and biometrical parameters. This can enhance the success of forest restoration programs.PMID:38888604 | DOI:10.1007/s00425-024-04460-9

Targeted metabolomics analysis approach to unravel the biofilm formation pathways of Enterococcus faecalis clinical isolates

Tue, 18/06/2024 - 12:00
Int Endod J. 2024 Jun 18. doi: 10.1111/iej.14110. Online ahead of print.ABSTRACTAIM: (i) To characterize Enterococcus faecalis biofilm formation pathways by semi-targeted metabolomics and targeted nitrogen panel analysis of strong (Ef63) and weak (Ef 64) biofilm forming E. faecalis clinical isolates and (ii) to validate the identified metabolic markers using targeted inhibitors.METHODOLOGY: Previous proteomics profiling of E. faecalis clinical isolates with strong and weak biofilm formation revealed that differences in metabolic activity levels of small molecule, nucleotide and nitrogen compound metabolic processes and biosynthetic pathways, cofactor metabolic process, cellular amino acid and derivative metabolic process and lyase activity were associated with differences in biofilm formation. Hence, semi-targeted analysis of Ef 63, Ef 64 and ATC control strain Ef 29212 was performed by selecting metabolites that were part of both the previously identified pathways and a curated library with confirmed physical and chemical identity, followed by confirmatory targeted nitrogen panel analysis. Significantly regulated metabolites (p < .05) were selected based on fold change cut-offs of 1.2 and 0.8 for upregulation and downregulation, respectively, and subjected to pathway enrichment analysis. The identified metabolites and pathways were validated by minimum biofilm inhibitory concentration (MBIC) and colony forming unit (CFU) assays with targeted inhibitors.RESULTS: Metabolomics analysis showed upregulation of betaine, hypoxanthine, glycerophosphorylcholine, tyrosine, inosine, allantoin and citrulline in Ef 63 w.r.t Ef 64 and Ef 29212, and thesemetabolites mapped to purinemetabolism, urea cycle and aspartate metabolism pathways. MBIC and CFU assays using compounds against selected metabolites and metabolic pathways, namely glutathione against hypoxanthine and hydroxylamine against aspartate metabolism showed inhibitory effects against E. faecalis biofilm formation.CONCLUSIONS: The study demonstrated the importance of oxidative stress inducers such as hypoxanthine and aspartate metabolism pathway in E. faecalis biofilm formation. Targeted therapeutics against these metabolic markers can reduce the healthcare burden associated with E. faecalis infections.PMID:38888425 | DOI:10.1111/iej.14110

Microbiota and metabolite alterations in pancreatic head and body/tail cancer patients

Tue, 18/06/2024 - 12:00
Cancer Sci. 2024 Jun 18. doi: 10.1111/cas.16238. Online ahead of print.ABSTRACTPancreatic head cancer (PHC) and pancreatic body/tail cancer (PBTC) have distinct clinical and biological behaviors. The microbial and metabolic differences in PHC and PBTC have not been studied. The pancreatic microbiota and metabolome of 15 PHC and 8 PBTC tissues and their matched nontumor tissues were characterized using 16S rRNA amplicon sequencing and untargeted metabolomics. At the genus level, Bradyrhizobium was increased while Corynebacterium and Ruminococcus were decreased in the PHC tissues (Head T) compared with the matched nontumor tissues (Head N) significantly. Shuttleworthia, Bacillus, and Bifidobacterium were significantly decreased in the PBTC tissues (Body/Tail T) compared with the matched nontumor tissues (Body/Tail N). Significantly, Ileibacterium was increased whereas Pseudoxanthomonas was decreased in Head T and Body/Tail T, and Lactobacillus was increased in Head T but decreased in Body/Tail T. A total of 102 discriminative metabolites were identified between Head T and Head N, which were scattered through linoleic acid metabolism and purine metabolism pathways. However, there were only four discriminative metabolites between Body/Tail T and Body/Tail N, which were related to glycerophospholipid metabolism and autophagy pathways. The differential metabolites in PHC and PBTC were commonly enriched in alpha-linolenic acid metabolism and choline metabolism in cancer pathways. Eubacterium decreased in Head T was positively correlated with decreased linoleic acid while negatively correlated with increased arachidyl carnitine and stearoylcarnitine. Bacillus decreased in Body/Tail T was negatively correlated with increased L-carnitine. These microbiota and metabolites deserve further investigations to reveal their roles in the pathogenesis of PHC and PBTC, providing clues for future treatments.PMID:38888048 | DOI:10.1111/cas.16238

A cotton mitochondrial alternative electron transporter, GhD2HGDH, induces early flowering by modulating GA and photoperiodic pathways

Tue, 18/06/2024 - 12:00
Physiol Plant. 2024 May-Jun;176(3):e14378. doi: 10.1111/ppl.14378.ABSTRACTD-2-hydroxyglutarate dehydrogenase (D2HGDH) is a mitochondrial enzyme containing flavin adenine dinucleotide FAD, existing as a dimer, and it facilitates the specific oxidation of D-2HG to 2-oxoglutarate (2-OG), which is a key intermediate in the tricarboxylic acid (TCA) cycle. A Genome-wide expression analysis (GWEA) has indicated an association between GhD2HGDH and flowering time. To further explore the role of GhD2HGDH, we performed a comprehensive investigation encompassing phenotyping, physiology, metabolomics, and transcriptomics in Arabidopsis thaliana plants overexpressing GhD2HGDH. Transcriptomic and qRT-PCR data exhibited heightened expression of GhD2HGDH in upland cotton flowers. Additionally, early-maturing cotton exhibited higher expression of GhD2HGDH across all tissues than delayed-maturing cotton. Subcellular localization confirmed its presence in the mitochondria. Overexpression of GhD2HGDH in Arabidopsis resulted in early flowering. Using virus-induced gene silencing (VIGS), we investigated the impact of GhD2HGDH on flowering in both early- and delayed-maturing cotton plants. Manipulation of GhD2HGDH expression levels led to changes in photosynthetic pigment and gas exchange attributes. GhD2HGDH responded to gibberellin (GA3) hormone treatment, influencing the expression of GA biosynthesis genes and repressing DELLA genes. Protein interaction studies, including yeast two-hybrid, luciferase complementation (LUC), and GST pull-down assays, confirmed the interaction between GhD2HGDH and GhSOX (Sulfite oxidase). The metabolomics analysis demonstrated GhD2HGDH's modulation of the TCA cycle through alterations in various metabolite levels. Transcriptome data revealed that GhD2HGDH overexpression triggers early flowering by modulating the GA3 and photoperiodic pathways of the flowering core factor genes. Taken together, GhD2HGDH positively regulates the network of genes associated with early flowering pathways.PMID:38887925 | DOI:10.1111/ppl.14378

Microglial activation induces nitric oxide signalling and alters protein S-nitrosylation patterns in extracellular vesicles

Tue, 18/06/2024 - 12:00
J Extracell Vesicles. 2024 Jun;13(6):e12455. doi: 10.1002/jev2.12455.ABSTRACTNeuroinflammation is an underlying feature of neurodegenerative conditions, often appearing early in the aetiology of a disease. Microglial activation, a prominent initiator of neuroinflammation, can be induced through lipopolysaccharide (LPS) treatment resulting in expression of the inducible form of nitric oxide synthase (iNOS), which produces nitric oxide (NO). NO post-translationally modifies cysteine thiols through S-nitrosylation, which can alter function of the target protein. Furthermore, packaging of these NO-modified proteins into extracellular vesicles (EVs) allows for the exertion of NO signalling in distant locations, resulting in further propagation of the neuroinflammatory phenotype. Despite this, the NO-modified proteome of activated microglial EVs has not been investigated. This study aimed to identify the protein post-translational modifications NO signalling induces in neuroinflammation. EVs isolated from LPS-treated microglia underwent mass spectral surface imaging using time of flight-secondary ion mass spectrometry (ToF-SIMS), in addition to iodolabelling and comparative proteomic analysis to identify post-translation S-nitrosylation modifications. ToF-SIMS imaging successfully identified cysteine thiol side chains modified through NO signalling in the LPS treated microglial-derived EV proteins. In addition, the iodolabelling proteomic analysis revealed that the EVs from LPS-treated microglia carried S-nitrosylated proteins indicative of neuroinflammation. These included known NO-modified proteins and those associated with LPS-induced microglial activation that may play an essential role in neuroinflammatory communication. Together, these results show activated microglia can exert broad NO signalling changes through the selective packaging of EVs during neuroinflammation.PMID:38887871 | DOI:10.1002/jev2.12455

Unveiling the multifaceted antiproliferative efficacy of <em>Cichorium endivia</em> root extract by dual modulation of apoptotic and inflammatory genes, inducing cell cycle arrest, and targeting COX-2

Tue, 18/06/2024 - 12:00
RSC Adv. 2024 Jun 17;14(27):19400-19427. doi: 10.1039/d4ra02131b. eCollection 2024 Jun 12.ABSTRACTChicory (Cichorium endivia L. divaricatum) is a renowned medicinal plant traditionally used for various ailments, yet the pharmacological potential of its roots, particularly in terms of antitumor activity, remains elusive. In the present study, we explore, for the first time, the metabolomic profile of ethanolic extract from Cichorium endivia roots (CIR) and further unveil its antiproliferative potential. The untargeted phytochemical analysis UPLC/T-TOF-MS/MS identified 131 metabolites in the CIR extract, covering acids, amino acids, flavonoids, alkaloids, nucleotides, and carbohydrates. The antiproliferative activity of the CIR extract was tested in 14 cancer cell lines, revealing significant cytotoxicity (IC50: 2.85-29.15 μg mL-1) and a high selectivity index. Among the cells examined, the CIR extract recorded the most potent antiproliferative activity and selectivity toward HepG2 and Panc-1 cells, with an IC50 of 2.85 μg mL-1 and 3.86 μg mL-1, respectively, and SI > 10. Insights into the mode of action of the antiproliferative activity revealed that CIR extract induces cell arrest in the S phase while diminishing cell distribution in the G0/G1 and G2/M phases in HepG-2 and Panc-1 cells. Flow cytometric and RT-PCR analysis revealed that the CIR extract significantly triggers apoptosis and modulates the expression of pro-apoptotic and anti-apoptotic genes. Furthermore, the CIR extract exhibited a pronounced anti-inflammatory activity, as evidenced by down-regulating key cytokines in LPS-induced RAW 264.7 cells and selectively inhibiting the COX-2 enzyme. Finally, the CIR extract showed a robust total antioxidant capacity, together with potent free radicals and metal scavenging properties, highlighting its role in alleviating oxidative stress. Taken together, this study highlights the multifaceted therapeutic potential of CIR extract as a natural-based antitumor supplement.PMID:38887636 | PMC:PMC11182420 | DOI:10.1039/d4ra02131b

Untargeted metabonomics and TLR4/ NF-κB signaling pathway analysis reveals potential mechanism of action of <em>Dendrobium huoshanense</em> polysaccharide in nonalcoholic fatty liver disease

Tue, 18/06/2024 - 12:00
Front Pharmacol. 2024 Jun 3;15:1374158. doi: 10.3389/fphar.2024.1374158. eCollection 2024.ABSTRACTNonalcoholic fatty liver disease (NAFLD) is marked by hepatic steatosis accompanied by an inflammatory response. At present, there are no approved therapeutic agents for NAFLD. Dendrobium Huoshanense polysaccharide (DHP), an active ingredient extracted from the stems of Dendrobium Huoshanense, and exerts a protective effect against liver injury. However, the therapeutic effects and mechanisms of action DHP against NAFLD remain unclear. DHP was extracted, characterized, and administered to mice in which NAFLD had been induced with a high-fat and high-fructose drinking (HFHF) diet. Our results showed that DHP used in this research exhibits the characteristic polysaccharide peak with a molecular weight of 179.935 kDa and is composed primarily of Man and Glc in a molar ratio of 68.97:31.03. DHP treatment greatly ameliorated NAFLD by significantly reducing lipid accumulation and the levels of liver function markers in HFHF-induced NAFLD mice, as evidenced by decreased serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), total cholesterol (TC) and total triglyceride (TG). Furthermore, DHP administration reduced hepatic steatosis, as shown by H&E and Oil red O staining. DHP also inhibited the Toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) signaling pathway expression, thereby reducing levels of hepatic proinflammatory cytokines. Besides, untargeted metabolomics further indicated that 49 metabolites were affected by DHP. These metabolites are strongly associated the metabolism of glycine, serine, threonine, nicotinate and nicotinamide, and arachidonic acid. In conclusion, DHP has a therapeutic effect against NAFLD, whose underlying mechanism may involve the modulation of TLR4/NF-κB, reduction of inflammation, and regulation of the metabolism of glycine, serine, threonine, nicotinate and nicotinamide metabolism, and arachidonic acid metabolism.PMID:38887554 | PMC:PMC11180771 | DOI:10.3389/fphar.2024.1374158

Investigating gut microbiota-blood and urine metabolite correlations in early sepsis-induced acute kidney injury: insights from targeted KEGG analyses

Tue, 18/06/2024 - 12:00
Front Cell Infect Microbiol. 2024 Jun 3;14:1375874. doi: 10.3389/fcimb.2024.1375874. eCollection 2024.ABSTRACTBACKGROUND: The interplay between gut microbiota and metabolites in the early stages of sepsis-induced acute kidney injury (SA-AKI) is not yet clearly understood. This study explores the characteristics and interactions of gut microbiota, and blood and urinary metabolites in patients with SA-AKI.METHODS: Utilizing a prospective observational approach, we conducted comparative analyses of gut microbiota and metabolites via metabolomics and metagenomics in individuals diagnosed with SA-AKI compared to those without AKI (NCT06197828). Pearson correlations were used to identify associations between microbiota, metabolites, and clinical indicators. The Comprehensive Antibiotic Resistance Database was employed to detect antibiotic resistance genes (ARGs), while Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways informed on metabolic processes and microbial resistance patterns.RESULTS: Our study included analysis of four patients with SA-AKI and five without AKI. Significant disparities in bacterial composition were observed, illustrated by diversity indices (Shannon index: 2.0 ± 0.4 vs. 1.4 ± 0.6, P = 0.230; Simpson index: 0.8 ± 0.1 vs. 0.6 ± 0.2, P = 0.494) between the SA-AKI group and the non-AKI group. N6, N6, N6-Trimethyl-L-lysine was detected in both blood and urine metabolites, and also showed significant correlations with specific gut microbiota (Campylobacter hominis and Bacteroides caccae, R > 0, P < 0.05). Both blood and urine metabolites were enriched in the lysine degradation pathway. We also identified the citrate cycle (TCA cycle) as a KEGG pathway enriched in sets of differentially expressed ARGs in the gut microbiota, which exhibits an association with lysine degradation.CONCLUSIONS: Significant differences in gut microbiota and metabolites were observed between the SA-AKI and non-AKI groups, uncovering potential biomarkers and metabolic changes linked to SA-AKI. The lysine degradation pathway may serve as a crucial link connecting gut microbiota and metabolites.PMID:38887493 | PMC:PMC11180806 | DOI:10.3389/fcimb.2024.1375874

Tissue- and time-dependent metabolite profiles during early grain development under normal and high night-time temperature conditions

Mon, 17/06/2024 - 12:00
BMC Plant Biol. 2024 Jun 18;24(1):568. doi: 10.1186/s12870-024-05190-6.ABSTRACTBACKGROUND: Wheat grain development in the first few days after pollination determines the number of endosperm cells that influence grain yield potential and is susceptible to various environmental conditions, including high night temperatures (HNTs). Flag leaves and seed-associated bracts (glumes, awn, palea, and lemma) provide nutrients to the developing seed. However, the specific metabolic roles of these tissues are uncertain, especially their dynamics at different developmental stages and the time in a day. Tissue- and time-dependent metabolite profiling may hint at the metabolic roles of tissues and the mechanisms of how HNTs affect daytime metabolic status in early grain development.RESULTS: The metabolite profiles of flag leaf, bract, seed (embryo and endosperm), and entire spike were analyzed at 12:00 (day) and 23:00 (night) on 2, 4, and 6 days after fertilization under control and HNT conditions. The metabolite levels in flag leaves and bracts showed day/night oscillations, while their behaviors were distinct between the tissues. Some metabolites, such as sucrose, cellobiose, and succinic acid, showed contrasting oscillations in the two photosynthetic tissues. In contrast, seed metabolite levels differed due to the days after fertilization rather than the time in a day. The seed metabolite profile altered earlier in the HNT than in the control condition, likely associated with accelerated grain development caused by HNT. HNT also disrupted the day/night oscillation of sugar accumulation in flag leaves and bracts.CONCLUSIONS: These results highlight distinct metabolic roles of flag leaves and bracts during wheat early seed development. The seed metabolite levels are related to the developmental stages. The early metabolic events in the seeds and the disruption of the day/night metabolic cycle in photosynthetic tissues may partly explain the adverse effects of HNT on grain yield.PMID:38886651 | DOI:10.1186/s12870-024-05190-6

Therapeutic modulation of the kynurenine pathway in severe mental illness and comorbidities: A potential role for serotonergic psychedelics

Mon, 17/06/2024 - 12:00
Prog Neuropsychopharmacol Biol Psychiatry. 2024 Jun 15:111058. doi: 10.1016/j.pnpbp.2024.111058. Online ahead of print.ABSTRACTMounting evidence points towards a crucial role of the kynurenine pathway (KP) in the altered gut-brain axis (GBA) balance in severe mental illness (SMI, namely depression, bipolar disorder, and schizophrenia) and cardiometabolic comorbidities. Preliminary evidence shows that serotonergic psychedelics and their analogues may hold therapeutic potential in addressing the altered KP in the dysregulated GBA in SMI and comorbidities. In fact, aside from their effects on mood, psychedelics elicit therapeutic improvement in preclinical models of obesity, metabolic syndrome, and vascular inflammation, which are highly comorbid with SMI. Here, we review the literature on the therapeutic modulation of the KP in the dysregulated GBA in SMI and comorbidities, and the potential application of psychedelics to address the altered KP in the brain and systemic dysfunction underlying SMI and comorbidities. Endogenous and exogenous psychedelics might therapeutically modulate the KP in the altered GBA in SMI and comorbidities directly, via altering the metabolic pathway by influencing the rate-limiting enzymes of the KP and affecting the levels of available tryptophan, or indirectly, by affecting the gut microbiome, gut metabolome, metabolism, and the immune system. Despite promising preliminary evidence, the mechanisms and outcomes of the KP modulation with psychedelics in SMI and systemic comorbidities remain largely unknown and require further investigation. Several concerns are discussed surrounding the potential side effects of this approach in specific cohorts of individuals with SMI and systemic comorbidities.PMID:38885875 | DOI:10.1016/j.pnpbp.2024.111058

Integrated metabolomic analysis and molecular docking: Unveiling the potential of Nephrolepis exaltata (L.) Schott phytocompounds for mosquito control via glutathione-S-transferase targeting

Mon, 17/06/2024 - 12:00
Int J Biol Macromol. 2024 Jun 15:133072. doi: 10.1016/j.ijbiomac.2024.133072. Online ahead of print.ABSTRACTPlants contain a wide range of potential phytochemicals that are target-specific, and less toxic to human health. The present study aims to investigate the metabolomic profile of Nephrolepis exaltata (L.) Schott and its potential for mosquito control by targeting Glutathione-S-Transferase, focusing on the larvicidal activity against Culex pipiens. Crude extracts (CEs) were prepared using ethanol, ethyl acetate and n-hexane. CEs have been used for assessment of mosquitocidal bioassay. The metabolomic analyses for CEs were characterized for each CE by gas chromatography-mass spectrometry (GC-MS). The most efficient CE with the highest larval mortality and the least LC50 was the hexane CE. Then, alkaline phosphatase (ALP) activity, and glutathione-S-transferase (GST) activity were assessed in larvae treated with the hexane CE. The results demonstrated a decline in protein content, induction of ALP activity, and reduction in GST activity. Finally, molecular docking and dynamic simulation techniques were employed to evaluate the interaction between the hexane phytochemicals and the GST protein. D-(+)-Glucuronic acid, 3TMS derivative and Sebacic acid, 2TMS derivative showed best binding affinities to GST protein pointing to their interference with the enzyme detoxification functions, potentially leading to reduced ability to metabolize insecticides.PMID:38885861 | DOI:10.1016/j.ijbiomac.2024.133072

Exploitation of Multiple Host-Derived Nutrients by the Yellow Catfish Epidermal Environment Facilitates Vibrio mimicus to Sustain Infection Potency and Susceptibility

Mon, 17/06/2024 - 12:00
Fish Shellfish Immunol. 2024 Jun 15:109707. doi: 10.1016/j.fsi.2024.109707. Online ahead of print.ABSTRACTInfection with Vibrio mimicus in the Siluriformes has demonstrated a rapid and high infectivity and mortality rate, distinct from other hosts. Our earlier investigations identified necrosis, an inflammatory storm, and tissue remodeling as crucial pathological responses in yellow catfish (Pelteobagrus fulvidraco) infected with V. mimicus. The objective of this study was to further elucidate the impact linking these pathological responses within the host during V. mimicus infection. Employing metabolomics and transcriptomics, we uncovered infection-induced dense vacuolization of perimysium; Several genes related to nucleosidase and peptidase activities were significantly upregulated in the skin and muscles of infected fish. Concurrently, the translation processes of host cells were impaired. Further investigation revealed that V. mimicus completes its infection process by enhancing its metabolism, including the utilization of oligopeptides and nucleotides. The high susceptibility of yellow catfish to V. mimicus infection was associated with the composition of its body surface, which provided a microenvironment rich in various nucleotides such as dIMP, dAMP, deoxyguanosine, and ADP, in addition to several amino acids and peptides. Some of these metabolites significantly boost V. mimicus growth and motility, thus influencing its biological functions. Furthermore, we uncovered an elevated expression of gangliosides on the surface of yellow catfish, aiding V. mimicus adhesion and increasing its infection risk. Notably, we observed that the skin and muscles of yellow catfish were deficient in over 25 polyunsaturated fatty acids, such as Eicosapentaenoic acid, 12-oxo-ETE, and 13-Oxo-ODE. These substances play a role in anti-inflammatory mechanisms, possibly contributing to the immune dysregulation observed in yellow catfish. In summary, our study reveals a host immune deviation phenomenon that promotes bacterial colonization by increasing nutrient supply. It underscores the crucial factors rendering yellow catfish highly susceptible to V. mimicus, indicating that host nutritional sources not only enable the establishment and maintenance of infection within the host but also aid bacterial survival under immune pressure, ultimately completing its lifecycle.PMID:38885802 | DOI:10.1016/j.fsi.2024.109707

Environmentally relevant concentrations of nickel and imidacloprid induce reproductive toxicity in earthworm (Eisenia fetida fetida)

Mon, 17/06/2024 - 12:00
Comp Biochem Physiol C Toxicol Pharmacol. 2024 Jun 15:109964. doi: 10.1016/j.cbpc.2024.109964. Online ahead of print.ABSTRACTThe current research investigates individual and combined toxicity effects of nickel (Ni) and imidacloprid (IMI) on earthworm species Eisenia fetida fetida. Employing standardized toxicity parameters, we assessed the impact of environmentally relevant concentrations (ERC) of Ni, IMI, and their mixtures on key biomarkers and reproductive fitness of earthworms. Our findings reveal concentration-dependent responses with discernible adverse effects on physiological parameters. The ERC obtained for Ni was 0.095 ppm, and for imidacloprid was 0.01 ppm. Two concentrations (ERC and 1/5th) of both toxicants (individually and in combinations) were further given for 14 days, and parameters like avoidance behaviour, antioxidants, histology, and metabolomic profile were observed. The behaviour of earthworms was noted, where at 24-48 h, it was found to be in control soil, while later, at 72-96 h, they migrated to toxicants-treated soil. Levels of antioxidants (superoxide dismutase, catalase, reduced glutathione, ascorbic acid), lipid peroxidation, and lactate dehydrogenase were elevated in the testis, spermatheca, ovary, and prostate gland in a high concentration of Ni + IMI. Histological studies showed more vacuolization and disruption of epithelium that was increased in the prostate gland of the Ni + IMI high group, decreased number of spermatids, and damaged cell architecture was noted in testis and spermatheca of the Ni + IMI high group. The highest number of metabolites was found in Ni exposed group (181), followed by IMI (131) and Control (125). Thus, this study sheds light on the ecotoxicological effects of combinational exposure of these contaminants on an essential soil-dwelling organism, where IMI was more toxic than Ni, and both toxicants decreased earthworm reproductive fecundity.PMID:38885748 | DOI:10.1016/j.cbpc.2024.109964

Pages