Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Paired metabolomics and volatilomics provides insight into transient high light stress response mechanisms of the coral Montipora mollis

Mon, 17/06/2024 - 12:00
Metabolomics. 2024 Jun 17;20(4):66. doi: 10.1007/s11306-024-02136-9.ABSTRACTThe coral holobiont is underpinned by complex metabolic exchanges between different symbiotic partners, which are impacted by environmental stressors. The chemical diversity of the compounds produced by the holobiont is high and includes primary and secondary metabolites, as well as volatiles. However, metabolites and volatiles have only been characterised in isolation so far. Here, we applied a paired metabolomic-volatilomic approach to characterise holistically the chemical response of the holobiont under stress. Montipora mollis fragments were subjected to high-light stress (8-fold higher than the controls) for 30 min. Photosystem II (PSII) photochemical efficiency values were 7-fold higher in control versus treatment corals immediately following high-light exposure, but returned to pre-stress levels after 30 min of recovery. Under high-light stress, we identified an increase in carbohydrates (> 5-fold increase in arabinose and fructose) and saturated fatty acids (7-fold increase in myristic and oleic acid), together with a decrease in fatty acid derivatives in both metabolites and volatiles (e.g., 80% decrease in oleamide and nonanal), and other antioxidants (~ 85% decrease in sorbitol and galactitol). These changes suggest short-term light stress induces oxidative stress. Correlation analysis between volatiles and metabolites identified positive links between sorbitol, galactitol, six other metabolites and 11 volatiles, with four of these compounds previously identified as antioxidants. This suggests that these 19 compounds may be related and share similar functions. Taken together, our findings demonstrate how paired metabolomics-volatilomics may illuminate broader metabolic shifts occurring under stress and identify linkages between uncharacterised compounds to putatively determine their functions.PMID:38886248 | DOI:10.1007/s11306-024-02136-9

Associations between TCA cycle plasma metabolites and fatigue in black females with systemic lupus erythematosus: An untargeted metabolomics pilot study

Mon, 17/06/2024 - 12:00
Lupus. 2024 Jun 17:9612033241260334. doi: 10.1177/09612033241260334. Online ahead of print.ABSTRACTOBJECTIVE: In this pilot study, we used untargeted metabolomics to identify biochemical mechanisms or biomarkers potentially underlying SLE-related fatigue.METHODS: Metabolon conducted untargeted metabolomic plasma profiling using ultrahigh performance liquid chromatography/tandem mass spectrometry on plasma samples of 23 Black females with systemic lupus erythematosus (SLE) and 21 no SLE controls. Fatigue phenotypes of general fatigue, physical fatigue, mental fatigue, reduced activity, and reduced motivation were measured with the reliable and valid Multidimensional Fatigue Inventory (MFI).RESULTS: A total of 290 metabolites were significantly different between the SLE and no SLE groups, encompassing metabolites related to glycolysis, TCA cycle activity, heme catabolism, branched chain amino acids, fatty acid metabolism, and steroids. Within the SLE group, controlling for age and co-morbidities, TCA cycle metabolites of alpha-ketoglutarate (AKG) and succinate were statistically significantly associated (p < .05) with physical and general fatigue.CONCLUSION: While pervasive perturbations in the entire TCA cycle have been implicated as a potential mechanism for fatigue, our results suggest individual metabolites of AKG and succinate may be potential biomarkers or targets of intervention for fatigue symptom management in SLE. Additionally, perturbations in heme metabolism in the SLE group provide additional insights into mechanisms that promote systemic inflammation.PMID:38885489 | DOI:10.1177/09612033241260334

SH2B1 Defends Against Energy Imbalance, Obesity, and Metabolic Disease via a Paraventricular Hypothalamus→Dorsal Raphe Nucleus Neurocircuit

Mon, 17/06/2024 - 12:00
Adv Sci (Weinh). 2024 Jun 17:e2400437. doi: 10.1002/advs.202400437. Online ahead of print.ABSTRACTSH2B1 mutations are associated with obesity, type 2 diabetes, and metabolic dysfunction-associated steatotic liver disease (MASLD) in humans. Global deletion of Sh2b1 results in severe obesity, type 2 diabetes, and MASLD in mice. Neuron-specific restoration of SH2B1 rescues the obesity phenotype of Sh2b1-null mice, indicating that the brain is a main SH2B1 target. However, SH2B1 neurocircuits remain elusive. SH2B1-expressing neurons in the paraventricular hypothalamus (PVHSH2B1) and a PVHSH2B1→dorsal raphe nucleus (DRN) neurocircuit are identified here. PVHSH2B1 axons monosynaptically innervate DRN neurons. Optogenetic stimulation of PVHSH2B1 axonal fibers in the DRN suppresses food intake. Chronic inhibition of PVHSH2B1 neurons causes obesity. In male and female mice, either embryonic-onset or adult-onset deletion of Sh2b1 in PVH neurons causes energy imbalance, obesity, insulin resistance, glucose intolerance, and MASLD. Ablation of Sh2b1 in the DRN-projecting PVHSH2B1 subpopulation also causes energy imbalance, obesity, and metabolic disorders. Conversely, SH2B1 overexpression in either total or DRN-projecting PVHSH2B1 neurons protects against diet-induced obesity. SH2B1 binds to TrkB and enhances brain-derived neurotrophic factor (BDNF) signaling. Ablation of Sh2b1 in PVHSH2B1 neurons induces BDNF resistance in the PVH, contributing to obesity. In conclusion, these results unveil a previously unrecognized PVHSH2B1→DRN neurocircuit through which SH2B1 defends against obesity by enhancing BDNF/TrkB signaling.PMID:38885417 | DOI:10.1002/advs.202400437

MetaboReport: from metabolomics data analysis to comprehensive reporting

Mon, 17/06/2024 - 12:00
Bioinformatics. 2024 Jun 17:btae373. doi: 10.1093/bioinformatics/btae373. Online ahead of print.ABSTRACTMOTIVATION: Metabolomics, as an essential tool in systems biology, is now widely accessible to researchers of all levels. Yet challenges remain in data analysis and result interpretation. To address these challenges, we introduced MetaboReport, a versatile and interactive web app that simplifies metabolomics experiment design, data preprocessing, exploration, statistical analysis, visualization, and reporting.RESULTS: MetaboReport produces a comprehensive HTML report, including project details, an introduction, interactive plots and tables, statistical results and an in-depth explanations and interpretation of the results. MetaboReport is particularly tailored for research labs and metabolomics core facilities that provide metabolomics services, allowing them to efficiently manage and document different metabolomics projects, and effectively report the metabolomics results to users.AVAILABILITY: MetaboReport is freely accessible on https://metaboreport.com,with source code available on GitHub (https://github.com/YonghuiDong/MetReport). Alternatively, users can install MetaboReport as a standalone desktop app (https://metaboreport.sourceforge.io).SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.PMID:38885410 | DOI:10.1093/bioinformatics/btae373

Metabolomics of repetitive myocardial stunning in chronic multivessel coronary artery stenosis: Effect of non-selective and selective beta1-receptor blockers

Mon, 17/06/2024 - 12:00
J Physiol. 2024 Jun 17. doi: 10.1113/JP285720. Online ahead of print.ABSTRACTChronic coronary artery stenosis can lead to regional myocardial dysfunction in the absence of myocardial infarction by repetitive stunning, hibernation or both. The molecular mechanisms underlying repetitive stunning-associated myocardial dysfunction are not clear. We used non-targeted metabolomics to elucidate responses to chronically stunned myocardium in a canine model with and without β-adrenergic blockade treatment. After development of left ventricular systolic dysfunction induced by ameroid constrictors on the coronary arteries, animals were randomized to 3 months of placebo, metoprolol or carvedilol. We compared these two β-blockers with their different β-adrenergic selectivities on myocardial function, perfusion and metabolic pathways involved in tissue undergoing chronic stunning. Control animals underwent sham surgery. Dysfunction in stunned myocardium was associated with reduced fatty acid oxidation and enhanced ketogenic amino acid metabolism, together with alterations in mitochondrial membrane phospholipid composition. These changes were consistent with impaired mitochondrial function and were linked to reduced nitric oxide and peroxisome proliferator-activated receptor signalling, resulting in a decline in adenosine monophosphate-activated protein kinase. Mitochondrial changes were ameliorated by carvedilol more than metoprolol, and improvement was linked to nitric oxide and possibly hydrogen sulphide signalling. In summary, repetitive myocardial stunning commonly seen in chronic multivessel coronary artery disease is associated with adverse metabolic remodelling linked to mitochondrial dysfunction and specific signalling pathways. These changes are reversed by β-blockers, with the non-selective inhibitor having a more favourable impact. This is the first investigation to demonstrate that β-blockade-associated improvement of ventricular function in chronic myocardial stunning is associated with restoration of mitochondrial function. KEY POINTS: The mechanisms responsible for the metabolic changes associated with repetitive myocardial stunning seen in chronic multivessel coronary artery disease have not been fully investigated. In a canine model of repetitive myocardial stunning, we showed that carvedilol, a non-selective β-receptor blocker, ameliorated adverse metabolic remodelling compared to metoprolol, a selective β1-receptor blocker, by improving nitric oxide synthase and adenosine monophosphate protein kinase function, enhancing calcium/calmodulin-dependent protein kinase, probably increasing hydrogen sulphide, and suppressing cyclic-adenosine monophosphate signalling. Mitochondrial fatty acid oxidation alterations were ameliorated by carvedilol to a larger extent than metoprolol; this improvement was linked to nitric oxide and possibly hydrogen sulphide signalling. Both β-blockers improved the cardiac energy imbalance by reducing metabolites in ketogenic amino acid and nucleotide metabolism. These results elucidated why metabolic remodelling with carvedilol is preferable to metoprolol when treating chronic ischaemic left ventricular systolic dysfunction caused by repetitive myocardial stunning.PMID:38885335 | DOI:10.1113/JP285720

Technologies to Study Genetics and Molecular Pathways

Mon, 17/06/2024 - 12:00
Adv Exp Med Biol. 2024;1441:435-458. doi: 10.1007/978-3-031-44087-8_22.ABSTRACTOver the last few decades, the study of congenital heart disease (CHD) has benefited from various model systems and the development of molecular biological techniques enabling the analysis of single gene as well as global effects. In this chapter, we first describe different models including CHD patients and their families, animal models ranging from invertebrates to mammals, and various cell culture systems. Moreover, techniques to experimentally manipulate these models are discussed. Second, we introduce cardiac phenotyping technologies comprising the analysis of mouse and cell culture models, live imaging of cardiogenesis, and histological methods for fixed hearts. Finally, the most important and latest molecular biotechniques are described. These include genotyping technologies, different applications of next-generation sequencing, and the analysis of transcriptome, epigenome, proteome, and metabolome. In summary, the models and technologies presented in this chapter are essential to study the function and development of the heart and to understand the molecular pathways underlying CHD.PMID:38884724 | DOI:10.1007/978-3-031-44087-8_22

New diagnostic technologies in laboratory medicine: Potential benefits and challenges

Mon, 17/06/2024 - 12:00
Pol Arch Intern Med. 2024 Jun 10:16772. doi: 10.20452/pamw.16772. Online ahead of print.ABSTRACTLaboratory tests play a central role in medicine, as they help to make diagnoses, assess prognosis, risk of disease, and monitor therapies, thus contributing to 70% of all medical decisions. This cross-sectional function offers great potential for technological and organizational innovation to influence healthcare as a whole. In recent years, a variety of technologies have emerged and entered the field of medical research, or even medical care. A new generation of biosensors allows the determination of laboratory tests at the point-of-care and enables faster medical decisions. Recent devices allow for patient-centric blood sampling, which eliminates the need for painful blood draws, patient traveling, and the workload of healthcare professionals. Analytical techniques such as metabolomics, lipidomics or proteomics can identify biomarkers extremely sensitively, even down to individual cells. Pharmacogenomics allows the determination of genetic polymorphisms that predict the response to chemotherapeutic agents. Machine-learning approaches can handle large amounts of multi-layered data for diagnostic applications. However, this enormous diagnostic potential is far from being utilized and only very few applications have been implemented in clinical practice. Why is this the case? In this article, we describe the key technology fields, discuss their medical potential and obstacles to their implementation. In addition, we present a methodological framework to support researchers, clinicians and authorities in the development and implementation of novel diagnostic approaches.PMID:38884596 | DOI:10.20452/pamw.16772

Fecal metagenomic and metabolomic analyses reveal non-invasive biomarkers of Flavobacterium psychrophilum infection in ayu (Plecoglossus altivelis)

Mon, 17/06/2024 - 12:00
mSphere. 2024 Jun 17:e0030124. doi: 10.1128/msphere.00301-24. Online ahead of print.ABSTRACTWith the rapid growth of inland aquaculture worldwide, side effects such as the discharge of nutrients and antibiotics pose a threat to the global environments. A sustainable future for aquaculture requires an effective management system, including the early detection of disease through the monitoring of specific biomarkers in aquaculture tanks. To this end, we investigated whether fish feces in aquaculture tanks could be used for non-invasive health monitoring using ayu (Plecoglossus altivelis) infected with Flavobacterium psychrophilum, which causes bacterial cold-water disease worldwide. Feces that were subsequently produced in the tanks were used for metagenomic and metabolomic analyses. The relative abundances of the genera Cypionkella (0.6% ± 1.0%, 0.1% ± 0.2%), Klebsiella (11.2% ± 10.0%, 6.2% ± 5.9%), and F. psychrophilum (0.5% ± 1.0%, 0.0% ± 0.0%) were significantly higher in the feces of the infection challenge test tanks than in those of the control tanks. The abundances of cortisol, glucose, and acetate in the feces of the infection challenge test tanks were 2.4, 2.4, and 1.3 times higher, respectively, than those of the control tanks. Metagenome analysis suggested that acetate was produced by microbes such as Cypionkella. The abundances of indicated microbes or metabolites increased after day 4 of infection at the earliest, and were thus considered possible biomarkers. Our results suggest that feces produced in aquaculture tanks can potentially be used for non-invasive and holistic monitoring of fish diseases in aquaculture systems.IMPORTANCE: The aquaculture industry is rapidly growing, yet sustainability remains a challenge. One crucial task is to reduce losses due to diseases. Monitoring fish health and detecting diseases early are key to establishing sustainable aquaculture. Using metagenomic and metabolomic analyses, we found that feces of ayu infected with Flavobacterium psychrophilum contain various specific biomarkers that increased 4 days post-challenge, at the earliest. Our findings are the first step in establishing a novel, non-invasive, and holistic monitoring method for fish diseases in aquaculture systems, especially in ayu, which is an important freshwater fish species in Asia, promoting a sustainable future.PMID:38884486 | DOI:10.1128/msphere.00301-24

Exogenous NADH promotes the bactericidal effect of aminoglycoside antibiotics against <em>Edwardsiella tarda</em>

Mon, 17/06/2024 - 12:00
Virulence. 2024 Dec;15(1):2367647. doi: 10.1080/21505594.2024.2367647. Epub 2024 Jun 17.ABSTRACTThe global surge in multidrug-resistant bacteria owing to antibiotic misuse and overuse poses considerable risks to human and animal health. With existing antibiotics losing their effectiveness and the protracted process of developing new antibiotics, urgent alternatives are imperative to curb disease spread. Notably, improving the bactericidal effect of antibiotics by using non-antibiotic substances has emerged as a viable strategy. Although reduced nicotinamide adenine dinucleotide (NADH) may play a crucial role in regulating bacterial resistance, studies examining how the change of metabolic profile and bacterial resistance following by exogenous administration are scarce. Therefore, this study aimed to elucidate the metabolic changes that occur in Edwardsiella tarda (E. tarda), which exhibits resistance to various antibiotics, following the exogenous addition of NADH using metabolomics. The effects of these alterations on the bactericidal activity of neomycin were investigated. NADH enhanced the effectiveness of aminoglycoside antibiotics against E. tarda ATCC15947, achieving bacterial eradication at low doses. Metabolomic analysis revealed that NADH reprogrammed the ATCC15947 metabolic profile by promoting purine metabolism and energy metabolism, yielding increased adenosine triphosphate (ATP) levels. Increased ATP levels played a crucial role in enhancing the bactericidal effects of neomycin. Moreover, exogenous NADH promoted the bactericidal efficacy of tetracyclines and chloramphenicols. NADH in combination with neomycin was effective against other clinically resistant bacteria, including Aeromonas hydrophila, Vibrio parahaemolyticus, methicillin-resistant Staphylococcus aureus, and Listeria monocytogenes. These results may facilitate the development of effective approaches for preventing and managing E. tarda-induced infections and multidrug resistance in aquaculture and clinical settings.PMID:38884466 | DOI:10.1080/21505594.2024.2367647

Mechanisms and quality variations of non-volatile and volatile metabolites in black tea from various ages of tea trees: Insights from metabolomics analysis

Mon, 17/06/2024 - 12:00
Food Chem X. 2024 May 20;22:101470. doi: 10.1016/j.fochx.2024.101470. eCollection 2024 Jun 30.ABSTRACTThe sensory quality of black tea (BT) influenced by various factors, among which tree age is particularly significant. People prefer BT produced by fresh leaves from old tea trees, yet the correlation between tree age and tea quality has not been thoroughly investigated. In this study, we analyzed the quality of BT from young trees (H-JYH) and old trees (H-OJYH) using e-tongue technology and sensory evaluation. Our findings revealed that H-OJYH had stronger sweetness and sourness, richer flavor, and diminished bitter-astringency compared to H-JYH. 1231 non-volatile metabolites and 504 volatile metabolites were discovered by ultra-performance liquid chromatography (UPLC) and gas chromatography-mass spectrometry (GC-MS). L-tartaric acid and trans-citridic acid were found to contribute to increase acidity, and 7,8-dihydroxy-6-methoxycoumarin and d-fructose 6-phosphate were associated with enhanced sweetness in H-OJYH. Additionally, lower levels of octyl gallate and vanillic acid in H-OJYH contributed to the diminished bitter-astringency. β-ionone, 2-phenylethanol and phenylacetaldehyde merged as characteristic compounds of older tree BT with stronger floral and sweet aroma. Our study serves as a guideline to explore the relationship between tree age and tea quality.PMID:38883921 | PMC:PMC11176668 | DOI:10.1016/j.fochx.2024.101470

Consistent Multi-Omic Relationships Uncover Molecular Basis of Pediatric Asthma IgE Regulation

Mon, 17/06/2024 - 12:00
medRxiv [Preprint]. 2024 Jun 6:2024.06.05.24308502. doi: 10.1101/2024.06.05.24308502.ABSTRACTSerum total immunoglobulin E levels (total IgE) capture the state of the immune system in relation to allergic sensitization. High levels are associated with airway obstruction and poor clinical outcomes in pediatric asthma. Inconsistent patient response to anti-IgE therapies motivates discovery of molecular mechanisms underlying serum IgE level differences in children with asthma. To uncover these mechanisms using complementary metabolomic and transcriptomic data, abundance levels of 529 named metabolites and expression levels of 22,772 genes were measured among children with asthma in the Childhood Asthma Management Program (CAMP, N=564) and the Genetic Epidemiology of Asthma in Costa Rica Study (GACRS, N=309) via the TOPMed initiative. Gene-metabolite associations dependent on IgE were identified within each cohort using multivariate linear models and were interpreted in a biochemical context using network topology, pathway and chemical enrichment, and representation within reactions. A total of 1,617 total IgE-dependent gene-metabolite associations from GACRS and 29,885 from CAMP met significance cutoffs. Of these, glycine and guanidinoacetic acid (GAA) were associated with the most genes in both cohorts, and the associations represented reactions central to glycine, serine, and threonine metabolism and arginine and proline metabolism. Pathway and chemical enrichment analysis further highlighted additional related pathways of interest. The results of this study suggest that GAA may modulate total IgE levels in two independent pediatric asthma cohorts with different characteristics, supporting the use of L-Arginine as a potential therapeutic for asthma exacerbation. Other potentially new targetable pathways are also uncovered.PMID:38883716 | PMC:PMC11178010 | DOI:10.1101/2024.06.05.24308502

Exploratory metabolomic analysis for characterizing the metabolic profile of the urinary bladder under estrogen deprivation

Mon, 17/06/2024 - 12:00
Front Endocrinol (Lausanne). 2024 May 31;15:1384115. doi: 10.3389/fendo.2024.1384115. eCollection 2024.ABSTRACTBACKGROUND: Estrogen homeostasis is crucial for bladder function, and estrogen deprivation resulting from menopause, ovariectomy or ovarian dysfunction may lead to various bladder dysfunctions. However, the specific mechanisms are not fully understood.METHODS: We simulated estrogen deprivation using a rat ovariectomy model and supplemented estrogen through subcutaneous injections. The metabolic characteristics of bladder tissue were analyzed using non-targeted metabolomics, followed by bioinformatics analysis to preliminarily reveal the association between estrogen deprivation and bladder function.RESULTS: We successfully established a rat model with estrogen deprivation and, through multivariate analysis and validation, identified several promising biomarkers represented by 3, 5-tetradecadiencarnitine, lysoPC (15:0), and cortisol. Furthermore, we explored estrogen deprivation-related metabolic changes in the bladder primarily characterized by amino acid metabolism imbalance.CONCLUSION: This study, for the first time, depicts the metabolic landscape of bladder resulting from estrogen deprivation, providing an important experimental basis for future research on bladder dysfunctions caused by menopause.PMID:38883607 | PMC:PMC11176512 | DOI:10.3389/fendo.2024.1384115

Multisensory Fusion Training and 7, 8-Dihydroxyflavone Improve Amyloid-β-Induced Cognitive Impairment, Anxiety, and Depression-Like Behavior in Mice Through Multiple Mechanisms

Mon, 17/06/2024 - 12:00
Neuropsychiatr Dis Treat. 2024 Jun 12;20:1247-1270. doi: 10.2147/NDT.S459891. eCollection 2024.ABSTRACTBACKGROUND: There is growing interest in the role of physical activity in patients with of Alzheimer's disease (AD), particularly regarding its impact of cognitive function, gut microbiota, metabolites, and neurotrophic factors.OBJECTIVE: To investigate the impact of multisensory fusion training (MSFT) combined with 7, 8-dihydroxyflavone (DHF) on the behavioral characteristics, protein expression, microbiome, and serum metabolome using the AD model in mice induced with amyloid-β (Aβ).METHODS: We assessed cognitive ability, anxiety-like and depression-like behaviors in Aβ mice using behavioral measures. Western blotting was employed to detect the expression of relevant proteins. The 16S rRNA gene sequencing and metabolomics were used to analyze changes in the intestinal microbial composition and serum metabolic profile, respectively, of Aβ mice.RESULTS: The behavioral outcomes indicated that a 4-week intervention combining DHF and MSFT yielded remarkable improvements in cognitive function and reduced anxiety and depression-like behaviors in Aβ mice. In the hippocampus of Aβ mice, the combined intervention increased the levels of BDNF, VGF, PSD-95, Nrf2, p-GSK3β and p-CREB proteins. Analyses of sequence and metabolomic data revealed that Bacteroides and Ruminococcaceae were remarkably more abundant following the combined intervention, influencing the expression of specific metabolites directly linked to the maintenance of neuronal and neurobehavioral functions. These metabolites play a crucial role in vital processes, such as amino acid metabolism, lipid metabolism, and neurotransmitter metabolism in mice.CONCLUSION: Our study highlighted that MSFT combined with DHF improves cognitive impairment, anxiety, and depression-like behavior in Aβ mice through multiple mechanisms, and further validated the correlation between the gut microbiome and serum metabolome. These findings open up a promising avenue for future investigations into potential treatment strategies for AD.PMID:38883414 | PMC:PMC11180438 | DOI:10.2147/NDT.S459891

Genomic, transcriptomic, and metabolomic analyses provide insights into the evolution and development of a medicinal plant Saposhnikovia divaricata (Apiaceae)

Mon, 17/06/2024 - 12:00
Hortic Res. 2024 Apr 9;11(6):uhae105. doi: 10.1093/hr/uhae105. eCollection 2024 Jun.ABSTRACTSaposhnikovia divaricata, 2n = 2x = 16, as a perennial species, is widely distributed in China, Mongolia, Russia, etc. It is a traditional Chinese herb used to treat tetanus, rubella pruritus, rheumatic arthralgia, and other diseases. Here, we assembled a 2.07 Gb and N50 scaffold length of 227.67 Mb high-quality chromosome-level genome of S. divaricata based on the PacBio Sequel II sequencing platform. The total number of genes identified was 42 948, and 42 456 of them were functionally annotated. A total of 85.07% of the genome was composed of repeat sequences, comprised mainly of long terminal repeats (LTRs) which represented 73.7% of the genome sequence. The genome size may have been affected by a recent whole-genome duplication event. Transcriptional and metabolic analyses revealed bolting and non-bolting S. divaricata differed in flavonoids, plant hormones, and some pharmacologically active components. The analysis of its genome, transcriptome, and metabolome helped to provide insights into the evolution of bolting and non-bolting phenotypes in wild and cultivated S. divaricata and lays the basis for genetic improvement of the species.PMID:38883332 | PMC:PMC11179723 | DOI:10.1093/hr/uhae105

Metabolomics analysis of the effects of chelerythrine on Ustilaginoidea virens

Mon, 17/06/2024 - 12:00
J Pestic Sci. 2024 May 20;49(2):104-113. doi: 10.1584/jpestics.D23-065.ABSTRACTRice false smut (RFS) caused by Ustilaginoidea virens is widely distributed in major rice-producing regions. Previous studies have shown that treating RFS with chelerythrine can decrease the germination of fungus spores by 86.7% and induce fungal cell apoptosis. In the present study, the effects of chelerythrine on the metabolism of U. virens explored using metabolomics and analyses of differentially accumulated metabolites and altered metabolic pathways. The top 15 metabolites in random forest analysis were significantly different between groups. In positive ion mode, purine, phenylalanine metabolism, phenylalanine, tyrosine, tryptophan biosynthesis, pyrimidine metabolism, and nitrogen metabolism were dominant. Alanine, aspartate, glutamate metabolism, and phenylalanine metabolism were enriched in negative ion mode. Differentially expressed genes and altered metabolic pathways of U. virens were effected by chelerythrine. The findings support future research on the prevention and treatment of RFS by chelerythrine and provide a theoretical basis for targeted drug delivery.PMID:38882710 | PMC:PMC11176050 | DOI:10.1584/jpestics.D23-065

Dimesulfazet, a novel rice paddy herbicide, is an inhibitor of very long-chain fatty acid biosynthesis

Mon, 17/06/2024 - 12:00
J Pestic Sci. 2024 May 20;49(2):77-86. doi: 10.1584/jpestics.D23-036.ABSTRACTDimesulfazet can control annual and perennial sedges in rice paddies. Here we assessed its mode of action. We performed a phenotype assay of Arabidopsis, conducted a metabolomic analysis of Echinochloa crus-galli, and analyzed the endogenous concentration of very long-chain fatty acids (VLCFAs) in Schoenoplectiella juncoides. Dimesulfazet treatment caused curling and greening symptoms in the leaves and fiddlehead-like symptoms in the inflorescences of Arabidopsis. These symptoms were visually indistinguishable from those caused by flufenacet and benfuresate, which belong to Herbicide Resistance Action Committee (HRAC) Group 15. We performed GC-MS/MS analysis of primary metabolites and LC-MS analysis of lipids in the herbicide-treated E. crus-galli, followed by Orthogonal Partial Least Squares Discriminant Analysis clustering. The results showed that dimesulfazet belongs to the HRAC Group 15 cluster. The endogenous concentrations of C24:0, C26:0, and C28:0 decreased in dimesulfazet-treated plants as compared to those in the control. Overall, the mode of action of dimesulfazet involves the inhibition of VLCFA biosynthesis.PMID:38882707 | PMC:PMC11176045 | DOI:10.1584/jpestics.D23-036

Metabolome-wide association identifies altered metabolites and metabolic pathways in the serum of patients with cholangiocarcinoma

Mon, 17/06/2024 - 12:00
JHEP Rep. 2024 Mar 18;6(6):101068. doi: 10.1016/j.jhepr.2024.101068. eCollection 2024 Jun.ABSTRACTBACKGROUND & AIMS: Metabolomic and lipidomic analyses provide an opportunity for novel biological insights. Cholangiocarcinoma (CCA) remains a highly lethal cancer with limited response to systemic, targeted, and immunotherapeutic approaches. Using a global metabolomics and lipidomics platform, this study aimed to discover and characterize metabolomic variations and associated pathway derangements in patients with CCA.METHODS: Leveraging a biospecimen collection, including samples from patients with digestive diseases and normal controls, global serum metabolomic and lipidomic profiling was performed on 213 patients with CCA and 98 healthy controls. The CCA cohort of patients included representation of intrahepatic, perihilar, and distal CCA tumours. Metabolome-wide association studies utilizing multivariable linear regression were used to perform case-control comparisons, followed by pathway enrichment analysis, CCA subtype analysis, and disease stage analysis. The impact of biliary obstruction was evaluated by repeating analyses in subsets of patients only with normal bilirubin levels.RESULTS: Of the 420 metabolites that discriminated patients with CCA from controls, decreased abundance of cysteine-glutathione disulfide was most closely associated with CCA. Additional conjugated bile acid species were found in increased abundance even in the absence of clinically relevant biliary obstruction denoted by elevated serum bilirubin levels. Pathway enrichment analysis also revealed alterations in caffeine metabolism and mitochondrial redox-associated pathways in the serum of patients with CCA.CONCLUSIONS: The presented metabolomic and lipidomic profiling demonstrated multiple alterations in the serum of patients with CCA. These exploratory data highlight novel metabolic pathways in CCA and support future work in therapeutic targeting of these pathways and the development of a precision biomarker panel for diagnosis.IMPACT AND IMPLICATIONS: Cholangiocarcinoma (CCA) is a highly lethal hepatobiliary cancer with limited treatment response, highlighting the need for a better understanding of the disease biology. Using a global metabolomics and lipidomics platform, we characterized distinct changes in the serum of 213 patients with CCA compared with healthy controls. The results of this study elucidate novel metabolic pathways in CCA. These findings benefit stakeholders in both the clinical and research realms by providing a foundation for improved disease diagnostics and identifying novel targets for therapeutic design.PMID:38882601 | PMC:PMC11179355 | DOI:10.1016/j.jhepr.2024.101068

Mass spectrometry imaging of <em>Arabidopsis thaliana</em> with <em>in vivo</em> D<sub>2</sub>O labeling

Mon, 17/06/2024 - 12:00
Front Plant Sci. 2024 May 31;15:1379299. doi: 10.3389/fpls.2024.1379299. eCollection 2024.ABSTRACTThe commonly used analytical tools for metabolomics cannot directly probe metabolic activities or distinguish metabolite differences between cells and suborgans in multicellular organisms. These issues can be addressed by in-vivo isotope labeling and mass spectrometry imaging (MSI), respectively, but the combination of the two, a newly emerging technology we call MSIi, has been rarely applied to plant systems. In this study, we explored MSIi of Arabidopsis thaliana with D2O labeling to study and visualize D-labeling in three classes of lipids: arabidopsides, chloroplast lipids, and epicuticular wax. Similar to other stress responses, D2O-induced stress increased arabidopsides in an hour, but it was relatively minor for matured plants and reverted to the normal level in a few hours. The D-labeling isotopologue patterns of arabidopsides matched with those of galactolipid precursors, supporting the currently accepted biosynthesis mechanism. Matrix-assisted laser desorption/ionization (MALDI)-MSI was used to visualize the spatiotemporal distribution of deuterated chloroplast lipids, pheophytin a, MGDGs, and DGDGs, after growing day-after-sowing (DAS) 28 plants in D2O condition for 3-12 days. There was a gradual change of deuteration amount along the leaf tissues and with a longer labeling time, which was attributed to slow respiration leading to low D2O concentration in the tissues. Finally, deuterium incorporation in epicuticular wax was visualized on the surfaces of the stem and flower. The conversion efficiency of newly synthesized C30 aldehyde to C29 ketone was very low in the lower stem but very high at the top of the stem near the flower or on the flower carpel. This study successfully demonstrated that MSIi can unveil spatiotemporal metabolic activities in various tissues of A. thaliana.PMID:38882571 | PMC:PMC11176549 | DOI:10.3389/fpls.2024.1379299

Changes in seminal plasma microecological dynamics and the mechanistic impact of core metabolite hexadecanamide in asthenozoospermia patients

Mon, 17/06/2024 - 12:00
Imeta. 2024 Jan 25;3(2):e166. doi: 10.1002/imt2.166. eCollection 2024 Apr.ABSTRACTAsthenozoospermia (AZS) is a prevalent contributor to male infertility, characterized by a substantial decline in sperm motility. In recent years, large-scale studies have explored the interplay between the male reproductive system's microecology and its implications for reproductive health. Nevertheless, the direct association between seminal microecology and male infertility pathogenesis remains inconclusive. This study used 16S rDNA sequencing and multi-omics analysis to conduct a comprehensive investigation of the seminal microbial community and metabolites in AZS patients. Patients were categorized into four distinct groups: Normal, mild AZS (AZS-I), moderate AZS (AZS-II), and severe AZS (AZS-III). Microbiome differential abundance analysis revealed significant differences in microbial composition and metabolite profiles within the seminal plasma of these groups. Subsequently, patients were classified into a control group (Normal and AZS-I) and an AZS group (AZS-II and AZS-III). Correlation and cross-reference analyses identified distinct microbial genera and metabolites. Notably, the AZS group exhibited a reduced abundance of bacterial genera such as Pseudomonas, Serratia, and Methylobacterium-Methylorubrum in seminal plasma, positively correlating with core differential metabolite (hexadecanamide). Conversely, the AZS group displayed an increased abundance of bacterial genera such as Uruburuella, Vibrio, and Pseudoalteromonas, with a negative correlation with core differential metabolite (hexadecanamide). In vitro and in vivo experiments validated that hexadecanamide significantly enhanced sperm motility. Using predictive metabolite-targeting gene analysis and single-cell transcriptome sequencing, we profiled the gene expression of candidate target genes PAOX and CA2. Protein immunoblotting techniques validated the upregulation protein levels of PAOX and CA2 in sperm samples after hexadecanamide treatment, enhancing sperm motility. In conclusion, this study uncovered a significant correlation between six microbial genera in seminal plasma and the content of the metabolite hexadecanamide, which is related to AZS. Hexadecanamide notably enhances sperm motility, suggesting its potential integration into clinical strategies for managing AZS, providing a foundational framework for diagnostic and therapeutic advancements.PMID:38882497 | PMC:PMC11170967 | DOI:10.1002/imt2.166

Photoaffinity probe-based antimalarial target identification of artemisinin in the intraerythrocytic developmental cycle of <em>Plasmodium falciparum</em>

Mon, 17/06/2024 - 12:00
Imeta. 2024 Feb 19;3(2):e176. doi: 10.1002/imt2.176. eCollection 2024 Apr.ABSTRACTMalaria continues to pose a serious global health threat, and artemisinin remains the core drug for global malaria control. However, the situation of malaria resistance has become increasingly severe due to the emergence and spread of artemisinin resistance. In recent years, significant progress has been made in understanding the mechanism of action (MoA) of artemisinin. Prior research on the MoA of artemisinin mainly focused on covalently bound targets that are alkylated by artemisinin-free radicals. However, less attention has been given to the reversible noncovalent binding targets, and there is a paucity of information regarding artemisinin targets at different life cycle stages of the parasite. In this study, we identified the protein targets of artemisinin at different stages of the parasite's intraerythrocytic developmental cycle using a photoaffinity probe. Our findings demonstrate that artemisinin interacts with parasite proteins in vivo through both covalent and noncovalent modes. Extensive mechanistic studies were then conducted by integrating target validation, phenotypic studies, and untargeted metabolomics. The results suggest that protein synthesis, glycolysis, and oxidative homeostasis are critically involved in the antimalarial activities of artemisinin. In summary, this study provides fresh insights into the mechanisms underlying artemisinin's antimalarial effects and its protein targets.PMID:38882489 | PMC:PMC11170969 | DOI:10.1002/imt2.176

Pages