PubMed
Investigating the Effectiveness of a Carb-Free Oloproteic Diet in Fibromyalgia Treatment
Nutrients. 2024 May 25;16(11):1620. doi: 10.3390/nu16111620.ABSTRACTFibromyalgia (FM), a chronic disease with a high incidence in women, poses a significant challenge for diagnosis and treatment, especially due to the absence of specific biomarkers and the multifaceted nature of its symptoms, which range from neuromuscular pain to mood disorders and intestinal dysbiosis. While diagnosis currently relies on rheumatological clinical evaluations and treatment options mainly focus on symptom management, FM seems to have possible links with systemic metabolic dysfunctions with a common inflammatory root. In this context, a new therapeutic avenue emerges: could a therapeutic nutritional approach be the missing piece of the puzzle? Indeed, diet therapies employed particularly for metabolic syndromes proved recently to be efficacious for correcting systemic dysmetabolism and a high number of chronic inflammation conditions. In particular, the very-low-calorie ketogenic diet (VLCKD) demonstrated therapeutic benefits in many disorders. In the present study, we aimed to investigate the specific effects of two dietary interventions, namely the oloproteic VLCKD and the low-glycemic insulinemic (LOGI) diet, on two groups of female FM patients (FM1 and FM2) over a 45-day period. Utilizing clinical and laboratory tests, as well as non-invasive NMR metabolomic analysis of serum, urine, and saliva samples, we sought to uncover how these dietary regimens impact the metabolic dysfunctions associated with FM.PMID:38892552 | DOI:10.3390/nu16111620
Distinct Gut Microbiota and Arachidonic Acid Metabolism in Obesity-Prone and Obesity-Resistant Mice with a High-Fat Diet
Nutrients. 2024 May 23;16(11):1579. doi: 10.3390/nu16111579.ABSTRACTAn imbalance of energy intake and expenditure is commonly considered as the fundamental cause of obesity. However, individual variations in susceptibility to obesity do indeed exist in both humans and animals, even among those with the same living environments and dietary intakes. To further explore the potential influencing factors of these individual variations, male C57BL/6J mice were used for the development of obesity-prone and obesity-resistant mice models and were fed high-fat diets for 16 weeks. Compared to the obesity-prone mice, the obesity-resistant group showed a lower body weight, liver weight, adipose accumulation and pro-inflammatory cytokine levels. 16S rRNA sequencing, which was conducted for fecal microbiota analysis, found that the fecal microbiome's structural composition and biodiversity had changed in the two groups. The genera Allobaculumbiota, SMB53, Desulfovibrio and Clostridium increased in the obesity-prone mice, and the genera Streptococcus, Odoribacter and Leuconostoc were enriched in the obesity-resistant mice. Using widely targeted metabolomics analysis, 166 differential metabolites were found, especially those products involved in arachidonic acid (AA) metabolism, which were significantly reduced in the obesity-resistant mice. Moreover, KEGG pathway analysis exhibited that AA metabolism was the most enriched pathway. Significantly altered bacteria and obesity-related parameters, as well as AA metabolites, exhibited strong correlations. Overall, the phenotypes of the obesity-prone and obesity-resistant mice were linked to gut microbiota and AA metabolism, providing new insight for developing an in-depth understanding of the driving force of obesity resistance and a scientific reference for the targeted prevention and treatment of obesity.PMID:38892512 | DOI:10.3390/nu16111579
Co-Supplementation of Baobab Fiber and Arabic Gum Synergistically Modulates the In Vitro Human Gut Microbiome Revealing Complementary and Promising Prebiotic Properties
Nutrients. 2024 May 22;16(11):1570. doi: 10.3390/nu16111570.ABSTRACTArabic gum, a high molecular weight heteropolysaccharide, is a promising prebiotic candidate as its fermentation occurs more distally in the colon, which is the region where most chronic colonic diseases originate. Baobab fiber could be complementary due to its relatively simple structure, facilitating breakdown in the proximal colon. Therefore, the current study aimed to gain insight into how the human gut microbiota was affected in response to long-term baobab fiber and Arabic gum supplementation when tested individually or as a combination of both, allowing the identification of potential complementary and/or synergetic effects. The validated Simulator of the Human Intestinal Microbial Ecosystem (SHIME®), an in vitro gut model simulating the entire human gastrointestinal tract, was used. The microbial metabolic activity was examined, and quantitative 16S-targeted Illumina sequencing was used to monitor the gut microbial composition. Moreover, the effect on the gut microbial metabolome was quantitatively analyzed. Repeated administration of baobab fiber, Arabic gum, and their combination had a significant effect on the metabolic activity, diversity index, and community composition of the microbiome present in the simulated proximal and distal colon with specific impacts on Bifidobacteriaceae and Faecalibacterium prausnitzii. Despite the lower dosage strategy (2.5 g/day), co-supplementation of both compounds resulted in some specific synergistic prebiotic effects, including a biological activity throughout the entire colon, SCFA synthesis including a synergy on propionate, specifically increasing abundance of Akkermansiaceae and Christensenellaceae in the distal colon region, and enhancing levels of spermidine and other metabolites of interest (such as serotonin and ProBetaine).PMID:38892504 | DOI:10.3390/nu16111570
Exploring the Structure and Substance Metabolism of a <em>Medicago sativa</em> L. Stem Base
Int J Mol Sci. 2024 Jun 5;25(11):6225. doi: 10.3390/ijms25116225.ABSTRACTThe stem base of alfalfa is a critical part for its overwintering, regeneration, and yield. To better understand the specificity and importance of the stem base, we analyzed the structure, metabolic substances, and transcriptome of the stem base using anatomical techniques, ultra-high performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS), and RNA sequencing (RNA-seq), and compared it with stems and roots. The anatomical structure shows that the ratio of xylem to phloem changes at the base of the stem. A total of 801 compounds involved in 91 metabolic pathways were identified from the broadly targeted metabolome. Transcriptome analysis revealed 4974 differentially expressed genes (DEGs) at the stem base compared to the stem, and 5503 DEGs compared to the root. Comprehensive analyses of differentially accumulated compounds (DACs) and DEGs, in the stem base vs. stem, identified 10 valuable pathways, including plant hormone signal transduction, zeatin biosynthesis, α-Linolenic acid metabolism, histidine metabolism, carbon metabolism, carbon fixation in photosynthetic organisms, pentose phosphate pathway, galactose metabolism, and fructose and mannose metabolism. The pathways of plant hormone signal transduction and carbon metabolism were also identified by comparing the stem base with the roots. Taken together, the stem base of alfalfa is the transition region between the stem and root in morphology; in terms of material metabolism, its growth, development, and function are regulated through hormones and sugars.PMID:38892413 | DOI:10.3390/ijms25116225
Endogenous Hormone Levels and Transcriptomic Analysis Reveal the Mechanisms of Bulbil Initiation in <em>Pinellia ternata</em>
Int J Mol Sci. 2024 Jun 3;25(11):6149. doi: 10.3390/ijms25116149.ABSTRACTPinellia ternata is a medicinal plant that has important pharmacological value, and the bulbils serve as the primary reproductive organ; however, the mechanisms underlying bulbil initiation remain unclear. Here, we characterized bulbil development via histological, transcriptomic, and targeted metabolomic analyses to unearth the intricate relationship between hormones, genes, and bulbil development. The results show that the bulbils initiate growth from the leaf axillary meristem (AM). In this stage, jasmonic acid (JA), abscisic acid (ABA), isopentenyl adenosine (IPA), and salicylic acid (SA) were highly enriched, while indole-3-acetic acid (IAA), zeatin, methyl jasmonate (MeJA), and 5-dexoxystrigol (5-DS) were notably decreased. Through OPLS-DA analysis, SA has emerged as the most crucial factor in initiating and positively regulating bulbil formation. Furthermore, a strong association between IPA and SA was observed during bulbil initiation. The transcriptional changes in IPT (Isopentenyltransferase), CRE1 (Cytokinin Response 1), A-ARR (Type-A Arabidopsis Response Regulator), B-ARR (Type-B Arabidopsis Response Regulator), AUX1 (Auxin Resistant 1), ARF (Auxin Response Factor), AUX/IAA (Auxin/Indole-3-acetic acid), GH3 (Gretchen Hagen 3), SAUR (Small Auxin Up RNA), GA2ox (Gibberellin 2-oxidase), GA20ox (Gibberellin 20-oxidase), AOS (Allene oxide synthase), AOC (Allene oxide cyclase), OPR (Oxophytodienoate Reductase), JMT (JA carboxy l Methyltransferase), COI1 (Coronatine Insensitive 1), JAZ (Jasmonate ZIM-domain), MYC2 (Myelocytomatosis 2), D27 (DWARF27), SMAX (Suppressor of MAX2), PAL (Phenylalanine Ammonia-Lyase), ICS (Isochorismate Synthase), NPR1 (Non-expressor of Pathogenesis-related Genes1), TGA (TGACG Sequence-specific Binding), PR-1 (Pathogenesis-related), MCSU (Molybdenium Cofactor Sulfurase), PP2C (Protein Phosphatase 2C), and SnRK (Sucrose Non-fermenting-related Protein Kinase 2) were highly correlated with hormone concentrations, indicating that bulbil initiation is coordinately controlled by multiple phytohormones. Notably, eight TFs (transcription factors) that regulate AM initiation have been identified as pivotal regulators of bulbil formation. Among these, WUS (WUSCHEL), CLV (CLAVATA), ATH1 (Arabidopsis Thaliana Homeobox Gene 1), and RAX (Regulator of Axillary meristems) have been observed to exhibit elevated expression levels. Conversely, LEAFY demonstrated contrasting expression patterns. The intricate expression profiles of these TFs are closely associated with the upregulated expression of KNOX(KNOTTED-like homeobox), suggesting a intricate regulatory network underlying the complex process of bulbil initiation. This study offers a profound understanding of the bulbil initiation process and could potentially aid in refining molecular breeding techniques specific to P. ternata.PMID:38892337 | DOI:10.3390/ijms25116149
Integrative Metabolomics, Enzymatic Activity, and Gene Expression Analysis Provide Insights into the Metabolic Profile Differences between the Slow-Twitch Muscle and Fast-Twitch Muscle of Pseudocaranx dentex
Int J Mol Sci. 2024 Jun 1;25(11):6131. doi: 10.3390/ijms25116131.ABSTRACTThe skeletal muscles of teleost fish encompass heterogeneous muscle types, termed slow-twitch muscle (SM) and fast-twitch muscle (FM), characterized by distinct morphological, anatomical, histological, biochemical, and physiological attributes, driving different swimming behaviors. Despite the central role of metabolism in regulating skeletal muscle types and functions, comprehensive metabolomics investigations focusing on the metabolic differences between these muscle types are lacking. To reveal the differences in metabolic characteristics between the SM and FM of teleost, we conducted an untargeted metabolomics analysis using Pseudocaranx dentex as a representative model and identified 411 differential metabolites (DFMs), of which 345 exhibited higher contents in SM and 66 in FM. KEGG enrichment analysis showed that these DFMs were enriched in the metabolic processes of lipids, amino acids, carbohydrates, purines, and vitamins, suggesting that there were significant differences between the SM and FM in multiple metabolic pathways, especially in the metabolism of energy substances. Furthermore, an integrative analysis of metabolite contents, enzymatic activity assays, and gene expression levels involved in ATP-PCr phosphate, anaerobic glycolysis, and aerobic oxidative energy systems was performed to explore the potential regulatory mechanisms of energy metabolism differences. The results unveiled a set of differential metabolites, enzymes, and genes between the SM and FM, providing compelling molecular evidence of the FM achieving a higher anaerobic energy supply capacity through the ATP-PCr phosphate and glycolysis energy systems, while the SM obtains greater energy supply capacity via aerobic oxidation. These findings significantly advance our understanding of the metabolic profiles and related regulatory mechanisms of skeletal muscles, thereby expanding the knowledge of metabolic physiology and ecological adaptation in teleost fish.PMID:38892319 | DOI:10.3390/ijms25116131
Genome-Wide Transcriptomic and Metabolomic Analyses Unveiling the Defence Mechanisms of Populus tremula against Sucking and Chewing Insect Herbivores
Int J Mol Sci. 2024 Jun 1;25(11):6124. doi: 10.3390/ijms25116124.ABSTRACTPlants and insects coevolved as an evolutionarily successful and enduring association. The molecular arms race led to evolutionary novelties regarding unique mechanisms of defence and detoxification in plants and insects. While insects adopt mechanisms to conquer host defence, trees develop well-orchestrated and species-specific defence strategies against insect herbivory. However, current knowledge on the molecular underpinnings of fine-tuned tree defence responses against different herbivore insects is still restricted. In the current study, using a multi-omics approach, we unveiled the defence response of Populus tremula against aphids (Chaitophorus populialbae) and spongy moths (Lymantria dispar) herbivory. Comparative differential gene expression (DGE) analyses revealed that around 272 and 1203 transcripts were differentially regulated in P. tremula after moth and aphid herbivory compared to uninfested controls. Interestingly, 5716 transcripts were differentially regulated in P. tremula between aphids and moth infestation. Further investigation showed that defence-related stress hormones and their lipid precursors, transcription factors, and signalling molecules were over-expressed, whereas the growth-related counterparts were suppressed in P. tremula after aphid and moth herbivory. Metabolomics analysis documented that around 37% of all significantly abundant metabolites were associated with biochemical pathways related to tree growth and defence. However, the metabolic profiles of aphid and moth-fed trees were quite distinct, indicating species-specific response optimization. After identifying the suitable reference genes in P. tremula, the omics data were further validated using RT-qPCR. Nevertheless, our findings documented species-specific fine-tuning of the defence response of P. tremula, showing conservation on resource allocation for defence overgrowth under aphid and moth herbivory. Such findings can be exploited to enhance our current understanding of molecular orchestration of tree responses against herbivory and aid in developing insect pest resistance P. tremula varieties.PMID:38892311 | DOI:10.3390/ijms25116124
Untargeted Metabolome Analyses Revealed Potential Metabolic Mechanisms of Leymus chinensis in Response to Simulated Animal Feeding
Int J Mol Sci. 2024 Jun 1;25(11):6110. doi: 10.3390/ijms25116110.ABSTRACTLeymus chinensis (Trin.) Tzvel., also known as the "Alkali Grass", is a major forage grass in the eastern and northeastern steppe vegetation in the Songnen Prairie. It is of great practical significance for grassland management to understand the influence of animal saliva on L. chinensis during animal feeding. In this study, we used clipping and daubing animal saliva to simulate responses to grazing by L. chinensis, and analyzed the physiological and metabolomic changes in response to simulated animal feeding. Results showed that the effects of animal saliva on physiological and metabolic processes of the treated plants produced a recovery phenomenon. Moreover, the effects of animal saliva produced a large number of differential metabolites related to several known metabolic pathways, among which the flavonoid biosynthesis pathway has undergone significant and persistent changes. We posit that the potential metabolic mechanisms of L. chinensis in response to simulated animal feeding are closely related to flavonoid biosynthesis.PMID:38892301 | DOI:10.3390/ijms25116110
Metabolic Profile and Lipid Metabolism Phenotype in Mice with Conditional Deletion of Hepatic BMAL1
Int J Mol Sci. 2024 May 31;25(11):6070. doi: 10.3390/ijms25116070.ABSTRACTThe disruption of circadian rhythms (CRs) has been linked to metabolic disorders, yet the role of hepatic BMAL1, a key circadian regulator, in the whole-body metabolism and the associated lipid metabolic phenotype in the liver remains unclear. Bmal1 floxed (Bmal1f/f) and hepatocyte-specific Bmal1 knockout (Bmal1hep-/-) C57BL/6J mice underwent a regular feeding regimen. Hepatic CR, lipid content, mitochondrial function, and systemic metabolism were assessed at zeitgeber time (ZT) 0 and ZT12. Relevant molecules were examined to elucidate the metabolic phenotype. Hepatocyte-specific knockout of Bmal1 disrupted the expression of rhythmic genes in the liver. Bmal1hep-/- mice exhibited decreased hepatic TG content at ZT0, primarily due to enhanced lipolysis, reduced lipogenesis, and diminished lipid uptake. The β-oxidation function of liver mitochondria decreased at both ZT0 and ZT12. Our findings on the metabolic profile and associated hepatic lipid metabolism in the absence of Bmal1 in hepatocytes provides new insights into metabolic syndromes from the perspective of liver CR disturbances.PMID:38892255 | DOI:10.3390/ijms25116070
Integrated Transcriptomic and Metabolomic Analysis Reveals the Molecular Regulatory Mechanism of Flavonoid Biosynthesis in Maize Roots under Lead Stress
Int J Mol Sci. 2024 May 31;25(11):6050. doi: 10.3390/ijms25116050.ABSTRACTFlavonoids are secondary metabolites that play important roles in the resistance of plants to abiotic stress. Despite the widely reported adverse effects of lead (Pb) contamination on maize, the effects of Pb on the biosynthetic processes of flavonoids in maize roots are still unknown. In the present work, we employed a combination of multi-omics and conventional assay methods to investigate the effects of two concentrations of Pb (40 and 250 mg/kg) on flavonoid biosynthesis in maize roots and the associated molecular regulatory mechanisms. Analysis using conventional assays revealed that 40 and 250 mg/kg Pb exposure increased the lead content of maize root to 0.67 ± 0.18 mg/kg and 3.09 ± 0.02 mg/kg, respectively, but they did not result in significant changes in maize root length. The multi-omics results suggested that exposure to 40 mg/kg of Pb caused differential expression of 33 genes and 34 metabolites related to flavonoids in the maize root system, while 250 mg/kg of Pb caused differential expression of 34 genes and 31 metabolites. Not only did these differentially expressed genes and metabolites participate in transferase activity, anthocyanin-containing compound biosynthetic processes, metal ion binding, hydroxyl group binding, cinnamoyl transferase activity, hydroxycinnamoyl transferase activity, and flavanone 4-reductase activity but they were also significantly enriched in the flavonoid, isoflavonoid, flavone, and flavonol biosynthesis pathways. These results show that Pb is involved in the regulation of maize root growth by interfering with the biosynthesis of flavonoids in the maize root system. The results of this study will enable the elucidation of the mechanisms of the effects of lead on maize root systems.PMID:38892238 | DOI:10.3390/ijms25116050
Multi-Omic Analysis Reveals Genetic Determinants and Therapeutic Targets of Chronic Kidney Disease and Kidney Function
Int J Mol Sci. 2024 May 30;25(11):6033. doi: 10.3390/ijms25116033.ABSTRACTChronic kidney disease (CKD) presents a significant global health challenge, characterized by complex pathophysiology. This study utilized a multi-omic approach, integrating genomic data from the CKDGen consortium alongside transcriptomic, metabolomic, and proteomic data to elucidate the genetic underpinnings and identify therapeutic targets for CKD and kidney function. We employed a range of analytical methods including cross-tissue transcriptome-wide association studies (TWASs), Mendelian randomization (MR), summary-based MR (SMR), and molecular docking. These analyses collectively identified 146 cross-tissue genetic associations with CKD and kidney function. Key Golgi apparatus-related genes (GARGs) and 41 potential drug targets were highlighted, with MAP3K11 emerging as a significant gene from the TWAS and MR data, underscoring its potential as a therapeutic target. Capsaicin displayed promising drug-target interactions in molecular docking analyses. Additionally, metabolome- and proteome-wide MR (PWMR) analyses revealed 33 unique metabolites and critical inflammatory proteins such as FGF5 that are significantly linked to and colocalized with CKD and kidney function. These insights deepen our understanding of CKD pathogenesis and highlight novel targets for treatment and prevention.PMID:38892221 | DOI:10.3390/ijms25116033
Predicting Non-Alcoholic Steatohepatitis: A Lipidomics-Driven Machine Learning Approach
Int J Mol Sci. 2024 May 29;25(11):5965. doi: 10.3390/ijms25115965.ABSTRACTNonalcoholic fatty liver disease (NAFLD), nowadays the most prevalent chronic liver disease in Western countries, is characterized by a variable phenotype ranging from steatosis to nonalcoholic steatohepatitis (NASH). Intracellular lipid accumulation is considered the hallmark of NAFLD and is associated with lipotoxicity and inflammation, as well as increased oxidative stress levels. In this study, a lipidomic approach was used to investigate the plasma lipidome of 12 NASH patients, 10 Nonalcoholic Fatty Liver (NAFL) patients, and 15 healthy controls, revealing significant alterations in lipid classes, such as glycerolipids and glycerophospholipids, as well as fatty acid compositions in the context of steatosis and steatohepatitis. A machine learning XGBoost algorithm identified a panel of 15 plasma biomarkers, including HOMA-IR, BMI, platelets count, LDL-c, ferritin, AST, FA 12:0, FA 18:3 ω3, FA 20:4 ω6/FA 20:5 ω3, CAR 4:0, LPC 20:4, LPC O-16:1, LPE 18:0, DG 18:1_18:2, and CE 20:4 for predicting steatohepatitis. This research offers insights into the connection between imbalanced lipid metabolism and the formation and progression of NAFL D, while also supporting previous research findings. Future studies on lipid metabolism could lead to new therapeutic approaches and enhanced risk assessment methods, as the shift from isolated steatosis to NASH is currently poorly understood.PMID:38892150 | DOI:10.3390/ijms25115965
Metabolomic Profiling Reveals the Anti-Herbivore Mechanisms of Rice (Oryza sativa)
Int J Mol Sci. 2024 May 29;25(11):5946. doi: 10.3390/ijms25115946.ABSTRACTThe use of secondary metabolites of rice to control pests has become a research hotspot, but little is known about the mechanism of rice self-resistance. In this study, metabolomics analysis was performed on two groups of rice (T1, with insect pests; T2, without pests), indicating that fatty acids, alkaloids, and phenolic acids were significantly up-regulated in T1. The up-regulated metabolites (p-value < 0.1) were enriched in linoleic acid metabolism, terpene, piperidine, and pyridine alkaloid biosynthesis, α-linolenic acid metabolism, and tryptophan metabolism. Six significantly up-regulated differential metabolites in T1 were screened out: N-trans-feruloyl-3-methoxytyramine (1), N-trans-feruloyltyramine (2), N-trans-p-coumaroyltyramine (3), N-cis-feruloyltyramine (4), N-phenylacetyl-L-glutamine (5), and benzamide (6). The insect growth inhibitory activities of these six different metabolites were determined, and the results show that compound 1 had the highest activity, which significantly inhibited the growth of Chilo suppressalis by 59.63%. Compounds 2-4 also showed a good inhibitory effect on the growth of Chilo suppressalis, while the other compounds had no significant effect. RNA-seq analyses showed that larval exposure to compound 1 up-regulated the genes that were significantly enriched in ribosome biogenesis in eukaryotes, the cell cycle, ribosomes, and other pathways. The down-regulated genes were significantly enriched in metabolic pathways, oxidative phosphorylation, the citrate cycle (TCA cycle), and other pathways. Eighteen up-regulated genes and fifteen down-regulated genes from the above significantly enriched pathways were screened out and verified by real-time quantitative PCR. The activities of detoxification enzymes (glutathione S-transferase (GST); UDP-glucuronosyltransferase (UGT); and carboxylesterase (CarE)) under larval exposure to compound 1 were measured, which indicated that the activity of GST was significantly inhibited by compound 1, while the activities of the UGT and CarE enzymes did not significantly change. As determined by UPLC-MS, the contents of compound 1 in the T1 and T2 groups were 8.55 ng/g and 0.53 ng/g, respectively, which indicated that pest insects significantly induced the synthesis of compound 1. Compound 1 may enhance rice insect resistance by inhibiting the detoxification enzyme activity and metabolism of Chilo suppressalis, as well as promoting cell proliferation to affect its normal growth and development process. The chemical-ecological mechanism of the insect resistance of rice is preliminarily clarified in this paper.PMID:38892132 | DOI:10.3390/ijms25115946
A Comprehensive Analytical Review of Polyphenols: Evaluating Neuroprotection in Alzheimer's Disease
Int J Mol Sci. 2024 May 28;25(11):5906. doi: 10.3390/ijms25115906.ABSTRACTAlzheimer's Disease (AD), a prevalent neurodegenerative disorder, is the primary cause of dementia. Despite significant advancements in neuroscience, a definitive cure or treatment for this debilitating disease remains elusive. A notable characteristic of AD is oxidative stress, which has been identified as a potential therapeutic target. Polyphenols, secondary metabolites of plant origin, have attracted attention due to their potent antioxidant properties. Epidemiological studies suggest a correlation between the consumption of polyphenol-rich foods and the prevention of chronic diseases, including neurodegenerative disorders, which underscores the potential of polyphenols as a therapeutic strategy in AD management. Hence, this comprehensive review focuses on the diverse roles of polyphenols in AD, with a particular emphasis on neuroprotective potential. Scopus, ScienceDirect, and Google Scholar were used as leading databases for study selection, from 2018 to late March 2024. Analytical chemistry serves as a crucial tool for characterizing polyphenols, with a nuanced exploration of their extraction methods from various sources, often employing chemometric techniques for a holistic interpretation of the advances in this field. Moreover, this review examines current in vitro and in vivo research, aiming to enhance the understanding of polyphenols' role in AD, and providing valuable insights for forthcoming approaches in this context.PMID:38892094 | DOI:10.3390/ijms25115906
An Optimized Method for LC-MS-Based Quantification of Endogenous Organic Acids: Metabolic Perturbations in Pancreatic Cancer
Int J Mol Sci. 2024 May 28;25(11):5901. doi: 10.3390/ijms25115901.ABSTRACTAccurate and reliable quantification of organic acids with carboxylic acid functional groups in complex biological samples remains a major analytical challenge in clinical chemistry. Issues such as spontaneous decarboxylation during ionization, poor chromatographic resolution, and retention on a reverse-phase column hinder sensitivity, specificity, and reproducibility in multiple-reaction monitoring (MRM)-based LC-MS assays. We report a targeted metabolomics method using phenylenediamine derivatization for quantifying carboxylic acid-containing metabolites (CCMs). This method achieves accurate and sensitive quantification in various biological matrices, with recovery rates from 90% to 105% and CVs ≤ 10%. It shows linearity from 0.1 ng/mL to 10 µg/mL with linear regression coefficients of 0.99 and LODs as low as 0.01 ng/mL. The library included a wide variety of structurally variant CCMs such as amino acids/conjugates, short- to medium-chain organic acids, di/tri-carboxylic acids/conjugates, fatty acids, and some ring-containing CCMs. Comparing CCM profiles of pancreatic cancer cells to normal pancreatic cells identified potential biomarkers and their correlation with key metabolic pathways. This method enables sensitive, specific, and high-throughput quantification of CCMs from small samples, supporting a wide range of applications in basic, clinical, and translational research.PMID:38892088 | DOI:10.3390/ijms25115901
Bioinformatics Analysis and Validation of Potential Markers Associated with Prediction and Prognosis of Gastric Cancer
Int J Mol Sci. 2024 May 28;25(11):5880. doi: 10.3390/ijms25115880.ABSTRACTGastric cancer (GC) is one of the most common cancers worldwide. Most patients are diagnosed at the progressive stage of the disease, and current anticancer drug advancements are still lacking. Therefore, it is crucial to find relevant biomarkers with the accurate prediction of prognoses and good predictive accuracy to select appropriate patients with GC. Recent advances in molecular profiling technologies, including genomics, epigenomics, transcriptomics, proteomics, and metabolomics, have enabled the approach of GC biology at multiple levels of omics interaction networks. Systemic biological analyses, such as computational inference of "big data" and advanced bioinformatic approaches, are emerging to identify the key molecular biomarkers of GC, which would benefit targeted therapies. This review summarizes the current status of how bioinformatics analysis contributes to biomarker discovery for prognosis and prediction of therapeutic efficacy in GC based on a search of the medical literature. We highlight emerging individual multi-omics datasets, such as genomics, epigenomics, transcriptomics, proteomics, and metabolomics, for validating putative markers. Finally, we discuss the current challenges and future perspectives to integrate multi-omics analysis for improving biomarker implementation. The practical integration of bioinformatics analysis and multi-omics datasets under complementary computational analysis is having a great impact on the search for predictive and prognostic biomarkers and may lead to an important revolution in treatment.PMID:38892067 | DOI:10.3390/ijms25115880
The Impact of Antenatal Corticosteroids on the Metabolome of Preterm Newborns: An Untargeted Approach
Int J Mol Sci. 2024 May 28;25(11):5860. doi: 10.3390/ijms25115860.ABSTRACTWe analyzed and compared variations in the urinary metabolome, as well as postnatal clinical outcomes among preterm infants, based on the timing of antenatal corticosteroid (ACS) administration in response to preterm labor onset in their mothers. This was a prospective observational study held in the Neonatal Intensive Care Unit, Department of Woman's and Child's Health, Padova University Hospital (Italy). A urine sample was obtained from each patient within 24 h of birth; Mass Spectrometry-based untargeted metabolomics analysis was then conducted. We searched for any significant disparities in the metabolomic profile of preterm newborns subjected to antenatal corticosteroid (ACS) treatment at varying timings; their correlation with clinical outcomes were also evaluated. The group receiving ACS within the optimal time window (1-7 days before delivery) exhibited elevated levels of cysteine, N-acetylglutamine, propionyl carnitine and 5-hydroxyindolacetic acid, coupled with a decrease in pipecolic acid. Clinically, this group demonstrated a reduced need for invasive ventilation (p = 0.04). In conclusion, metabolomics analysis identified several metabolites that discriminated preterm infants whose mothers received ACS within the recommended time window. Elevated levels of cysteine and 5-Hydroxyindoleacetic acid, metabolites characterized by antioxidant and anti-inflammatory properties, were observed in these infants. This metabolic profile correlated with improved respiratory outcomes, as evidenced by a reduced necessity for invasive ventilation at birth.PMID:38892043 | DOI:10.3390/ijms25115860
Exploratory Untargeted Metabolomics of Dried Blood Spot Samples from Newborns with Maple Syrup Urine Disease
Int J Mol Sci. 2024 May 24;25(11):5720. doi: 10.3390/ijms25115720.ABSTRACTCurrently, tandem mass spectrometry-based newborn screening (NBS), which examines targeted biomarkers, is the first approach used for the early detection of maple syrup urine disease (MSUD) in newborns, followed by confirmatory genetic mutation tests. However, these diagnostic approaches have limitations, demanding the development of additional tools for the diagnosis/screening of MUSD. Recently, untargeted metabolomics has been used to explore metabolic profiling and discover the potential biomarkers/pathways of inherited metabolic diseases. Thus, we aimed to discover a distinctive metabolic profile and biomarkers/pathways for MSUD newborns using untargeted metabolomics. Herein, untargeted metabolomics was used to analyze dried blood spot (DBS) samples from 22 MSUD and 22 healthy control newborns. Our data identified 210 altered endogenous metabolites in MSUD newborns and new potential MSUD biomarkers, particularly L-alloisoleucine, methionine, and lysoPI. In addition, the most impacted pathways in MSUD newborns were the ascorbate and aldarate pathways and pentose and glucuronate interconversions, suggesting that oxidative and detoxification events may occur in early life. Our approach leads to the identification of new potential biomarkers/pathways that could be used for the early diagnosis/screening of MSUD newborns but require further validation studies. Our untargeted metabolomics findings have undoubtedly added new insights to our understanding of the pathogenicity of MSUD, which helps us select the appropriate early treatments for better health outcomes.PMID:38891907 | DOI:10.3390/ijms25115720
Metabolomics and Cardiovascular Risk in Patients with Heart Failure: A Systematic Review and Meta-Analysis
Int J Mol Sci. 2024 May 23;25(11):5693. doi: 10.3390/ijms25115693.ABSTRACTThe associations of plasma metabolites with adverse cardiovascular (CV) outcomes are still underexplored and may be useful in CV risk stratification. We performed a systematic review and meta-analysis to establish correlations between blood metabolites and adverse CV outcomes in patients with heart failure (HF). Four cohorts were included, involving 83 metabolites and 37 metabolite ratios, measured in 1158 HF patients. Hazard ratios (HR) of 42 metabolites and 3 metabolite ratios, present in at least two studies, were combined through meta-analysis. Higher levels of histidine (HR 0.74, 95% CI [0.64; 0.86]) and tryptophan (HR 0.82 [0.71; 0.96]) seemed protective, whereas higher levels of symmetric dimethylarginine (SDMA) (HR 1.58 [1.30; 1.93]), N-methyl-1-histidine (HR 1.56 [1.27; 1.90]), SDMA/arginine (HR 1.38 [1.14; 1.68]), putrescine (HR 1.31 [1.06; 1.61]), methionine sulfoxide (HR 1.26 [1.03; 1.52]), and 5-hydroxylysine (HR 1.25 [1.05; 1.48]) were associated with a higher risk of CV events. Our findings corroborate important associations between metabolic imbalances and a higher risk of CV events in HF patients. However, the lack of standardization and data reporting hampered the comparison of a higher number of studies. In a future clinical scenario, metabolomics will greatly benefit from harmonizing sample handling, data analysis, reporting, and sharing.PMID:38891881 | DOI:10.3390/ijms25115693
From Gut to Brain: Uncovering Potential Serum Biomarkers Connecting Inflammatory Bowel Diseases to Neurodegenerative Diseases
Int J Mol Sci. 2024 May 23;25(11):5676. doi: 10.3390/ijms25115676.ABSTRACTInflammatory bowel diseases (IBDs) are characterized by chronic gastrointestinal inflammation due to abnormal immune responses to gut microflora. The gut-brain axis is disrupted in IBDs, leading to neurobiological imbalances and affective symptoms. Systemic inflammation in IBDs affects the brain's inflammatory response system, hormonal axis, and blood-brain barrier integrity, influencing the gut microbiota. This review aims to explore the association between dysregulations in the gut-brain axis, serum biomarkers, and the development of cognitive disorders. Studies suggest a potential association between IBDs and the development of neurodegeneration. The mechanisms include systemic inflammation, nutritional deficiency, GBA dysfunction, and the effect of genetics and comorbidities. The objective is to identify potential correlations and propose future research directions to understand the impact of altered microbiomes and intestinal barrier functions on neurodegeneration. Serum levels of vitamins, inflammatory and neuronal damage biomarkers, and neuronal growth factors have been investigated for their potential to predict the development of neurodegenerative diseases, but current results are inconclusive and require more studies.PMID:38891863 | DOI:10.3390/ijms25115676