Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Integrated metabolomic analysis and molecular docking: Unveiling the potential of Nephrolepis exaltata (L.) Schott phytocompounds for mosquito control via glutathione-S-transferase targeting

Mon, 17/06/2024 - 12:00
Int J Biol Macromol. 2024 Jun 15:133072. doi: 10.1016/j.ijbiomac.2024.133072. Online ahead of print.ABSTRACTPlants contain a wide range of potential phytochemicals that are target-specific, and less toxic to human health. The present study aims to investigate the metabolomic profile of Nephrolepis exaltata (L.) Schott and its potential for mosquito control by targeting Glutathione-S-Transferase, focusing on the larvicidal activity against Culex pipiens. Crude extracts (CEs) were prepared using ethanol, ethyl acetate and n-hexane. CEs have been used for assessment of mosquitocidal bioassay. The metabolomic analyses for CEs were characterized for each CE by gas chromatography-mass spectrometry (GC-MS). The most efficient CE with the highest larval mortality and the least LC50 was the hexane CE. Then, alkaline phosphatase (ALP) activity, and glutathione-S-transferase (GST) activity were assessed in larvae treated with the hexane CE. The results demonstrated a decline in protein content, induction of ALP activity, and reduction in GST activity. Finally, molecular docking and dynamic simulation techniques were employed to evaluate the interaction between the hexane phytochemicals and the GST protein. D-(+)-Glucuronic acid, 3TMS derivative and Sebacic acid, 2TMS derivative showed best binding affinities to GST protein pointing to their interference with the enzyme detoxification functions, potentially leading to reduced ability to metabolize insecticides.PMID:38885861 | DOI:10.1016/j.ijbiomac.2024.133072

Exploitation of Multiple Host-Derived Nutrients by the Yellow Catfish Epidermal Environment Facilitates Vibrio mimicus to Sustain Infection Potency and Susceptibility

Mon, 17/06/2024 - 12:00
Fish Shellfish Immunol. 2024 Jun 15:109707. doi: 10.1016/j.fsi.2024.109707. Online ahead of print.ABSTRACTInfection with Vibrio mimicus in the Siluriformes has demonstrated a rapid and high infectivity and mortality rate, distinct from other hosts. Our earlier investigations identified necrosis, an inflammatory storm, and tissue remodeling as crucial pathological responses in yellow catfish (Pelteobagrus fulvidraco) infected with V. mimicus. The objective of this study was to further elucidate the impact linking these pathological responses within the host during V. mimicus infection. Employing metabolomics and transcriptomics, we uncovered infection-induced dense vacuolization of perimysium; Several genes related to nucleosidase and peptidase activities were significantly upregulated in the skin and muscles of infected fish. Concurrently, the translation processes of host cells were impaired. Further investigation revealed that V. mimicus completes its infection process by enhancing its metabolism, including the utilization of oligopeptides and nucleotides. The high susceptibility of yellow catfish to V. mimicus infection was associated with the composition of its body surface, which provided a microenvironment rich in various nucleotides such as dIMP, dAMP, deoxyguanosine, and ADP, in addition to several amino acids and peptides. Some of these metabolites significantly boost V. mimicus growth and motility, thus influencing its biological functions. Furthermore, we uncovered an elevated expression of gangliosides on the surface of yellow catfish, aiding V. mimicus adhesion and increasing its infection risk. Notably, we observed that the skin and muscles of yellow catfish were deficient in over 25 polyunsaturated fatty acids, such as Eicosapentaenoic acid, 12-oxo-ETE, and 13-Oxo-ODE. These substances play a role in anti-inflammatory mechanisms, possibly contributing to the immune dysregulation observed in yellow catfish. In summary, our study reveals a host immune deviation phenomenon that promotes bacterial colonization by increasing nutrient supply. It underscores the crucial factors rendering yellow catfish highly susceptible to V. mimicus, indicating that host nutritional sources not only enable the establishment and maintenance of infection within the host but also aid bacterial survival under immune pressure, ultimately completing its lifecycle.PMID:38885802 | DOI:10.1016/j.fsi.2024.109707

Environmentally relevant concentrations of nickel and imidacloprid induce reproductive toxicity in earthworm (Eisenia fetida fetida)

Mon, 17/06/2024 - 12:00
Comp Biochem Physiol C Toxicol Pharmacol. 2024 Jun 15:109964. doi: 10.1016/j.cbpc.2024.109964. Online ahead of print.ABSTRACTThe current research investigates individual and combined toxicity effects of nickel (Ni) and imidacloprid (IMI) on earthworm species Eisenia fetida fetida. Employing standardized toxicity parameters, we assessed the impact of environmentally relevant concentrations (ERC) of Ni, IMI, and their mixtures on key biomarkers and reproductive fitness of earthworms. Our findings reveal concentration-dependent responses with discernible adverse effects on physiological parameters. The ERC obtained for Ni was 0.095 ppm, and for imidacloprid was 0.01 ppm. Two concentrations (ERC and 1/5th) of both toxicants (individually and in combinations) were further given for 14 days, and parameters like avoidance behaviour, antioxidants, histology, and metabolomic profile were observed. The behaviour of earthworms was noted, where at 24-48 h, it was found to be in control soil, while later, at 72-96 h, they migrated to toxicants-treated soil. Levels of antioxidants (superoxide dismutase, catalase, reduced glutathione, ascorbic acid), lipid peroxidation, and lactate dehydrogenase were elevated in the testis, spermatheca, ovary, and prostate gland in a high concentration of Ni + IMI. Histological studies showed more vacuolization and disruption of epithelium that was increased in the prostate gland of the Ni + IMI high group, decreased number of spermatids, and damaged cell architecture was noted in testis and spermatheca of the Ni + IMI high group. The highest number of metabolites was found in Ni exposed group (181), followed by IMI (131) and Control (125). Thus, this study sheds light on the ecotoxicological effects of combinational exposure of these contaminants on an essential soil-dwelling organism, where IMI was more toxic than Ni, and both toxicants decreased earthworm reproductive fecundity.PMID:38885748 | DOI:10.1016/j.cbpc.2024.109964

Removal mechanisms and metabolic responses of Chlorella pyrenoidosa to dissolved organic phosphorus

Mon, 17/06/2024 - 12:00
Bioresour Technol. 2024 Jun 15:130999. doi: 10.1016/j.biortech.2024.130999. Online ahead of print.ABSTRACTMicroalgae-based biotechnology holds significant potential for addressing dual challenges of phosphorus removal and recovery from wastewater; however, the removal mechanism and metabolic adaptation of microalgae to dissolved organic phosphorus (DOP) are still unclear. This study investigated the removal mechanisms and metabolomic responses of the Chlorella pyrenoidosa to different DOP forms, including adenosine triphosphate (ATP), glucose-6-phosphate (G-6-P), and β-glycerophosphate (β-GP). The results showed C. pyrenoidosa could efficiently take up above 96% DOP through direct transport and post-hydrolysis pathways. The uptake of inorganic phosphorus (IP) followed pseudo first order kinetic model, while DOP followed pseudo second order kinetic model. Metabolite profiling revealed substantial alterations in central carbon metabolism depending on the DOP source. G-6-P upregulated glycolytic and TCA cycle intermediates, reflecting enhanced carbohydrates, amino acids and nucleotides biosynthesis. In contrast, ATP down-regulated carbohydrate and purine metabolism, inhibiting sustainable growth of microalgae. This study offers theoretical support for phosphorus-containing wastewater treatment using microalgae.PMID:38885721 | DOI:10.1016/j.biortech.2024.130999

A metabolomics pipeline highlights microbial metabolism in bloodstream infections

Mon, 17/06/2024 - 12:00
Cell. 2024 Jun 11:S0092-8674(24)00579-8. doi: 10.1016/j.cell.2024.05.035. Online ahead of print.ABSTRACTThe growth of antimicrobial resistance (AMR) highlights an urgent need to identify bacterial pathogenic functions that may be targets for clinical intervention. Although severe infections profoundly alter host metabolism, prior studies have largely ignored microbial metabolism in this context. Here, we describe an iterative, comparative metabolomics pipeline to uncover microbial metabolic features in the complex setting of a host and apply it to investigate gram-negative bloodstream infection (BSI) in patients. We find elevated levels of bacterially derived acetylated polyamines during BSI and discover the enzyme responsible for their production (SpeG). Blocking SpeG activity reduces bacterial proliferation and slows pathogenesis. Reduction of SpeG activity also enhances bacterial membrane permeability and increases intracellular antibiotic accumulation, allowing us to overcome AMR in culture and in vivo. This study highlights how tools to study pathogen metabolism in the natural context of infection can reveal and prioritize therapeutic strategies for addressing challenging infections.PMID:38885650 | DOI:10.1016/j.cell.2024.05.035

Alterations of gut microbiota and its metabolomics in children with 6PPDQ, PBDE, PCB, and metal(loid) exposure

Mon, 17/06/2024 - 12:00
J Hazard Mater. 2024 Jun 8;475:134862. doi: 10.1016/j.jhazmat.2024.134862. Online ahead of print.ABSTRACTThe composition and metabolites of the gut microbiota can be altered by environmental pollutants. However, the effect of co-exposure to multiple pollutants on the human gut microbiota has not been sufficiently studied. In this study, gut microorganisms and their metabolites were compared between 33 children from Guiyu, an e-waste dismantling and recycling area, and 34 children from Haojiang, a healthy environment. The exposure level was assessed by estimating the daily intake (EDI) of polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), 6PPD-quinone (6PPDQ), and metal(loid)s in kindergarten dust. Significant correlations were found between the EDIs of 6PPDQ, BDE28, PCB52, Ni, Cu, and the composition of gut microbiota and specific metabolites. The Bayesian kernel machine regression model showed negative correlations between the EDIs of five pollutants (6PPDQ, BDE28, PCB52, Ni, and Cu) and the composition of gut microbiota. The EDIs of these five pollutants were positively correlated with the levels of the metabolite 2,4-diaminobutyric acid, while negatively correlated with the levels of d-erythro-sphingosine and d-threitol. Our study suggests that exposure to 6PPDQ, BDE28, PCB52, Ni, and Cu in kindergarten dust is associated with alterations in the composition and metabolites of the gut microbiota. These alterations may be associated with children's health.PMID:38885585 | DOI:10.1016/j.jhazmat.2024.134862

Detection of phthalate esters and targeted metabolome analysis in Franciscana dolphin (Pontoporia blainvillei) blubber in the coast of Santa Catarina, southern Brazil

Mon, 17/06/2024 - 12:00
Mar Pollut Bull. 2024 Jun 16;205:116598. doi: 10.1016/j.marpolbul.2024.116598. Online ahead of print.ABSTRACTThe concerning of plastic pollution in different ecosystems has been worsened by the widespread presence. Phthalate esters (PAEs), plasticizers found in everyday products, can migrate into the environment, especially into the oceans. Researches on their effects on cetaceans are still rare. Metabolomics helps assess perturbations induced by exposure to PAEs, which act as persistent endocrine disruptors. Four PAEs (dimethyl phthalate - DMP, diethyl phthalate - DEP, dibutyl phthalate - DBP, and di(2-ethylhexyl phthalate - DEHP) were analyzed, along with cholesterol and fatty acid profiles of P. blainvillei's blubber samples collected in southern Brazil. The study reveals pervasive contamination by PAEs - especially DEHP, present in all samples - with positive correlations between DEP content and animal size and weight, as well as between the DEHP amount and the C17:1 fatty acid. These findings will be relevant to conservation efforts aimed at this threatened species and overall marine ecosystems.PMID:38885576 | DOI:10.1016/j.marpolbul.2024.116598

Spatial metabolomics reveals key features of hippocampal lipid changes in rats with postoperative cognitive dysfunction

Mon, 17/06/2024 - 12:00
J Cereb Blood Flow Metab. 2024 Jun 17:271678X241261949. doi: 10.1177/0271678X241261949. Online ahead of print.ABSTRACTPostoperative cognitive dysfunction (POCD) is a common complication after cardiac surgery. Numerous evidence suggest that dysregulation of lipid metabolism is associated with cognitive impairment; however, its precise role in the development of POCD is still obscure. In this study, we established a cardiopulmonary bypass (CPB) model in rats and employed the Barnes maze to assess cognitive function, selecting POCD rats for subsequent experimentation. Utilizing mass spectrometry imaging, we detected plenty of lipids accumulates within the hippocampal CA1in the POCD group. Immunofluorescence staining revealed a significant reduction in the fluorescence intensity of calcium-independent phospholipases A2 (iPLA2) in the POCD group compared to the control, while serine palmitoyl transferase (SPT) was markedly increased in the POCD group. Transmission electron microscopy revealed that the number of synapses in hippocampal CA1decreased significantly and postsynaptic density became thinner in POCD group. Furthermore, after reversing the metabolic disorders of iPLA2 and SPT in the rat brain with docosahexaenoic acid and myriocin, the incidence of POCD after CPB was significantly reduced and the disrupted lipid metabolism in the hippocampus was also normalized. These findings may offer a novel perspective for exploring the etiology and prevention strategies of POCD after CPB.PMID:38886876 | DOI:10.1177/0271678X241261949

Circulating TMAO, the gut microbiome and cardiometabolic disease risk: an exploration in key precursor disorders

Mon, 17/06/2024 - 12:00
Diabetol Metab Syndr. 2024 Jun 17;16(1):133. doi: 10.1186/s13098-024-01368-y.ABSTRACTBACKGROUND: Elevations in the gut metabolite trimethylamine-N-oxide (TMAO) have been linked to cardiovascular and metabolic diseases. Whether elevated TMAO levels reflect early mechanistic involvement or a sequela of evolving disease awaits elucidation. The purpose of this study was to further explore these potential associations.METHODS: We investigated relationships between circulating levels of TMAO and its pre-cursor substrates, dietary factors, gut microbiome profiles and disease risk in individuals with a Healthy BMI (18.5 < BMI < 25, n = 41) or key precursor states for cardiometabolic disease: Overweight (25 < BMI < 30 kg/m2, n = 33), Obese (BMI > 30, n = 27) and Metabolic Syndrome (MetS; ≥ 3 ATPIII report criteria, n = 39).RESULTS: Unexpectedly, plasma [TMAO] did not vary substantially between groups (means of 3-4 µM; p > 0.05), although carnitine was elevated in participants with MetS. Gut microbial diversity and Firmicutes were also significantly reduced in the MetS group (p < 0.05). Exploratory analysis across diverse parameters reveals significant correlations between circulating [TMAO] and seafood intake (p = 0.007), gut microbial diversity (p = 0.017-0.048), and plasma [trimethylamine] (TMA; p = 0.001). No associations were evident with anthropometric parameters or cardiometabolic disease risk. Most variance in [TMAO] within and between groups remained unexplained.CONCLUSIONS: Data indicate that circulating [TMAO] may be significantly linked to seafood intake, levels of TMA substrate and gut microbial diversity across healthy and early disease phenotypes. However, mean concentrations remain < 5 µM, with little evidence of links between TMAO and cardiometabolic disease risk. These observations suggest circulating TMAO may not participate mechanistically in cardiometabolic disease development, with later elevations likely a detrimental sequela of extant disease.PMID:38886825 | DOI:10.1186/s13098-024-01368-y

Associations of neighborhood sociodemographic environment with mortality and circulating metabolites among low-income black and white adults living in the southeastern United States

Mon, 17/06/2024 - 12:00
BMC Med. 2024 Jun 18;22(1):249. doi: 10.1186/s12916-024-03452-6.ABSTRACTBACKGROUND: Residing in a disadvantaged neighborhood has been linked to increased mortality. However, the impact of residential segregation and social vulnerability on cause-specific mortality is understudied. Additionally, the circulating metabolic correlates of neighborhood sociodemographic environment remain unexplored. Therefore, we examined multiple neighborhood sociodemographic metrics, i.e., neighborhood deprivation index (NDI), residential segregation index (RSI), and social vulnerability index (SVI), with all-cause and cardiovascular disease (CVD) and cancer-specific mortality and circulating metabolites in the Southern Community Cohort Study (SCCS).METHODS: The SCCS is a prospective cohort of primarily low-income adults aged 40-79, enrolled from the southeastern United States during 2002-2009. This analysis included self-reported Black/African American or non-Hispanic White participants and excluded those who died or were lost to follow-up ≤ 1 year. Untargeted metabolite profiling was performed using baseline plasma samples in a subset of SCCS participants.RESULTS: Among 79,631 participants, 23,356 deaths (7214 from CVD and 5394 from cancer) were documented over a median 15-year follow-up. Higher NDI, RSI, and SVI were associated with increased all-cause, CVD, and cancer mortality, independent of standard clinical and sociodemographic risk factors and consistent between racial groups (standardized HRs among all participants were 1.07 to 1.20 in age/sex/race-adjusted model and 1.04 to 1.08 after comprehensive adjustment; all P < 0.05/3 except for cancer mortality after comprehensive adjustment). The standard risk factors explained < 40% of the variations in NDI/RSI/SVI and mediated < 70% of their associations with mortality. Among 1110 circulating metabolites measured in 1688 participants, 134 and 27 metabolites were associated with NDI and RSI (all FDR < 0.05) and mediated 61.7% and 21.2% of the NDI/RSI-mortality association, respectively. Adding those metabolites to standard risk factors increased the mediation proportion from 38.4 to 87.9% and 25.8 to 42.6% for the NDI/RSI-mortality association, respectively.CONCLUSIONS: Among low-income Black/African American adults and non-Hispanic White adults living in the southeastern United States, a disadvantaged neighborhood sociodemographic environment was associated with increased all-cause and CVD and cancer-specific mortality beyond standard risk factors. Circulating metabolites may unveil biological pathways underlying the health effect of neighborhood sociodemographic environment. More public health efforts should be devoted to reducing neighborhood environment-related health disparities, especially for low-income individuals.PMID:38886716 | DOI:10.1186/s12916-024-03452-6

Unveiling biosynthetic potential of an Arctic marine-derived strain Aspergillus sydowii MNP-2

Mon, 17/06/2024 - 12:00
BMC Genomics. 2024 Jun 17;25(1):603. doi: 10.1186/s12864-024-10501-0.ABSTRACTBACKGROUND: A growing number of studies have demonstrated that the polar regions have the potential to be a significant repository of microbial resources and a potential source of active ingredients. Genome mining strategy plays a key role in the discovery of bioactive secondary metabolites (SMs) from microorganisms. This work highlighted deciphering the biosynthetic potential of an Arctic marine-derived strain Aspergillus sydowii MNP-2 by a combination of whole genome analysis and antiSMASH as well as feature-based molecular networking (MN) in the Global Natural Products Social Molecular Networking (GNPS).RESULTS: In this study, a high-quality whole genome sequence of an Arctic marine strain MNP-2, with a size of 34.9 Mb was successfully obtained. Its total number of genes predicted by BRAKER software was 13,218, and that of non-coding RNAs (rRNA, sRNA, snRNA, and tRNA) predicted by using INFERNAL software was 204. AntiSMASH results indicated that strain MNP-2 harbors 56 biosynthetic gene clusters (BGCs), including 18 NRPS/NRPS-like gene clusters, 10 PKS/PKS-like gene clusters, 8 terpene synthse gene clusters, 5 indole synthase gene clusters, 10 hybrid gene clusters, and 5 fungal-RiPP gene clusters. Metabolic analyses of strain MNP-2 grown on various media using GNPS networking revealed its great potential for the biosynthesis of bioactive SMs containing a variety of heterocyclic and bridge-ring structures. For example, compound G-8 exhibited a potent anti-HIV effect with an IC50 value of 7.2 nM and an EC50 value of 0.9 nM. Compound G-6 had excellent in vitro cytotoxicities against the K562, MCF-7, Hela, DU145, U1975, SGC-7901, A549, MOLT-4, and HL60 cell lines, with IC50 values ranging from 0.10 to 3.3 µM, and showed significant anti-viral (H1N1 and H3N2) activities with IC50 values of 15.9 and 30.0 µM, respectively.CONCLUSIONS: These findings definitely improve our knowledge about the molecular biology of genus A. sydowii and would effectively unveil the biosynthetic potential of strain MNP-2 using genomics and metabolomics techniques.PMID:38886660 | DOI:10.1186/s12864-024-10501-0

Barriers and enablers to the effective implementation of omics research in low- and middle-income countries

Mon, 17/06/2024 - 12:00
Nat Biotechnol. 2024 Jun;42(6):988-991. doi: 10.1038/s41587-024-02274-4.NO ABSTRACTPMID:38886608 | DOI:10.1038/s41587-024-02274-4

Paired metabolomics and volatilomics provides insight into transient high light stress response mechanisms of the coral Montipora mollis

Mon, 17/06/2024 - 12:00
Metabolomics. 2024 Jun 17;20(4):66. doi: 10.1007/s11306-024-02136-9.ABSTRACTThe coral holobiont is underpinned by complex metabolic exchanges between different symbiotic partners, which are impacted by environmental stressors. The chemical diversity of the compounds produced by the holobiont is high and includes primary and secondary metabolites, as well as volatiles. However, metabolites and volatiles have only been characterised in isolation so far. Here, we applied a paired metabolomic-volatilomic approach to characterise holistically the chemical response of the holobiont under stress. Montipora mollis fragments were subjected to high-light stress (8-fold higher than the controls) for 30 min. Photosystem II (PSII) photochemical efficiency values were 7-fold higher in control versus treatment corals immediately following high-light exposure, but returned to pre-stress levels after 30 min of recovery. Under high-light stress, we identified an increase in carbohydrates (> 5-fold increase in arabinose and fructose) and saturated fatty acids (7-fold increase in myristic and oleic acid), together with a decrease in fatty acid derivatives in both metabolites and volatiles (e.g., 80% decrease in oleamide and nonanal), and other antioxidants (~ 85% decrease in sorbitol and galactitol). These changes suggest short-term light stress induces oxidative stress. Correlation analysis between volatiles and metabolites identified positive links between sorbitol, galactitol, six other metabolites and 11 volatiles, with four of these compounds previously identified as antioxidants. This suggests that these 19 compounds may be related and share similar functions. Taken together, our findings demonstrate how paired metabolomics-volatilomics may illuminate broader metabolic shifts occurring under stress and identify linkages between uncharacterised compounds to putatively determine their functions.PMID:38886248 | DOI:10.1007/s11306-024-02136-9

Associations between TCA cycle plasma metabolites and fatigue in black females with systemic lupus erythematosus: An untargeted metabolomics pilot study

Mon, 17/06/2024 - 12:00
Lupus. 2024 Jun 17:9612033241260334. doi: 10.1177/09612033241260334. Online ahead of print.ABSTRACTOBJECTIVE: In this pilot study, we used untargeted metabolomics to identify biochemical mechanisms or biomarkers potentially underlying SLE-related fatigue.METHODS: Metabolon conducted untargeted metabolomic plasma profiling using ultrahigh performance liquid chromatography/tandem mass spectrometry on plasma samples of 23 Black females with systemic lupus erythematosus (SLE) and 21 no SLE controls. Fatigue phenotypes of general fatigue, physical fatigue, mental fatigue, reduced activity, and reduced motivation were measured with the reliable and valid Multidimensional Fatigue Inventory (MFI).RESULTS: A total of 290 metabolites were significantly different between the SLE and no SLE groups, encompassing metabolites related to glycolysis, TCA cycle activity, heme catabolism, branched chain amino acids, fatty acid metabolism, and steroids. Within the SLE group, controlling for age and co-morbidities, TCA cycle metabolites of alpha-ketoglutarate (AKG) and succinate were statistically significantly associated (p < .05) with physical and general fatigue.CONCLUSION: While pervasive perturbations in the entire TCA cycle have been implicated as a potential mechanism for fatigue, our results suggest individual metabolites of AKG and succinate may be potential biomarkers or targets of intervention for fatigue symptom management in SLE. Additionally, perturbations in heme metabolism in the SLE group provide additional insights into mechanisms that promote systemic inflammation.PMID:38885489 | DOI:10.1177/09612033241260334

SH2B1 Defends Against Energy Imbalance, Obesity, and Metabolic Disease via a Paraventricular Hypothalamus→Dorsal Raphe Nucleus Neurocircuit

Mon, 17/06/2024 - 12:00
Adv Sci (Weinh). 2024 Jun 17:e2400437. doi: 10.1002/advs.202400437. Online ahead of print.ABSTRACTSH2B1 mutations are associated with obesity, type 2 diabetes, and metabolic dysfunction-associated steatotic liver disease (MASLD) in humans. Global deletion of Sh2b1 results in severe obesity, type 2 diabetes, and MASLD in mice. Neuron-specific restoration of SH2B1 rescues the obesity phenotype of Sh2b1-null mice, indicating that the brain is a main SH2B1 target. However, SH2B1 neurocircuits remain elusive. SH2B1-expressing neurons in the paraventricular hypothalamus (PVHSH2B1) and a PVHSH2B1→dorsal raphe nucleus (DRN) neurocircuit are identified here. PVHSH2B1 axons monosynaptically innervate DRN neurons. Optogenetic stimulation of PVHSH2B1 axonal fibers in the DRN suppresses food intake. Chronic inhibition of PVHSH2B1 neurons causes obesity. In male and female mice, either embryonic-onset or adult-onset deletion of Sh2b1 in PVH neurons causes energy imbalance, obesity, insulin resistance, glucose intolerance, and MASLD. Ablation of Sh2b1 in the DRN-projecting PVHSH2B1 subpopulation also causes energy imbalance, obesity, and metabolic disorders. Conversely, SH2B1 overexpression in either total or DRN-projecting PVHSH2B1 neurons protects against diet-induced obesity. SH2B1 binds to TrkB and enhances brain-derived neurotrophic factor (BDNF) signaling. Ablation of Sh2b1 in PVHSH2B1 neurons induces BDNF resistance in the PVH, contributing to obesity. In conclusion, these results unveil a previously unrecognized PVHSH2B1→DRN neurocircuit through which SH2B1 defends against obesity by enhancing BDNF/TrkB signaling.PMID:38885417 | DOI:10.1002/advs.202400437

MetaboReport: from metabolomics data analysis to comprehensive reporting

Mon, 17/06/2024 - 12:00
Bioinformatics. 2024 Jun 17:btae373. doi: 10.1093/bioinformatics/btae373. Online ahead of print.ABSTRACTMOTIVATION: Metabolomics, as an essential tool in systems biology, is now widely accessible to researchers of all levels. Yet challenges remain in data analysis and result interpretation. To address these challenges, we introduced MetaboReport, a versatile and interactive web app that simplifies metabolomics experiment design, data preprocessing, exploration, statistical analysis, visualization, and reporting.RESULTS: MetaboReport produces a comprehensive HTML report, including project details, an introduction, interactive plots and tables, statistical results and an in-depth explanations and interpretation of the results. MetaboReport is particularly tailored for research labs and metabolomics core facilities that provide metabolomics services, allowing them to efficiently manage and document different metabolomics projects, and effectively report the metabolomics results to users.AVAILABILITY: MetaboReport is freely accessible on https://metaboreport.com,with source code available on GitHub (https://github.com/YonghuiDong/MetReport). Alternatively, users can install MetaboReport as a standalone desktop app (https://metaboreport.sourceforge.io).SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.PMID:38885410 | DOI:10.1093/bioinformatics/btae373

Metabolomics of repetitive myocardial stunning in chronic multivessel coronary artery stenosis: Effect of non-selective and selective beta1-receptor blockers

Mon, 17/06/2024 - 12:00
J Physiol. 2024 Jun 17. doi: 10.1113/JP285720. Online ahead of print.ABSTRACTChronic coronary artery stenosis can lead to regional myocardial dysfunction in the absence of myocardial infarction by repetitive stunning, hibernation or both. The molecular mechanisms underlying repetitive stunning-associated myocardial dysfunction are not clear. We used non-targeted metabolomics to elucidate responses to chronically stunned myocardium in a canine model with and without β-adrenergic blockade treatment. After development of left ventricular systolic dysfunction induced by ameroid constrictors on the coronary arteries, animals were randomized to 3 months of placebo, metoprolol or carvedilol. We compared these two β-blockers with their different β-adrenergic selectivities on myocardial function, perfusion and metabolic pathways involved in tissue undergoing chronic stunning. Control animals underwent sham surgery. Dysfunction in stunned myocardium was associated with reduced fatty acid oxidation and enhanced ketogenic amino acid metabolism, together with alterations in mitochondrial membrane phospholipid composition. These changes were consistent with impaired mitochondrial function and were linked to reduced nitric oxide and peroxisome proliferator-activated receptor signalling, resulting in a decline in adenosine monophosphate-activated protein kinase. Mitochondrial changes were ameliorated by carvedilol more than metoprolol, and improvement was linked to nitric oxide and possibly hydrogen sulphide signalling. In summary, repetitive myocardial stunning commonly seen in chronic multivessel coronary artery disease is associated with adverse metabolic remodelling linked to mitochondrial dysfunction and specific signalling pathways. These changes are reversed by β-blockers, with the non-selective inhibitor having a more favourable impact. This is the first investigation to demonstrate that β-blockade-associated improvement of ventricular function in chronic myocardial stunning is associated with restoration of mitochondrial function. KEY POINTS: The mechanisms responsible for the metabolic changes associated with repetitive myocardial stunning seen in chronic multivessel coronary artery disease have not been fully investigated. In a canine model of repetitive myocardial stunning, we showed that carvedilol, a non-selective β-receptor blocker, ameliorated adverse metabolic remodelling compared to metoprolol, a selective β1-receptor blocker, by improving nitric oxide synthase and adenosine monophosphate protein kinase function, enhancing calcium/calmodulin-dependent protein kinase, probably increasing hydrogen sulphide, and suppressing cyclic-adenosine monophosphate signalling. Mitochondrial fatty acid oxidation alterations were ameliorated by carvedilol to a larger extent than metoprolol; this improvement was linked to nitric oxide and possibly hydrogen sulphide signalling. Both β-blockers improved the cardiac energy imbalance by reducing metabolites in ketogenic amino acid and nucleotide metabolism. These results elucidated why metabolic remodelling with carvedilol is preferable to metoprolol when treating chronic ischaemic left ventricular systolic dysfunction caused by repetitive myocardial stunning.PMID:38885335 | DOI:10.1113/JP285720

Technologies to Study Genetics and Molecular Pathways

Mon, 17/06/2024 - 12:00
Adv Exp Med Biol. 2024;1441:435-458. doi: 10.1007/978-3-031-44087-8_22.ABSTRACTOver the last few decades, the study of congenital heart disease (CHD) has benefited from various model systems and the development of molecular biological techniques enabling the analysis of single gene as well as global effects. In this chapter, we first describe different models including CHD patients and their families, animal models ranging from invertebrates to mammals, and various cell culture systems. Moreover, techniques to experimentally manipulate these models are discussed. Second, we introduce cardiac phenotyping technologies comprising the analysis of mouse and cell culture models, live imaging of cardiogenesis, and histological methods for fixed hearts. Finally, the most important and latest molecular biotechniques are described. These include genotyping technologies, different applications of next-generation sequencing, and the analysis of transcriptome, epigenome, proteome, and metabolome. In summary, the models and technologies presented in this chapter are essential to study the function and development of the heart and to understand the molecular pathways underlying CHD.PMID:38884724 | DOI:10.1007/978-3-031-44087-8_22

New diagnostic technologies in laboratory medicine: Potential benefits and challenges

Mon, 17/06/2024 - 12:00
Pol Arch Intern Med. 2024 Jun 10:16772. doi: 10.20452/pamw.16772. Online ahead of print.ABSTRACTLaboratory tests play a central role in medicine, as they help to make diagnoses, assess prognosis, risk of disease, and monitor therapies, thus contributing to 70% of all medical decisions. This cross-sectional function offers great potential for technological and organizational innovation to influence healthcare as a whole. In recent years, a variety of technologies have emerged and entered the field of medical research, or even medical care. A new generation of biosensors allows the determination of laboratory tests at the point-of-care and enables faster medical decisions. Recent devices allow for patient-centric blood sampling, which eliminates the need for painful blood draws, patient traveling, and the workload of healthcare professionals. Analytical techniques such as metabolomics, lipidomics or proteomics can identify biomarkers extremely sensitively, even down to individual cells. Pharmacogenomics allows the determination of genetic polymorphisms that predict the response to chemotherapeutic agents. Machine-learning approaches can handle large amounts of multi-layered data for diagnostic applications. However, this enormous diagnostic potential is far from being utilized and only very few applications have been implemented in clinical practice. Why is this the case? In this article, we describe the key technology fields, discuss their medical potential and obstacles to their implementation. In addition, we present a methodological framework to support researchers, clinicians and authorities in the development and implementation of novel diagnostic approaches.PMID:38884596 | DOI:10.20452/pamw.16772

Fecal metagenomic and metabolomic analyses reveal non-invasive biomarkers of Flavobacterium psychrophilum infection in ayu (Plecoglossus altivelis)

Mon, 17/06/2024 - 12:00
mSphere. 2024 Jun 17:e0030124. doi: 10.1128/msphere.00301-24. Online ahead of print.ABSTRACTWith the rapid growth of inland aquaculture worldwide, side effects such as the discharge of nutrients and antibiotics pose a threat to the global environments. A sustainable future for aquaculture requires an effective management system, including the early detection of disease through the monitoring of specific biomarkers in aquaculture tanks. To this end, we investigated whether fish feces in aquaculture tanks could be used for non-invasive health monitoring using ayu (Plecoglossus altivelis) infected with Flavobacterium psychrophilum, which causes bacterial cold-water disease worldwide. Feces that were subsequently produced in the tanks were used for metagenomic and metabolomic analyses. The relative abundances of the genera Cypionkella (0.6% ± 1.0%, 0.1% ± 0.2%), Klebsiella (11.2% ± 10.0%, 6.2% ± 5.9%), and F. psychrophilum (0.5% ± 1.0%, 0.0% ± 0.0%) were significantly higher in the feces of the infection challenge test tanks than in those of the control tanks. The abundances of cortisol, glucose, and acetate in the feces of the infection challenge test tanks were 2.4, 2.4, and 1.3 times higher, respectively, than those of the control tanks. Metagenome analysis suggested that acetate was produced by microbes such as Cypionkella. The abundances of indicated microbes or metabolites increased after day 4 of infection at the earliest, and were thus considered possible biomarkers. Our results suggest that feces produced in aquaculture tanks can potentially be used for non-invasive and holistic monitoring of fish diseases in aquaculture systems.IMPORTANCE: The aquaculture industry is rapidly growing, yet sustainability remains a challenge. One crucial task is to reduce losses due to diseases. Monitoring fish health and detecting diseases early are key to establishing sustainable aquaculture. Using metagenomic and metabolomic analyses, we found that feces of ayu infected with Flavobacterium psychrophilum contain various specific biomarkers that increased 4 days post-challenge, at the earliest. Our findings are the first step in establishing a novel, non-invasive, and holistic monitoring method for fish diseases in aquaculture systems, especially in ayu, which is an important freshwater fish species in Asia, promoting a sustainable future.PMID:38884486 | DOI:10.1128/msphere.00301-24

Pages