Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Research progress on the biological basis of Traditional Chinese Medicine syndromes of gastrointestinal cancers

Wed, 29/11/2023 - 12:00
Heliyon. 2023 Oct 20;9(11):e20653. doi: 10.1016/j.heliyon.2023.e20653. eCollection 2023 Nov.ABSTRACTGastrointestinal cancers account for 11.6 % of all cancers, and are the second most frequently diagnosed type of cancer worldwide. Traditional Chinese medicine (TCM), together with Western medicine or alone, has unique advantages for the prevention and treatment of cancers, including gastrointestinal cancers. Syndrome differentiation and treatment are basic characteristics of the theoretical system of TCM. TCM syndromes are the result of the differentiation of the syndrome and the basis of treatment. Genomics, transcriptomics, proteomics, metabolomics, intestinal microbiota, and serology, generated around the central law, are used to study the biological basis of TCM syndromes in gastrointestinal cancers. This review summarizes current research on the biological basis of TCM syndrome in gastrointestinal cancers and provides useful references for future research on TCM syndrome in gastrointestinal cancers.PMID:38027682 | PMC:PMC10643116 | DOI:10.1016/j.heliyon.2023.e20653

Untargeted and spatial-resolved metabolomics characterize serum and tissue-specific metabolic reprogramming in acute kidney injury

Wed, 29/11/2023 - 12:00
Heliyon. 2023 Nov 1;9(11):e21171. doi: 10.1016/j.heliyon.2023.e21171. eCollection 2023 Nov.ABSTRACTBACKGROUND: Acute kidney injury (AKI) is one of the most common clinical emergencies characterized by rapid progression, difficulty in early diagnosis, and high mortality. Currently, there are no effective AKI early diagnostic methods and treatments. Therefore, identifying new mechanisms of AKI have become urgent for development new targets for early diagnosis and treatment of AKI in the current clinical setting.METHODS: In this study, systematic analysis and comparison of serum metabolic profiles of clinical AKI patients, chronic kidney disease (CKD) patients, and healthy subjects were performed using untargeted metabolomics. Moreover, the first spatial metabolomic analysis of kidney tissues in an AKI mouse model using MALDI-TOF MS technology was conducted. Differentially expressed metabolites were identified using a comprehensive, publicly available database. The metabolic data obtained were evaluated using principal component analysis, (orthogonal) partial least squares discriminant analysis, and metabolic pathway analysis to explore the unique serum metabolic profile of the patients, as well as to characterize the spatial distribution of differential metabolites in the kidneys of AKI mice.RESULTS: Significant changes in the metabolite levels of amino acids, carnitine, and lipids were observed in the AKI and CKD groups versus the healthy population, suggesting that kidney injury may lead to abnormalities in various metabolic pathways, such as amino acids, fatty acids, and lipids. The significant difference between the AKI and CKD groups were found for the first time in these indexes including amino acid, carnitine, fatty acid, and lipid levels. Additionally, spatial metabolomics results revealed that amino acid, carnitine, organic acid, and fatty acid metabolites were more likely significantly altered in the renal cortex, while lipid metabolites were both differentially distributed in the cortex and medulla of the AKI group.CONCLUSION: Abnormalities in the serum metabolism of amino acids, carnitine, and lipids in patients with kidney diseases, such as AKI and CKD, are closely associated with the physiological dysfunction of kidney injury. Metabolic differences between patients with AKI and CKD were compared for the first time, showing that fatty acid oxidative inhibition was more severe in patients with AKI. Furthermore, spatial metabolomics has revealed metabolic reprogramming with tissue heterogeneity in AKI mice model. Our study provides valuable information in the molecular pathological features of AKI in the kidney tissues.PMID:38027662 | PMC:PMC10660029 | DOI:10.1016/j.heliyon.2023.e21171

Predicting autosomal dominant polycystic kidney disease progression: review of promising Serum and urine biomarkers

Wed, 29/11/2023 - 12:00
Front Pediatr. 2023 Nov 10;11:1274435. doi: 10.3389/fped.2023.1274435. eCollection 2023.ABSTRACTAutosomal dominant polycystic kidney disease (ADPKD) is one of the leading causes of end-stage renal disease. In spite of the recent tremendous progress in the understanding of ADPKD pathogenesis, the molecular mechanisms of the disease remain incompletely understood. Considering emerging new targeted therapies for ADPKD, it has become crucial to disclose easily measurable and widely available biomarkers for identifying patients with future rapid disease progression. This review encompasses all the research with a shared goal of identifying promising serum or urine biomarkers for predicting ADPKD progression or response to therapy. The rate of the ADPKD progress varies significantly between patients. The phenotypic variability is only partly explained by the underlying genetic lesion diversity. Considering significant decline in kidney function in ADPKD is not usually evident until at least 50% of the parenchyma has been destroyed, conventional kidney function measures, such as glomerular filtration rate (GFR), are not suitable for monitoring disease progression in ADPKD, particularly in its early stages. Since polycystic kidney enlargement usually precedes the decline in GFR, height-adjusted total kidney volume (ht-TKV) has been accepted as an early biomarker for assessing disease severity in ADPKD patients. However, since measuring ht-TKV is time-consuming and observer-dependent, the identification of a sensitive and quickly measurable biomarker is of a great interest for everyday clinical practice. Throughout the last decade, due to development of proteomic and metabolomic techniques and the enlightenment of multiple molecular pathways involved in the ADPKD pathogenesis, a number of urine and serum protein biomarkers have been investigated in ADPKD patients, some of which seem worth of further exploring. These include copeptin, angiotensinogen, monocyte chemoattractant protein 1, kidney injury molecule-1 and urine-to-plasma urea ratio among many others. The aim of the current review is to provide an overview of all of the published evidence on potentially clinically valuable serum and urine biomarkers that could be used for predicting disease progression or response to therapy in patients with ADPKD. Hopefully, this review will encourage future longitudinal prospective clinical studies evaluating proposed biomarkers as prognostic tools to improve management and outcome of ADPKD patients in everyday clinical practice.PMID:38027263 | PMC:PMC10667601 | DOI:10.3389/fped.2023.1274435

Biological and clinical significance of radiomics features obtained from magnetic resonance imaging preceding pre-carbon ion radiotherapy in prostate cancer based on radiometabolomics

Wed, 29/11/2023 - 12:00
Front Endocrinol (Lausanne). 2023 Oct 20;14:1272806. doi: 10.3389/fendo.2023.1272806. eCollection 2023.ABSTRACTINTRODUCTION: We aimed to investigate the feasibility of metabolomics to explain the underlying biological implications of radiomics features obtained from magnetic resonance imaging (MRI) preceding carbon ion radiotherapy (CIRT) in patients with prostate cancer and to further explore the clinical significance of radiomics features on the prognosis of patients, based on their biochemical recurrence (BCR) status.METHODS: Metabolomic results obtained using high-performance liquid chromatography coupled with tandem mass spectrometry of urine samples, combined with pre-RT radiomic features extracted from MRI images, were evaluated to investigate their biological significance. Receiver operating characteristic (ROC) curve analysis was subsequently conducted to examine the correlation between these biological implications and clinical BCR status. Statistical and metabolic pathway analyses were performed using MetaboAnalyst and R software.RESULTS: Correlation analysis revealed that methionine alteration extent was significantly related to four radiomic features (Contrast, Difference Variance, Small Dependence High Gray Level Emphasis, and Mean Absolute Deviation), which were significantly correlated with BCR status. The area under the curve (AUC) for BCR prediction of these four radiomic features ranged from 0.704 to 0.769, suggesting that the higher the value of these four radiomic features, the greater the decrease in methionine levels after CIRT and the lower the probability of BCR. Pre-CIRT MRI radiomic features were associated with CIRT-suppressed metabolites.DISCUSSION: These radiomic features can be used to predict the alteration in the amplitude of methionine after CIRT and the BCR status, which may contribute to the optimization of the CIRT strategy and deepen the understanding of PCa.PMID:38027108 | PMC:PMC10644841 | DOI:10.3389/fendo.2023.1272806

The metabolic repression effect of carbon-ion radiotherapy in synchronous hormone-sensitive oligometastatic prostate cancer

Wed, 29/11/2023 - 12:00
Front Endocrinol (Lausanne). 2023 Nov 13;14:1291653. doi: 10.3389/fendo.2023.1291653. eCollection 2023.ABSTRACTBACKGROUND: Metastatic prostate cancer (PCa) poses a significant public health concern. While radiation therapy (RT) is commonly utilized in the treatment of synchronous oligometastatic hormone sensitive prostate cancer (OM-HSPC), the occurrence of biochemical recurrence still remains. To deepen our understanding and optimize the outcome of OM-HSPC, we conducted this study to investigate the characteristics of PCa progression and explore potential synergistic mechanisms involving carbon-ion radiotherapy (CIRT) and neoadjuvant androgen deprivation treatment (naADT) in OM-HSPC.METHODS: Metabolomic analysis was conducted with 72 urinary samples (at different timepoints) from 33 Patients (T2-3N0M0-1b) and 18 healthy volunteers by using liquid chromatography-tandem mass spectrometry (LC-MS/MS). MetaboAnalyst website and R software were employed for metabolomic analysis and visualization (using the criteria of p value < 0.05 and |FC|>1.5). The impact of CIRT on metabolism were further verified and explored through in vitro and in vivo experiments.RESULTS: We found that most metabolites (223 out of 233) were upregulated in treatment-naïve PCa samples compared to healthy samples. After naADT, 60 core risk metabolites were still significantly related to PCa's progression, and the glutamine level which was significantly higher in OM-HSPC compared to other groups. Remarkably, after CIRT treatment, the glutamine levels in OM-HSPC were significantly reduced to the level of healthy samples. Experiments further confirmed CIRT's ability to suppress glutamine levels in PCa tumors and its potential enhancement with glutamine deprivation intervention.CONCLUSION: CIRT with naADT might synergistically inhibit HS-OMPC development, progression and even the ADT resistance through glutamine metabolism repression, moreover, the glutamine metabolism might be a novel target to further improved the efficacy of CIRT.PMID:38027094 | PMC:PMC10680404 | DOI:10.3389/fendo.2023.1291653

Corrigendum: Effects of Xiao Chengqi formula on slow transit constipation by assessing gut microbiota and metabolomics analysis <em>in vitro</em> and <em>in vivo</em>

Wed, 29/11/2023 - 12:00
Front Pharmacol. 2023 Oct 31;14:1256600. doi: 10.3389/fphar.2023.1256600. eCollection 2023.ABSTRACT[This corrects the article DOI: 10.3389/fphar.2022.864598.].PMID:38027023 | PMC:PMC10644777 | DOI:10.3389/fphar.2023.1256600

The alleviating effect of <em>Scutellaria amoena</em> extract on the regulation of gut microbiota and its metabolites in NASH rats by inhibiting the NLRP3/ASC/caspase-1 axis

Wed, 29/11/2023 - 12:00
Front Pharmacol. 2023 Nov 7;14:1143785. doi: 10.3389/fphar.2023.1143785. eCollection 2023.ABSTRACTBackground: Scutellaria amoena (SA) is the root of S. amoena C.H. Wright of Labiatae, also known as Scutellaria southwestern. This is mainly distributed in Sichuan, Yunnan, and Guizhou in China. In southwest China, SA is used as an alternative method to genuine medicine for the treatment of allergy, diarrhea, inflammation, hepatitis, and bronchitis. Thus far, studies on the effects of SA on non-alcoholic steatohepatitis (NASH) are lacking. This paper investigated the effect of SA on the regulation of gut microbiota and its metabolites in NASH rats by inhibiting the NOD-like receptor 3 (NLRP3)/apoptosis-associated speck-like protein (ASC)/caspase-1 axis. Methods: A NASH rat model was induced by a high-fat diet (HFD) for 12 weeks, and rats were orally given different doses of SA extracts (150 and 300 mg/kg/d) for 6 weeks. Changes in histological parameters, body weight, organ indexes, cytokines, and biochemical parameters related to NLRP3 in NASH rats were checked. 16S rRNA gene sequencing and UPLC-MS/MS technology were used to analyze the changes in the gut microbiota composition and its metabolites in NASH rats. Results: SA significantly inhibited the HFD-induced increase in body weight, lipid levels, and inflammatory infiltration. SA notably inhibited the HFD-induced increase in the upper and lower factors of NLRP3, such as transforming growth factor (TGF)-β, tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-18, pro-IL-18, IL-1β, pro-IL-1β, NLRP3, ASC, and caspase-1. Additionally, mRNA expressions of caspase-1, NLRP3, and ASC were significantly downregulated after SA treatment. The results of the intestinal flora showed that SA could increase the diversity of flora and change its structure and composition in NASH rats by reducing Firmicutes/Bacteroidetes (F/B) ratio, Blautia (genus), Lachospiraceae (family), and Christensenellaceae R-7 group (genus), and increasing Muribaculaceae (family) and Bacteroides (genus). The metabolomics revealed that 24 metabolites were possibly the key metabolites for SA to regulate the metabolic balance of NASH rats, including chenodeoxycholic acid, xanthine, and 9-OxoODE. Nine metabolic pathways were identified, including primary bile acid biosynthesis, bile secretion, purine metabolism, and secondary bile acid biosynthesis. Conclusion: SA can regulate the intestinal microbial balance and metabolic disorder by inhibiting the NLRP3/ASC/caspase-1 axis to relieve NASH.PMID:38026986 | PMC:PMC10660680 | DOI:10.3389/fphar.2023.1143785

Characteristics of the gut microbiome and metabolic profile in elderly patients with sarcopenia

Wed, 29/11/2023 - 12:00
Front Pharmacol. 2023 Nov 3;14:1279448. doi: 10.3389/fphar.2023.1279448. eCollection 2023.ABSTRACTIntroduction: There is growing evidence of research indicating that the gut microbiota is involved in the development of sarcopenia. Nevertheless, there exists a notable deficiency in comprehension concerning the connection between irregularities in the intestinal microbiome and metabolic processes in older individuals suffering from sarcopenia. Methods: To analyze fecal samples obtained from a cohort of 30 older patients diagnosed with sarcopenia as well as 30 older patients without sarcopenia, this study employed 16S rDNA sequencing and liquid chromatography-mass spectrometry (LC-MS)-based non-targeted metabolomics profiling techniques. Results: As a result, we found that 29 genera and 172 metabolites were significantly altered in the sarcopenic patients. Among them, Blautia, Lachnospiraceae_unclassified, and Subdoligranulum were the bacteria with a potential diagnostic value for sarcopenia diagnosis. Correlation analysis between clinical indices and these gut bacteria suggested that the IL-6 level was negatively correlated with Blautia. Function prediction analysis demonstrated that 17 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways differ significantly between sarcopenic and non-sarcopenic patients. The primary classes of metabolites identified in the study included lipids and lipid-like molecules, organic acids and derivatives, and organoheterocyclic compounds. KEGG enrichment analysis showed that purine metabolism, arginine and proline metabolism, alanine, aspartate, and glutamate metabolism, butanoate metabolism, and histidine metabolism may contribute to the development of sarcopenia. The correlation study on gut microbiota and metabolites found that Lachnospiraceae_unclassified was positively associated with seven metabolites that were more abundant in the non-sarcopenia group and negatively correlated with three metabolites that were more abundant in the sarcopenia group. In addition, Subdoligranulum was positively correlated with seven metabolites that were lacking in sarcopenia and negatively correlated with two metabolites that were enriching in sarcopenia. Moreover, Blautia was positively associated with xanthosine. Discussion: We conducted a study on the intestinal microbiota and metabolic profile of elderly individuals with sarcopenia, offering a comprehensive analysis of the overall ecosystem. Through this investigation, we were able to validate existing research on the gut-muscle axis and further investigate potential pathogenic processes and treatment options for sarcopenia.PMID:38026977 | PMC:PMC10654747 | DOI:10.3389/fphar.2023.1279448

Integrative metabolomic and network pharmacological analysis reveals potential mechanisms of <em>Cardamine circaeoides</em> Hook.f. &amp; Thomson in alleviating potassium oxonate-induced asymptomatic hyperuricemia in rats

Wed, 29/11/2023 - 12:00
Front Pharmacol. 2023 Nov 2;14:1281411. doi: 10.3389/fphar.2023.1281411. eCollection 2023.ABSTRACTCardamine circaeoides Hook.f. & Thomson (CC), a herb of the genus Cardamine (family Brassicaceae), has a rich historical usage in China for both culinary and medicinal purposes. It is distinguished by its remarkable ability to hyperaccumulate selenium (Se). CC has demonstrated efficacy in the prevention of metabolic disorders. However, investigations into the effects of CC on asymptomatic hyperuricemia remain scarce. The objective of this study is to elucidate the mechanism by which CC aqueous extract (CCE) exerts its anti-hyperuricemic effects on asymptomatic hyperuricemic rats induced by potassium oxonate (PO) by integrating metabolomics and network pharmacological analysis. Asymptomatic hyperuricemia was induced by feeding rats with PO (1000 mg/kg) and CCE (0.75, 1.5, or 3 g/kg) once daily for 30 days. Various parameters, including body weight, uric acid (UA) levels, histopathology of renal tissue, and inflammatory factors (IL-1β, IL-6, IL-8, and TNF-α) were assessed. Subsequently, metabolomic analysis of kidney tissues was conducted to explore the effects of CCE on renal metabolites and the related pathways. Furthermore, network pharmacology was employed to explicate the mechanism of action of CCE components identified through UPLC-Q-TOF-MS analysis. Finally, metabolomic and network-pharmacology analyses were performed to predict crucial genes dysregulated in the disease model and rescued by CCE, which were then subjected to verification by RT-qPCR. The findings revealed that CCE significantly inhibited the UA levels from the 21st day to the 30th day. Moreover, CCE exhibited significant inhibition of IL-1β, IL-6, IL-8, and TNF-α levels in renal tissues. The dysregulation of 18 metabolites and the tyrosine, pyrimidine, cysteine, methionine, sphingolipid, and histidine metabolism pathways was prevented by CCE treatment. A joint analysis of targets predicted using the network pharmacology approach and the differential metabolites found in metabolics predicted 8 genes as potential targets of CCE, and 3 of them (PNP gene, JUN gene, and ADA gene) were verified at the mRNA level by RT-qPCR. We conclude that CCE has anti-hyperuricemia effects and alleviates renal inflammation in a rat model of hyperuricemia, and these efficacies are associated with the reversal of increased ADA, PNP, and JUN mRNA expression in renal tissues.PMID:38026974 | PMC:PMC10652788 | DOI:10.3389/fphar.2023.1281411

Prolonged administration of total glucosides of paeony improves intestinal immune imbalance and epithelial barrier damage in collagen-induced arthritis rats based on metabolomics-network pharmacology integrated analysis

Wed, 29/11/2023 - 12:00
Front Pharmacol. 2023 Nov 13;14:1187797. doi: 10.3389/fphar.2023.1187797. eCollection 2023.ABSTRACTRheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by synovial inflammation and joint damage with complex pathological mechanisms. In recent years, many studies have shown that the dysregulation of intestinal mucosal immunity and the damage of the epithelial barrier are closely related to the occurrence of RA. Total glucosides of paeony (TGP) have been used clinically for the treatment of RA in China for decades, while the pharmacological mechanism is still uncertain. The purpose of this study was to investigate the regulatory effect and mechanism of TGP on intestinal immunity and epithelial barrier in RA model rats. The results showed that TGP alleviated immune hyperfunction by regulating the ratio of CD3+, CD4+ and CD8+ in different lymphocyte synthesis sites of the small intestine, including Peyer's patches (PPs), intraepithelial lymphocytes (IELs), and lamina propria lymphocytes (LPLs). Specially, TGP first exhibited immunomodulatory effects on sites close to the intestinal lumen (IELs and LPLs), and then on PPs far away from the intestinal lumen as the administration time prolonged. Meanwhile, TGP restores the intestinal epithelial barrier by upregulating the ratio of villi height (V)/crypt depth (C) and expression of tight junction proteins (ZO-1, occludin). Finally, the integrated analysis of metabolomics-network pharmacology was also used to explore the possible regulation mechanism of TGP on the intestinal tract. Metabolomics analysis revealed that TGP reversed the intestinal metabolic profile disturbance in CIA rats, and identified 32 biomarkers and 163 corresponding targets; network pharmacology analysis identified 111 potential targets for TGP to treat RA. By intersecting the results of the two, three key targets such as ADA, PNP and TYR were determined. Pharmacological verification experiments showed that the levels of ADA and PNP in the small intestine of CIA rats were significantly increased, while TGP significantly decreased their ADA and PNP levels. In conclusion, purine metabolism may play an important role in the process of TGP improving RA-induced intestinal immune imbalance and impaired epithelial barrier.PMID:38026929 | PMC:PMC10679728 | DOI:10.3389/fphar.2023.1187797

Exploring the benefits of in-diet versus repeated oral dosing of saracatinib (AZD0530) in chronic studies: insights into pharmacokinetics and animal welfare

Wed, 29/11/2023 - 12:00
Front Vet Sci. 2023 Nov 9;10:1297221. doi: 10.3389/fvets.2023.1297221. eCollection 2023.ABSTRACTSaracatinib/AZD0530 (SAR), a Src tyrosine kinase inhibitor, mitigates seizure-induced brain pathology in epilepsy models upon repeated oral dosing. However, repeated dosing is stressful and can be challenging in some seizing animals. To overcome this issue, we have incorporated SAR-in-Diet and compared serum pharmacokinetics (PK) and brain concentrations with conventional repeated oral dosing. Saracatinib in solution or in-diet was stable at room temperature for >4 weeks (97 ± 1.56%). Adult Sprague Dawley rats on SAR-in-Diet consumed ~1.7 g/day less compared to regular diet (16.82 ± 0.6 vs. 18.50 ± 0.5 g/day), but the weight gain/day was unaffected (2.63 ± 0.5 g/day vs. 2.83 ± 0.2 g/day). Importantly, we achieved the anticipated SAR dose range from 2.5-18.7 mg/kg of rat in response to varying concentrations of SAR-in-Diet from 54 to 260 ppm of feed, respectively. There was a strong and significant correlation between SAR-in-Diet dose (mg/kg) and serum saracatinib concentrations (ng/ml). Serum concentrations also did not vary significantly between SAR-in-Diet and repeated oral dosing. The hippocampal saracatinib concentrations derived from SAR-in-Diet treatment were higher than those derived after repeated oral dosing (day 3, 546.8 ± 219.7 ng/g vs. 238.6 ± 143 ng/g; day 7, 300.7 ± 43.4 ng/g vs. 271.1 ± 62.33 ng/g). Saracatinib stability at room temperature and high serum and hippocampal concentrations in animals fed on SAR-in-Diet are useful to titer the saracatinib dose for future animal disease models. Overall, test drugs in the diet is an experimental approach that addresses issues related to handling stress-induced variables in animal experiments.PMID:38026620 | PMC:PMC10666625 | DOI:10.3389/fvets.2023.1297221

Transcriptome and metabolome profiling to elucidate the mechanism underlying the poor growth of <em>Streptococcus suis</em> serotype 2 after orphan response regulator CovR deletion

Wed, 29/11/2023 - 12:00
Front Vet Sci. 2023 Nov 7;10:1280161. doi: 10.3389/fvets.2023.1280161. eCollection 2023.ABSTRACTThe deletion of orphan response regulator CovR reduces the growth rate of Streptococcus suis serotype 2 (S. suis 2). In this study, metabolome and transcriptome profiling were performed to study the mechanisms underlying the poor growth of S. suis 2 caused by the deletion of orphan response regulator CovR. By comparing S. suis 2 (ΔcovR) and S. suis 2 (SC19), 146 differentially accumulated metabolites (upregulated: 83 and downregulated: 63) and 141 differentially expressed genes (upregulated: 86 and downregulated: 55) were identified. Metabolome and functional annotation analysis revealed that the growth of ΔcovR was inhibited by the imbalance aminoacyl tRNA biosynthesis (the low contents of L-lysine, L-aspartic acid, L-glutamine, and L-glutamic acid, and the high content of L-methionine). These results provide a new insight into the underlying poor growth of S. suis 2 caused by the deletion of orphan response regulator CovR. Metabolites and candidate genes regulated by the orphan response regulator CovR and involved in the growth of S. suis 2 were reported in this study.PMID:38026618 | PMC:PMC10661955 | DOI:10.3389/fvets.2023.1280161

Disturbance of Adaptive Immunity System Was Accompanied by a Decrease in Plasma Short-Chain Fatty Acid for Patients Hospitalized During SARS-CoV-2 Infection After COVID-19 Vaccination

Wed, 29/11/2023 - 12:00
J Inflamm Res. 2023 Nov 14;16:5261-5272. doi: 10.2147/JIR.S434860. eCollection 2023.ABSTRACTINTRODUCTION: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can lead to disorders of immune function and a decrease in the diversity of intestinal flora. We aimed to explore the changes of circulating immune cell subsets and the plasma level of intestinal short-chain fatty acids (SCFAs) in patients with Coronavirus disease 2019 (COVID-19), further understanding the pathogenesis of COVID-19.METHODS: The study included 83 newly diagnosed COVID-19 patients and 39 non-COVID-19 controls. All have completed a full course of vaccination against SARS-CoV-2. The levels of peripheral lymphocyte subsets and plasma cytokines were detected by flow cytometry. Targeted metabolomics was used to explore the level of SCFAs in plasma.RESULTS: Compared with the non-COVID-19 group, COVID-19 patients showed a decrease in CD19+B cells, CD4+T cells, CD8+T cells, NK cells, CD4+CD8+T cells and CD4-CD8-T cells (all p<0.001) and concomitantly an increase in sIL-2R, IL-6 and IL-10 (all p<0.005). These alterations were more pronounced in those critical patients. In addition, COVID-19 patients had lower levels of propanoic acid (PA), butyric acid (BA), isobutyric acid (IBA) and isohexanoic acid (ICA) (all p<0.01). Among them, the level of ICA is positively correlated with the absolute number of immune cells.CONCLUSION: Our study suggests the immune cell subsets in COVID-19 patients who had completed vaccination were still severely disturbed and concomitantly lower SCFAs, especially in severe patients with poor prognosis. Lower levels of plasma SCFAs may contribute to lymphopenia in COVID-19. The potential relationship between plasma SCFAs and immune cell reduction provides a new direction for the treatment of COVID-19.PMID:38026252 | PMC:PMC10656857 | DOI:10.2147/JIR.S434860

Anti-Inflammatory and Therapeutic Effects of a Novel Small-Molecule Inhibitor of Inflammation in a Male C57BL/6J Mouse Model of Obesity-Induced NAFLD/MAFLD

Wed, 29/11/2023 - 12:00
J Inflamm Res. 2023 Nov 16;16:5339-5366. doi: 10.2147/JIR.S413565. eCollection 2023.ABSTRACTPURPOSE: Non-alcoholic fatty liver disease (NAFLD), recently renamed metabolic (dysfunction) associated fatty liver disease (MAFLD), is the most common chronic liver disease in the United States. Presently, there is an intense and ongoing effort to identify and develop novel therapeutics for this disease. In this study, we explored the anti-inflammatory activity of a new compound, termed IOI-214, and its therapeutic potential to ameliorate NAFLD/MAFLD in male C57BL/6J mice fed a high fat (HF) diet.METHODS: Murine macrophages and hepatocytes in culture were treated with lipopolysaccharide (LPS) ± IOI-214 or DMSO (vehicle), and RT-qPCR analyses of inflammatory cytokine gene expression were used to assess IOI-214's anti-inflammatory properties in vitro. Male C57BL/6J mice were also placed on a HF diet and treated once daily with IOI-214 or DMSO for 16 weeks. Tissues were collected and analyzed to determine the effects of IOI-214 on HF diet-induced NAFL D/MAFLD. Measurements such as weight, blood glucose, serum cholesterol, liver/serum triglyceride, insulin, and glucose tolerance tests, ELISAs, metabolomics, Western blots, histology, gut microbiome, and serum LPS binding protein analyses were conducted.RESULTS: IOI-214 inhibited LPS-induced inflammation in macrophages and hepatocytes in culture and abrogated HF diet-induced mesenteric fat accumulation, hepatic inflammation and steatosis/hepatocellular ballooning, as well as fasting hyperglycemia without affecting insulin resistance or fasting insulin, cholesterol or TG levels despite overall obesity in vivo in male C57BL/6J mice. IOI-214 also decreased systemic inflammation in vivo and improved gut microbiota dysbiosis and leaky gut.CONCLUSION: Combined, these data indicate that IOI-214 works at multiple levels in parallel to inhibit the inflammation that drives HF diet-induced NAFLD/MAFLD, suggesting that it may have therapeutic potential for NAFLD/MAFLD.PMID:38026235 | PMC:PMC10658948 | DOI:10.2147/JIR.S413565

Short salsalate administration affects cell proliferation, metabolism, and inflammation in polycystic kidney disease

Wed, 29/11/2023 - 12:00
iScience. 2023 Oct 19;26(11):108278. doi: 10.1016/j.isci.2023.108278. eCollection 2023 Nov 17.ABSTRACTMetabolic reprogramming is a driver of autosomal dominant polycystic kidney disease (ADPKD) progression and a potential therapeutic intervention route. We showed before that the AMP-associated protein kinase (AMPK) activator salsalate attenuates cystic disease progression. Here, we aim to study the early, direct effects of short salsalate treatment in adult-onset conditional Pkd1 deletion mice. Cystic mice were treated with salsalate for two weeks, after which NMR metabolomics and RNA sequencing analyses were performed. Pkd1 deletion resulted in clear metabolomic dysregulation. Short salsalate treatment has small, but significant, effects, reverting acetylcarnitine and phosphocholine concentrations back to wildtype levels, and showing associations with altered purine metabolism. RNA sequencing revealed that short salsalate treatment, next to restoring energy metabolism toward wildtype levels, also affects cell proliferation and inflammation, in PKD. We show that salsalate positively affects major dysregulated processes in ADPKD: energy metabolism, cell proliferation, and inflammation, providing more insights into its working mechanisms.PMID:38026227 | PMC:PMC10665819 | DOI:10.1016/j.isci.2023.108278

Uncovering genetic and metabolite markers associated with resistance against anthracnose fruit rot in northern highbush blueberry

Wed, 29/11/2023 - 12:00
Hortic Res. 2023 Aug 20;10(10):uhad169. doi: 10.1093/hr/uhad169. eCollection 2023 Oct.ABSTRACTAnthracnose fruit rot (AFR), caused by the fungal pathogen Colletotrichum fioriniae, is among the most destructive and widespread fruit disease of blueberry, impacting both yield and overall fruit quality. Blueberry cultivars have highly variable resistance against AFR. To date, this pathogen is largely controlled by applying various fungicides; thus, a more cost-effective and environmentally conscious solution for AFR is needed. Here we report three quantitative trait loci associated with AFR resistance in northern highbush blueberry (Vaccinium corymbosum). Candidate genes within these genomic regions are associated with the biosynthesis of flavonoids (e.g. anthocyanins) and resistance against pathogens. Furthermore, we examined gene expression changes in fruits following inoculation with Colletotrichum in a resistant cultivar, which revealed an enrichment of significantly differentially expressed genes associated with certain specialized metabolic pathways (e.g. flavonol biosynthesis) and pathogen resistance. Using non-targeted metabolite profiling, we identified a flavonol glycoside with properties consistent with a quercetin rhamnoside as a compound exhibiting significant abundance differences among the most resistant and susceptible individuals from the genetic mapping population. Further analysis revealed that this compound exhibits significant abundance differences among the most resistant and susceptible individuals when analyzed as two groups. However, individuals within each group displayed considerable overlapping variation in this compound, suggesting that its abundance may only be partially associated with resistance against C. fioriniae. These findings should serve as a powerful resource that will enable breeding programs to more easily develop new cultivars with superior resistance to AFR and as the basis of future research studies.PMID:38025975 | PMC:PMC10660357 | DOI:10.1093/hr/uhad169

Filling out the gaps - identification of fugralins as products of the <em>PKS2</em> cluster in <em>Fusarium graminearum</em>

Wed, 29/11/2023 - 12:00
Front Fungal Biol. 2023 Nov 10;4:1264366. doi: 10.3389/ffunb.2023.1264366. eCollection 2023.ABSTRACTAs one of the grain crop pathogenic fungi with the greatest impacts on agricultural economical as well as human health, an elaborate understanding of the life cycle and subsequent metabolome of Fusarium graminearum is of great interest. Throughout the lifetime of the fungus, it is known to produce a wide array of secondary metabolites, including polyketides. One of the F. graminearum polyketides which has remained a mystery until now has been elucidated in this work. Previously, it was suggested that the biosynthetic product of the PKS2 gene cluster was involved in active mycelial growth, the exact mechanism, however, remained unclear. In our work, disruption and overexpression of the PKS2 gene in F. graminearum enabled structural elucidation of a linear and a cyclic tetraketide with a double methyl group, named fugralin A and B, respectively. Further functional characterization showed that the compounds are not produced during infection, and that deletion and overexpression did not affect pathogenicity or visual growth. The compounds were shown to be volatile, which could point to possible functions that can be investigated further in future studies.PMID:38025899 | PMC:PMC10667903 | DOI:10.3389/ffunb.2023.1264366

Metabolomic analyses uncover an inhibitory effect of niclosamide on mitochondrial membrane potential in cholangiocarcinoma cells

Wed, 29/11/2023 - 12:00
PeerJ. 2023 Nov 22;11:e16512. doi: 10.7717/peerj.16512. eCollection 2023.ABSTRACTBACKGROUND: Niclosamide is an oral anthelminthic drug that has been used for treating tapeworm infections. Its mechanism involves the disturbance of mitochondrial membrane potential that in turn inhibits oxidative phosphorylation leading to ATP depletion. To date, niclosamide has been validated as the potent anti-cancer agent against several cancers. However, the molecular mechanisms underlying the effects of niclosamide on the liver fluke Opisthorchis viverrini (Ov)-associated cholangiocarcinoma (CCA) cell functions remain to be elucidated. The aims of this study were to investigate the effects of niclosamide on CCA cell proliferation and on metabolic phenoconversion through the alteration of metabolites associated with mitochondrial function in CCA cell lines.MATERIALS AND METHODS: The inhibitory effect of niclosamide on CCA cells was determined using SRB assay. A mitochondrial membrane potential using tetramethylrhodamine, ethyl ester-mitochondrial membrane potential (TMRE-MMP) assay was conducted. Liquid chromatography-mass spectrometry-based metabolomics was employed to investigate the global metabolic changes upon niclosamide treatment. ATP levels were measured using CellTiter-Glo® luminescent cell viability assay. NAD metabolism was examined by the NAD+/NADH ratio.RESULTS: Niclosamide strongly inhibited CCA cell growth and reduced the MMP of CCA cells. An orthogonal partial-least square regression analysis revealed that the effects of niclosamide on suppressing cell viability and MMP of CCA cells were significantly associated with an increase in niacinamide, a precursor in NAD synthesis that may disrupt the electron transport system leading to suppression of NAD+/NADH ratio and ATP depletion.CONCLUSION: Our findings unravel the mode of action of niclosamide in the energy depletion that could potentially serve as the promising therapeutic strategy for CCA treatment.PMID:38025687 | PMC:PMC10676079 | DOI:10.7717/peerj.16512

Integrated proteomics and metabolomics analysis of D-pinitol function during hippocampal damage in streptozocin-induced aging-accelerated mice

Wed, 29/11/2023 - 12:00
Front Mol Neurosci. 2023 Oct 30;16:1251513. doi: 10.3389/fnmol.2023.1251513. eCollection 2023.ABSTRACTPURPOSE: Diabetes can cause hippocampal damage and lead to cognitive impairment. Diabetic cognitive impairment (DCI) is a chronic complication of diabetes associated with a high disability rate; however, its pathogenesis and therapeutic targets are unclear. We aimed to explore the mechanism of hippocampal damage during diabetes and evaluate the potential role of D-pinitol (DP) in protecting hippocampal tissue and improving cognitive dysfunction.METHODS: DP (150 mg/kg/day) was administered intragastrically to streptozocin-induced aging-accelerated mice for 8 weeks. Hippocampal tissues were examined using tandem mass tag (TMT)-based proteomics and liquid chromatography-mass spectrometry (LC-MS)/MS-based non-targeted metabolomic analysis. Differentially expressed proteins (DEPs) and differentially regulated metabolites (DRMs) were screened for further analysis, and some DEPs were verified using western blotting.RESULTS: Our results showed that 329 proteins had significantly altered hippocampal expression in untreated diabetic mice (DM), which was restored to normal after DP treatment in 72 cases. In total, 207 DRMs were identified in the DM group, and the expression of 32 DRMs was restored to normal post-DP treatment. These proteins and metabolites are involved in metabolic pathways (purine metabolism, arginine and proline metabolism, and histidine metabolism), actin cytoskeleton regulation, oxidative phosphorylation, and Rap1-mediated signaling.CONCLUSIONS: Our study may help to better understand the mechanism of diabetic hippocampal damage and cognitive impairment and suggest a potential therapeutic target.PMID:38025258 | PMC:PMC10664147 | DOI:10.3389/fnmol.2023.1251513

Protective effects of dioscin against Parkinson's disease via regulating bile acid metabolism through remodeling gut microbiome/GLP-1 signaling

Wed, 29/11/2023 - 12:00
J Pharm Anal. 2023 Oct;13(10):1153-1167. doi: 10.1016/j.jpha.2023.06.007. Epub 2023 Jun 16.ABSTRACTIt is necessary to explore potent therapeutic agents via regulating gut microbiota and metabolism to combat Parkinson's disease (PD). Dioscin, a bioactive steroidal saponin, shows various activities. However, its effects and mechanisms against PD are limited. In this study, dioscin dramatically alleviated neuroinflammation and oxidative stress, and restored the disorders of mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). 16 S rDNA sequencing assay demonstrated that dioscin reversed MPTP-induced gut dysbiosis to decrease Firmicutes-to-Bacteroidetes ratio and the abundances of Enterococcus, Streptococcus, Bacteroides and Lactobacillus genera, which further inhibited bile salt hydrolase (BSH) activity and blocked bile acid (BA) deconjugation. Fecal microbiome transplantation test showed that the anti-PD effect of dioscin was gut microbiota-dependent. In addition, non-targeted fecal metabolomics assays revealed many differential metabolites in adjusting steroid biosynthesis and primary bile acid biosynthesis. Moreover, targeted bile acid metabolomics assay indicated that dioscin increased the levels of ursodeoxycholic acid, tauroursodeoxycholic acid, taurodeoxycholic acid and β-muricholic acid in feces and serum. In addition, ursodeoxycholic acid administration markedly improved the protective effects of dioscin against PD in mice. Mechanistic test indicated that dioscin significantly up-regulated the levels of takeda G protein-coupled receptor 5 (TGR5), glucagon-like peptide-1 receptor (GLP-1R), GLP-1, superoxide dismutase (SOD), and down-regulated NADPH oxidases 2 (NOX2) and nuclear factor-kappaB (NF-κB) levels. Our data indicated that dioscin ameliorated PD phenotype by restoring gut dysbiosis and regulating bile acid-mediated oxidative stress and neuroinflammation via targeting GLP-1 signal in MPTP-induced PD mice, suggesting that the compound should be considered as a prebiotic agent to treat PD in the future.PMID:38024855 | PMC:PMC10657977 | DOI:10.1016/j.jpha.2023.06.007

Pages