Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Profiling whole-tissue metabolic reprogramming during cutaneous poxvirus infection and clearance

Mon, 27/11/2023 - 12:00
J Virol. 2023 Nov 27:e0127223. doi: 10.1128/jvi.01272-23. Online ahead of print.ABSTRACTHuman poxvirus infections have caused significant public health burdens both historically and recently during the unprecedented global Mpox virus outbreak. Although vaccinia virus (VACV) infection of mice is a commonly used model to explore the anti-poxvirus immune response, little is known about the metabolic changes that occur in vivo during infection. We hypothesized that the metabolome of VACV-infected skin would reflect the increased energetic requirements of both virus-infected cells and immune cells recruited to sites of infection. Therefore, we profiled whole VACV-infected skin using untargeted mass spectrometry to define the metabolome during infection, complementing these experiments with flow cytometry and transcriptomics. We identified specific metabolites, including nucleotides, itaconic acid, and glutamine, that were differentially expressed during VACV infection. Together, this study offers insight into both virus-specific and immune-mediated metabolic pathways that could contribute to the clearance of cutaneous poxvirus infection.PMID:38009914 | DOI:10.1128/jvi.01272-23

An integrated liver, hippocampus and serum metabolomics based on UPLC-Q-TOF-MS revealed the therapeutical mechanism of Ziziphi Spinosae Semen in p-chlorophenylalanine-induced insomnia rats

Mon, 27/11/2023 - 12:00
Biomed Chromatogr. 2023 Nov 27:e5796. doi: 10.1002/bmc.5796. Online ahead of print.ABSTRACTZiziphi Spinosae Semen (ZSS), a well-known herbal medicine for treating insomnia, is popular in not only China but also in Europe, India and Iran. However, its underlying mechanisms remain unclear. In this work, taking the targeted organs of insomnia, the liver and hippocampus, as the objects, a combination metabolomics based on ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) was established to illustrate the abnormality of metabolic characteristics of the liver, hippocampus and serum of p-chlorophenylalanine (PCPA)-induced insomnia rats and to demonstrate the mechanism of ZSS in treating insomnia. The results showed that ZSS could restore the brain cell morphology, decrease the degree of hepatocyte necrosis and regulate the disturbance of neurotransmitters and hormones in insomnia rats. In terms of metabolomics, a total of 33 liver metabolites, 25 hippocampal metabolites and 18 serum metabolites were finally selected as the potential biomarkers and an important pathway of phenylalanine, tyrosine and tryptophan biosynthesis was common in three tissues in PCPA rats. Meanwhile, ZSS significantly reversed the levels of 23 liver metabolites, 15 hippocampal metabolites and 5 serum metabolites. The present study demonstrates the actions of ZSS in treating insomnia by enhancing both cerebral and hepatic functions.PMID:38009807 | DOI:10.1002/bmc.5796

An UHPLC-QTOF-MS-based strategy for systematic profiling of chemical constituents and associated in vivo metabolites of a famous traditional Chinese medicine formula, Yinchenhao decoction

Mon, 27/11/2023 - 12:00
Biomed Chromatogr. 2023 Nov 27:e5784. doi: 10.1002/bmc.5784. Online ahead of print.ABSTRACTYinchenhao decoction (YCHD), a famous traditional Chinese medicine formula, has been applied for relieving jaundice in China for more than 1800 years. However, the material basis for YCHD is still unclear, and the chemical composition and metabolism characteristic in vivo are undefined, making the potential effective constituents and mechanism of action unclear. Herein, an ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS)-based strategy was applied for the chemical profiling of YCHD, as well as their in vivo prototypes and global metabolites that defined the metabolome. Our results showed that a total of 139 chemicals were identified in YCHD, including 28 organic acids, 12 monoterpenoids, five diterpenes, three triterpenoids, 17 iridoids, 23 anthraquinones, 26 flavonoids, four coumarins and 21 other types. Moreover, 58 prototypes and 175 metabolites were found in rat biological samples after oral administration of YCHD; those distributed in plasma, liver, intestine and feces were suggested to be potentially effective substances. Oxidation, hydrogenation, decarboxylation and conjugations with methyl, sulfate and glucuronate were considered as the predominant metabolic pathways in vivo. In conclusion, this is a systemic study of chemical constituents and in vivo metabolome profiles of YCHD, contributing to the material basis understanding and further mechanism research.PMID:38009806 | DOI:10.1002/bmc.5784

Functional Connectivity Alterations and Molecular Characterization of the Anterior Cingulate Cortex in Tinnitus Pathology without Hearing Loss

Mon, 27/11/2023 - 12:00
Adv Sci (Weinh). 2023 Nov 27:e2304709. doi: 10.1002/advs.202304709. Online ahead of print.ABSTRACTCompared with individuals with hearing loss, tinnitus patients without hearing loss have more psychological or emotional problems. Tinnitus is closely associated to abnormal metabolism and function of the limbic system, a key brain region for emotion experience, but the underlying molecular mechanism remains unknown. Using whole-brain microvasculature dynamics imaging, the anterior cingulate cortex (ACC) is identified as a key brain region of limbic system involve in the onset of salicylate-induced tinnitus in mice. In the tinnitus group, there is enhanced purine metabolism, oxidative phosphorylation, and a distinct pattern of phosphorylation in glutamatergic synaptic pathway according to the metabolome profiles, quantitative proteomic, and phosphoproteomic data of mice ACC tissue. Electroencephalogram in tinnitus patients with normal hearing thresholds show that the functional connectivity between pregenual anterior cingulate cortex and the primary auditory cortex is significantly increased for high-gamma frequency band, which is positively correlated with the serum glutamate level. These findings indicate that ACC plays an important role in the pathophysiology of tinnitus by interacting with the primary auditory cortex and provide potential molecular targets in the ACC for tinnitus treatment.PMID:38009798 | DOI:10.1002/advs.202304709

CorrelationCalculator and Filigree: Tools for Data-Driven Network Analysis of Metabolomics Data

Mon, 27/11/2023 - 12:00
J Vis Exp. 2023 Nov 10;(201). doi: 10.3791/65512.ABSTRACTA significant challenge in the analysis of omics data is extracting actionable biological knowledge. Metabolomics is no exception. The general problem of relating changes in levels of individual metabolites to specific biological processes is compounded by the large number of unknown metabolites present in untargeted liquid chromatography-mass spectrometry (LC-MS) studies. Further, secondary metabolism and lipid metabolism are poorly represented in existing pathway databases. To overcome these limitations, our group has developed several tools for data-driven network construction and analysis. These include CorrelationCalculator and Filigree. Both tools allow users to build partial correlation-based networks from experimental metabolomics data when the number of metabolites exceeds the number of samples. CorrelationCalculator supports the construction of a single network, while Filigree allows building a differential network utilizing data from two groups of samples, followed by network clustering and enrichment analysis. We will describe the utility and application of both tools for the analysis of real-life metabolomics data.PMID:38009735 | DOI:10.3791/65512

Effect of chronic deltamethrin exposure on brain transcriptome and metabolome of juvenile crucian carp

Mon, 27/11/2023 - 12:00
Environ Toxicol. 2023 Nov 27. doi: 10.1002/tox.24022. Online ahead of print.ABSTRACTDeltamethrin (Del), a widely administered pyrethroid insecticide, has been established as a common contaminant of the freshwater environment and detected in many freshwater ecosystems. In this study, we investigated the changes in brain transcriptome and metabolome of crucian carp after exposure to 0.6 μg/L Del for 28 days. Elevated MDA levels and inhibition of SOD activity indicate damage to the antioxidant system. Moreover, a total of 70 differential metabolites (DMs) were identified using the liquid chromatography-mass spectrometry, including 32 upregulated and 38 downregulated DMs in the Del-exposed group. The DMs associated with chronic Del exposure were enriched in steroid hormone biosynthesis, fatty acid metabolism, and glycerophospholipid metabolism for prostaglandin G2, 5-oxoeicosatetraenoic acid, progesterone, androsterone, etiocholanolone, and hydrocortisone. Transcriptomics analysis revealed that chronic Del exposure caused lipid metabolism disorder, endocrine disruption, and proinflammatory immune response by upregulating the pla2g4, cox2, log5, ptgis, lcn, and cbr expression. Importantly, the integrative analysis of transcriptomics and metabolomics indicated that the arachidonic acid metabolism pathway and steroid hormone biosynthesis were decisive processes in the brain tissue of crucian carp after Del exposure. Furthermore, Del exposure perturbed the tight junction, HIF-1 signaling pathway, and thyroid hormone signaling pathway. Overall, transcriptome and metabolome data of our study offer a new insight to assess the risk of chronic Del exposure in fish brains.PMID:38009670 | DOI:10.1002/tox.24022

Knockout of the sugar transporter OsSTP15 enhances grain yield by improving tiller number due to increased sugar content in the shoot base of rice (Oryza sativa L.)

Mon, 27/11/2023 - 12:00
New Phytol. 2023 Nov 27. doi: 10.1111/nph.19411. Online ahead of print.ABSTRACTSugar transporter proteins (STPs) play critical roles in regulating plant stress tolerance, growth, and development. However, the role of STPs in regulating crop yield is poorly understood. This study elucidates the mechanism by which knockout of the sugar transporter OsSTP15 enhances grain yield via increasing the tiller number in rice. We found that OsSTP15 is specifically expressed in the shoot base and vascular bundle sheath of seedlings and encodes a plasma membrane-localized high-affinity glucose efflux transporter. OsSTP15 knockout enhanced sucrose and trehalose-6-phosphate (Tre6P) synthesis in leaves and improved sucrose transport to the shoot base by inducing the expression of sucrose transporters. Higher glucose, sucrose, and Tre6P contents were observed at the shoot base of stp15 plants. Transcriptome and metabolome analyses of the shoot base demonstrated that OsSTP15 knockout upregulated the expression of cytokinin (CK) synthesis- and signaling pathway-related genes and increased CK levels. These findings suggest that OsSTP15 knockout represses glucose export from the cytoplasm and simultaneously enhances sugar transport from source leaves to the shoot base by promoting the synthesis of sucrose and Tre6P in leaves. Subsequent accumulation of glucose, sucrose, and Tre6P in the shoot base promotes tillering by stimulating the CK signaling pathway.PMID:38009305 | DOI:10.1111/nph.19411

Integrating multi-index determination coupled with hierarchical cluster analysis to evaluate the quality consistency of PVE30, an anti-HSV "glycoprotein" macromolecule of Prunellae Spica

Mon, 27/11/2023 - 12:00
Phytochem Anal. 2023 Nov 27. doi: 10.1002/pca.3309. Online ahead of print.ABSTRACTINTRODUCTION: Prunellae Spica (PS), derived from the dried fruit spikes of Prunella vulgaris L., is a traditional Chinese medicinal herb. Our previous studies found that PVE30, a water-extracting ethanol-precipitating "glycoprotein" macromolecule of PS, was a potential anti-herpes simplex virus (HSV) candidate. However, due to the complex structure and diverse bioactivity of the "glycoprotein", ensuring its quality consistency across different batches of PVE30 becomes particularly challenging. This poses a significant hurdle for new drug development based on PVE30.OBJECTIVE: Our study aimed to integrate multi-index determination coupled with hierarchical cluster analysis (HCA) to holistically profile the quality consistency of "glycoprotein" in PVE30.METHODS: High-performance gel permeation chromatography with refractive index detector (HPGPC-RID) was used to characterise the molecular weight (Mw) distribution, HPLC-PDA was used to quantitatively analyse the composed monosaccharides and amino acids, and UV-VIS was used to quantify the contents of polysaccharides and proteins. Qualitative and quantitative consistency was analysed for each single index in 16 batches of PVE30, and a 16 × 38 data matrix, coupled with HCA, was used to evaluate the holistic quality consistency of PVE30.RESULTS: The newly developed and validated methods were exclusive, linear, precise, accurate, and stable enough to quantify multi-indexes in PVE30. Single-index analysis revealed that 16 batches of PVE30 were qualitatively consistent in Mw distribution, polysaccharides and proteins, and the composition of composed monosaccharides and amino acids but quantitatively inconsistent in the relative contents of some "glycoprotein" macromolecules, as well as the composed monosaccharides/amino acids. HCA showed that the holistic quality of PVE30 was inconsistent, the inconsistency was uncorrelated with the regions where PS was commercially collected, and the contents of 17 amino acids and 2 monosaccharides contributed most to the holistic quality inconsistency.CONCLUSION: Multi-index determination coupled with HCA was successful in evaluating the quality consistency of PVE30, and the significant difference in quantitative indices was not caused by the origin of PS. The cultivating basis should be confirmed for PVE30-based new drug development.PMID:38009261 | DOI:10.1002/pca.3309

Phenotypic flexibility in metabolic adjustments and digestive function in white-shouldered starlings: responses to short-term temperature acclimation

Mon, 27/11/2023 - 12:00
J Exp Biol. 2023 Nov 27:jeb.246214. doi: 10.1242/jeb.246214. Online ahead of print.ABSTRACTChanging the intrinsic rate of metabolic heat production is the main adaptive strategy for small birds to cope with different ambient temperatures. In this experiment, we tested the hypothesis that the small passerine, white-shouldered starlings (Sturnus sinensis), can modulate basal metabolism under temperature acclimation by changing the morphological, physiological and biochemical states of their tissues and organs. We measured the effects of temperature on body mass, basal metabolic rate (BMR), wet mass of various internal organs, state 4 respiration (S4R) and cytochrome c oxidase (CCO) activities in the pectoral muscle and organs, metabolites in the pectoral muscle, energy intake, histological dynamics and the activities of duodenal digestive enzymes. Warm acclimation decreased BMR to a greater extent than cold acclimation. At the organ level, birds in the cold-acclimated group had significantly heavier intestines but significantly lighter pectoral muscles. At the cellular level, birds in the cold-acclimated group showed significantly higher S4R in the liver and heart and CCO activity in the liver and kidney at both the mass-specific and whole-organ levels. A metabolomic analysis of the pectoral tissue revealed significantly higher lipid decomposition, amino acid degradation, ATP hydrolysis, and GTP and biotin synthesis in cold-acclimated birds. Acclimation to cold significantly increased the gross energy intake (GEI), feces energy (FE) and digestive energy intake (DEI) but significantly decreased the digestive efficiency of these birds. Furthermore, cold-acclimated birds had a higher maltase activity and longer villi in the duodenum. Taken together, these data showed that white-shouldered starlings exhibited high phenotypic flexibility in metabolic adjustments and digestive function under temperature acclimation, consistent with the notion that small birds cope with the energy challenges presented by a cold environment by modulating tissue function in a way that would affect BMR.PMID:38009187 | DOI:10.1242/jeb.246214

Differential genomic effects of four nano-sized and one micro-sized CeO<sub>2</sub> particles on HepG2 cells

Mon, 27/11/2023 - 12:00
Mater Express. 2023 Oct;13(10):1799-1811. doi: 10.1166/mex.2023.2527.ABSTRACTThe objective of this research was to perform a genomics study of five cerium oxide particles, 4 nano and one micrometer-sized particles which have been studied previously by our group with respect to cytotoxicity, biochemistry and metabolomics. Human liver carcinoma HepG2 cells were exposed to between 0.3 to 300 ug/ml of CeO2 particles for 72 hours and then total RNA was harvested. Fatty acid accumulation was observed with W4, X5, Z7 and less with Q but not Y6. The gene expression changes in the fatty acid metabolism genes correlated the fatty acid accumulation we detected in the prior metabolomics study for the CeO2 particles named W4, Y6, Z7 and Q, but not for X5. In particular, the observed genomics effects on fatty acid uptake and fatty acid oxidation offer a possible explanation of why many CeO2 particles increase cellular free fatty acid concentrations in HepG2 cells. The major genomic changes observed in this study were sirtuin, ubiquitination signaling pathways, NRF2-mediated stress response and mitochondrial dysfunction. The sirtuin pathway was affected by many CeO2 particle treatments. Sirtuin signaling itself is sensitive to oxidative stress state of the cells and may be an important contributor in CeO2 particle induced fatty acid accumulation. Ubiquitination pathway regulates many protein functions in the cells, including sirtuin signaling, NRF2 mediated stress, and mitochondrial dysfunction pathways. NRF2-mediated stress response and mitochondrial were reported to be altered in many nanoparticles treated cells. All these pathways may contribute to the fatty acid accumulation in the CeO2 particle treated cells.PMID:38009104 | PMC:PMC10667950 | DOI:10.1166/mex.2023.2527

Validation of vaginal microbiome proxies for in vitro experiments that biomimic Lactobacillus-dominant vaginal cultures

Mon, 27/11/2023 - 12:00
Am J Reprod Immunol. 2023 Dec;90(6):e13797. doi: 10.1111/aji.13797.ABSTRACTThe vaginal microbiome includes diverse microbiota dominated by Lactobacillus [L.] spp. that protect against infections, modulate inflammation, and regulate vaginal homeostasis. Because it is challenging to incorporate vaginal microbiota into in vitro models, including organ-on-a-chip systems, we assessed microbial metabolites as reliable proxies in addition to traditional vaginal epithelial cultures (VECs). Human immortalized VECs cultured on transwells with an air-liquid interface generated stratified cell layers colonized by transplanted healthy microbiomes (L. jensenii- or L. crispatus-dominant) or a community representing bacterial vaginosis (BV). After 48-h, a qPCR array confirmed the expected donor community profiles. Pooled apical and basal supernatants were subjected to metabolomic analysis (untargeted mass spectrometry) followed by ingenuity pathways analysis (IPA). To determine the bacterial metabolites' ability to recreate the vaginal microenvironment in vitro, pooled bacteria-free metabolites were added to traditional VEC cultures. Cell morphology, viability, and cytokine production were assessed. IPA analysis of metabolites from colonized samples contained fatty acids, nucleic acids, and sugar acids that were associated with signaling networks that contribute to secondary metabolism, anti-fungal, and anti-inflammatory functions indicative of a healthy vaginal microbiome compared to sterile VEC transwell metabolites. Pooled metabolites did not affect cell morphology or induce cell death (∼5.5%) of VEC cultures (n = 3) after 72-h. However, metabolites created an anti-inflammatory milieu by increasing IL-10 production (p = .06, T-test) and significantly suppressing pro-inflammatory IL-6 (p = .0001), IL-8 (p = .009), and TNFα (p = .0007) compared to naïve VEC cultures. BV VEC conditioned-medium did not affect cell morphology nor viability; however, it induced a pro-inflammatory environment by elevating levels of IL-6 (p = .023), IL-8 (p = .031), and TNFα (p = .021) when compared to L.-dominate microbiome-conditioned medium. VEC transwells provide a suitable ex vivo system to support the production of bacterial metabolites consistent with the vaginal milieu allowing subsequent in vitro studies with enhanced accuracy and utility.PMID:38009054 | DOI:10.1111/aji.13797

Insight into the mechanism and toxicology of nitrofurantoin: a metabolomics approach

Mon, 27/11/2023 - 12:00
Drug Chem Toxicol. 2023 Nov 26:1-10. doi: 10.1080/01480545.2023.2285255. Online ahead of print.ABSTRACTSafety and effectiveness are the two ends of the balance in drug development that needs to be evaluated. The biotransformation of drugs within a living organism could potentiate biochemical insults in the tissue and compromise the safety of drugs. Nitrofurantoin (NFT) is a cheap clinical antibiotic with a wide array of activities against gram-positive and gram-negative organisms. The NFT scaffold has been utilized to develop other derivates or analogues in the quest to repurpose drugs against other infectious diseases. Several techniques were developed over the years to study the mechanism of NFT metabolism and toxicity, such as voltammetry, chromatographic analysis, protein precipitation, liquid-liquid extraction, etc. Due to limitations in these methods, the mechanism of NFT biotransformation in the cell is poorly understood. Metabolomics has been adopted in drug metabolism to understand the mechanism of drug toxicity and could provide a solution to overcome the limitations of current techniques to determine mechanisms of toxicity. Unfortunately, little or no information regarding the metabolomics approach in NFT metabolism and toxicity is available. Hence, this review highlights the metabolomic techniques that can be adopted in NFT metabolism and toxicological studies to encourage the research community to widely adopt and utilize metabolomics in understanding NFT's metabolism and toxicity.PMID:38008969 | DOI:10.1080/01480545.2023.2285255

Gestodene causes masculinization of the western mosquitofish (Gambusia affinis): Insights from ovary metabolomics

Sun, 26/11/2023 - 12:00
Sci Total Environ. 2023 Nov 24:168693. doi: 10.1016/j.scitotenv.2023.168693. Online ahead of print.ABSTRACTGestodene (GES) is a common synthetic progesterone frequently detected in aquatic environments. Chronic exposure to GES can cause masculinization of a variety of fish; however, whether metabolism is closely related to the masculinization has yet to be explored. Hence, the ovary metabolome of adult female western mosquitofish (Gambusia affinis) after exposing to GES (0.0, 5.0, 50.0, and 500.0 ng/L) for 40 days was analyzed by using high-performance liquid chromatography ionization with quadrupole time-of-flight tandem mass spectrometry (HPLC-QTOF-MS). The results showed that GES increased the levels of. cysteine, taurine, ophthalmic acid and cAMP while decreased methionine, these metabolites changes may owing to the oxidative stress of the ovaries; while taurcholic acid and uric acid were decreased along with induced oocyte apopotosis. Steroids hormone metabolism was also significantly affected, with progesterone and cortisol being the most affected. Enzyme-linked immunoassay results showed that estradiol levels were decreased while testosterone levels were increased with GES exposure. In addition, correlation analysis showed that the differential metabolites of some amino acids (e.g. leucine) were strongly correlated with the levels of steroids hormones secreted by the pituitary gland. The results of this study suggest that GES affects ovarian metabolism via the hypothalamus-pituitary-gonad and hypothalamic-pituitary-adrenal axes, impair antioxidant capacity, induce apoptosis in the ovary of G. affinis, and finally caused masculinization.PMID:38008334 | DOI:10.1016/j.scitotenv.2023.168693

The metabolites of light: Untargeted metabolomic approaches bring new clues to understand light-driven acclimation of intertidal mudflat biofilm

Sun, 26/11/2023 - 12:00
Sci Total Environ. 2023 Nov 24:168692. doi: 10.1016/j.scitotenv.2023.168692. Online ahead of print.ABSTRACTThe microphytobenthos (MPB), a microbial community of primary producers, play a key role in coastal ecosystem functioning, particularly in intertidal mudflats. These mudflats experience challenging variations of irradiance, forcing the micro-organisms to develop photoprotective mechanisms to survive and thrive in this dynamic environment. Two major adaptations to light are well described in literature: the excess of light energy dissipation through non-photochemical quenching (NPQ), and the vertical migration in the sediment. These mechanisms trigger considerable scientific interest, but the biological processes and metabolic mechanisms involved in light-driven vertical migration remain largely unknown. To our knowledge, this study investigates for the first time metabolomic responses of a migrational mudflat biofilm exposed for 30 min to a light gradient of photosynthetically active radiation (PAR) from 50 to 1000 μmol photons m-2 s-1. The untargeted metabolomic analysis allowed to identify metabolites involved in two types of responses to light irradiance levels. On the one hand, the production of SFAs and MUFAs, primarily derived from bacteria, indicates a healthy photosynthetic state of MPB under low light (LL; 50 and 100 PAR) and medium light (ML; 250 PAR) conditions. Conversely, when exposed to high light (HL; 500, 750 and 1000 PAR), the MPB experienced light-induced stress, triggering the production of alka(e)nes and fatty alcohols. The physiological and ecological roles of these compounds are poorly described in literature. This study sheds new light on the topic, as it suggests that these compounds may play a crucial and previously unexplored role in light-induced stress acclimation of migrational MPB biofilms. Since alka(e)nes are produced from FAs decarboxylation, these results thus emphasize for the first time the importance of FAs pathways in microphytobenthic biofilms acclimation to light.PMID:38008320 | DOI:10.1016/j.scitotenv.2023.168692

Pharmaceuticals and endocrine disrupting compounds modulate adverse effects of climate change on resource quality in freshwater food webs

Sun, 26/11/2023 - 12:00
Sci Total Environ. 2023 Nov 24:168751. doi: 10.1016/j.scitotenv.2023.168751. Online ahead of print.ABSTRACTFreshwater biodiversity, ecosystem functions and services are changing at an unprecedented rate due to the impacts of vast number of stressors overlapping in time and space. Our study aimed at characterizing individual and combined impacts of pollution with pharmaceuticals (PhACs) and endocrine disrupting compounds (EDCs) and increased water temperature (as a proxy for climate change) on primary producers and first level consumers in freshwaters. We conducted a microcosm experiment with a simplified freshwater food web containing moss (Bryophyta) and shredding caddisfly larvae of Micropterna nycterobia (Trichoptera). The experiment was conducted with four treatments; control (C), increased water temperature + 4 °C (T2), emerging contaminants' mix (EC = 15 PhACs & 5 EDCs), and multiple stressor treatment (MS = EC + T2). Moss exhibited an overall mild response to selected stressors and their combination. Higher water temperature negatively affected development of M. nycterobia through causing earlier emergence of adults and changes in their lipidome profiles. Pollution with PhACs and EDCs had higher impact on metabolism of all life stages of M. nycterobia than warming. Multiple stressor effect was recorded in M. nycterobia adults in metabolic response, lipidome profiles and as a decrease in total lipid content. Sex specific response to stressor effects was observed in adults, with impacts on metabolome generally more pronounced in females, and on lipidome in males. Thus, our study highlights the variability of both single and multiple stressor impacts on different traits, different life stages and sexes of a single insect species. Furthermore, our research suggests that the combined impacts of warming, linked to climate change, and contamination with PhACs and EDCs could have adverse consequences on the population dynamics of aquatic insects. Additionally, these findings point to a potential decrease in the quality of resources available for both aquatic and potentially terrestrial food webs.PMID:38008314 | DOI:10.1016/j.scitotenv.2023.168751

Jiawei guomin decoction regulates the degranulation of mast cells in atopic dermatitis mice via the HIS/PAR-2 pathway

Sun, 26/11/2023 - 12:00
J Ethnopharmacol. 2023 Nov 24:117485. doi: 10.1016/j.jep.2023.117485. Online ahead of print.ABSTRACTETHNOPHARMACOLOGICAL RELEVANCE: Guomin decoction (GMD) is a traditional Chinese medicine commonly used in clinical practice. It has traditionally been used to treat all allergic diseases. Currently, Jiawei Guomin Decoction (JWGMD) is used to treat sensitive skin after initial therapy. Although it has a significant clinical therapeutic effect, the exact role of mast cell degranulation in treating atopic dermatitis (AD) is still unclear.AIM OF THE STUDY: GMD and JWGMD can both treat allergic diseases, while JWGMD focuses on skin allergies. This study aims to explore the potential effect of JWGMD on the degranulation of mast cells in an AD mouse model induced by 2,4-dinitrofluorobenzene (DNFB) and investigate the effectiveness of JWGMD in alleviating disease progression to further provide specific therapeutic targets for treating AD.MATERIALS AND METHODS: The scratching times and skin lesions of model mice induced by DNFB were observed, and skin tissues were collected for subsequent measurement. Histopathological changes in the back skin of mice were observed by haematoxylin eosin (H&E) staining, Toluidine blue staining was used to detect the degranulation of mouse skin mast cells, and the relationship between the expression of histamine (HIS), mast cell tryptase (MCT) and mast cell degranulation was analysed by enzyme-linked immunosorbent assay (ELISA). The expression of protease-activated receptor-2 (PAR-2), histamine 1 receptor (H1R), H2R, H4R and MCT proteins in AD mice was detected by western blot (WB). Immunofluorescence assay (IFA) further confirmed the localization of PAR-2, H1R, H2R, H4R, and MCT proteins in the skin. Quantitative real-time PCR (qPCR) was used to determine PAR-2, H1R, H2R and H4R mRNA levels in skin lesions to further clarify the mechanism by which JWGMD amplifies mast cell degranulation in AD. In addition, a reliable ultrahigh-performance liquid chromatography-quadrupole electrostatic field orbitrap mass spectrometry (UPLC-QE-MS) nontargeted metabolomics analysis was performed to analyse the differences in metabolite abundance between GMD and JWGMD, and these results were used to identify the active components in JWGMD that may have antipruritic and anti-inflammatory properties and inhibit mast cell degranulation.RESULTS: After intermittent stimulation with DNFB, the skin lesions showed extensive desquamation, dryness, scabbing, skin thickening, and slight bleeding. Both treatments alleviated this phenomenon and reduced the number of scratches, with JWGMD being the most effective. JWGMD can significantly reduce inflammatory cell infiltration, oedema, and some capillary neogenesis in mice and reduce the degranulation of mast cells. The ELISA results showed that JWGMD can increase the levels of MCT and HIS proteins. The WB and IFA results demonstrated that JWGMD reduced the expression levels of PAR-2, H1R, H4R, and MCT proteins in skin lesions, with protein localization mainly in the epidermal layer, while H2R protein levels were increased and mainly localized in the dermis. In addition, JWGMD downregulates the mRNA expression of PAR-2, H1R, H2R, and H4R. Interestingly, through UPLC-QE-MS nontargeted metabolomic analysis, we detected the anti-inflammatory and antiallergy active substances in JWGMD, such as methyl eugenol, dictamnine and sinapine.CONCLUSIONS: JWGMD may alleviate itching through methyl syringol, dictamnine, sinapine and other substances, and its mechanism may be related to inhibiting the HIS/PAR-2 pathway in AD model mice and further regulating the self-amplification of mast cell degranulation. JWGMD is a potential drug for treating AD. Therefore, it deserves continuous attention and research.PMID:38008276 | DOI:10.1016/j.jep.2023.117485

Metabolomic analysis reveals the toxicity mechanisms of bisphenol A on the Microcystis aeruginosa under different phosphorus levels

Sun, 26/11/2023 - 12:00
Environ Pollut. 2023 Nov 24:123022. doi: 10.1016/j.envpol.2023.123022. Online ahead of print.ABSTRACTHarmful cyanobacterial blooms have been a global environmental problem. Discharge of anthropogenic pollutants and excess nutrient import into the freshwater bodies may be the biggest drivers of bloom. Bisphenol A (BPA), a typical endocrine-disrupting compound, is frequently detected in different natural waters, which was a threat to the balance of aquatic ecosystem. Yet mechanistic understanding of the bloom and microcystin generation under combined pollution conditions is still a mystery. Herein, the cellular and metabolomic responses to BPA exposure and phosphorus (P) levels in Microcystis aeruginosa were investigated throughout its growth period. The results showed that the stress response of M. aeruginosa to BPA was characterized by a decrease in growth density, an increase in P utilization, an increase in ATPase activity, a disruption of the photosynthetic system, and an increase in the production and release of microcystins (MCs). However, these effects are highly dependent on the growth stage of the cyanobacterial cell and the magnitude of the added P concentration. In addition, exposure to a high concentration (10 μM) of BPA significantly stimulated the production of 20.7% more and the release of 29.2% more MCs from M. aeruginosa cells at a low P level. The responses of reactive oxygen species (ROS), superoxide dismutase (SOD) and malondialdehyde (MDA) suggested that exposure to BPA exposure at a low P level can lead to oxidative stress in M. aeruginosa. In addition, the differentially expressed 63 metabolites showed that cell growth, energy generation and photosynthesis were mainly regulated by the metabolic network of 3-phosphoglyceric acid (3-PGA), D-glucose 6-phosphate, UDP-α-D-galactose and UDP-N-acetyl-D-galactosamine (UDP-GalNAc) metabolism. Amino acids and lipid metabolism collectively mediated MCs production and release. These findings will provide important references for the control of harmful cyanobacterial blooms under combined pollution.PMID:38008252 | DOI:10.1016/j.envpol.2023.123022

Low-temperature acclimation related with developmental regulations of polyamines and ethylene metabolism in wheat recombinant inbred lines

Sun, 26/11/2023 - 12:00
Plant Physiol Biochem. 2023 Nov 22;205:108198. doi: 10.1016/j.plaphy.2023.108198. Online ahead of print.ABSTRACTWinter survival is determined by complicated developmental regulations enabling wheat to adjust their transcriptome and metabolome to develop low temperature (LT) tolerance. The aim of the study was to clarify the metabolic responses developmentally regulated in six F6 recombinant inbred lines from a cross between Pishtaz (spring parent) and Mironovskaya 808 (winter parent). Spring genotypes, including pishtaz, RILs 4006 and 4014 showed lower LT tolerance, PAs (except the spermin), GABA and proline contents and DPPH• scavenging capacity. In these genotypes, genes and enzymes involved in the pathways of PAs and GABA degradation and ethylene biosynthesis were more active than other genotypes. RILs 4012 and 4016 with short vernalization displayed higher tolerance and lower H2O2 content compared to Pishtaz. Strong vernalization requirements in winter and facultative genotypes (Mironovskaya 808 parent and RILs 4003 and 4005) results in up-regulation of the metabolites and genes involved in PAs and GABA biosynthesis pathways (particularly when vernalization fulfillment occurred) to establish high tolerance as compared to genotypes without vernalization requirement. LT tolerance in all genotypes significantly decreased after vernalization fulfillment in February. Results indicated that LT tolerance was partly validated from developmental regulation of PAs, GABA, and ethylene metabolism during venalization and LT acclimation.PMID:38008007 | DOI:10.1016/j.plaphy.2023.108198

Urinary metabolite signatures reflect the altered host metabolism in severe obstructive sleep apnea

Sun, 26/11/2023 - 12:00
J Chromatogr B Analyt Technol Biomed Life Sci. 2023 Nov 18;1231:123938. doi: 10.1016/j.jchromb.2023.123938. Online ahead of print.ABSTRACTObstructive sleep apnea (OSA) is a common sleep-related breathing disorder. The onset and progression of OSA are often linked with severe cardiovascular and metabolic comorbidities. At the same time, given the increasing prevalence of OSA, novel methods to screen OSA and its follow-up are needed. Untargeted metabolic profiling of OSA patients and healthy controls was planned to capture a snapshot of urinary metabolites and potential biomarkers using the gas chromatography-mass spectrometry (GC-MS) method.Polysomnography (PSG) confirmed severe OSA patients with AHI index ≥ 30 were considered for urine sample collection. The sample size was constituted of OSA (n = 36) and healthy controls (n = 36). Metabolite extraction and derivatization were performed and metabolomic analysis was performed by using GC-MS.The obtained data set was statistically analyzed using univariate and multivariate analysis. The Orthogonal partial least-squares discriminant analysis (OPLS-DA) was performed to screen differential metabolites between OSA patients and healthy controls.The metabolomic analysis revealed a total of 142 significantly altered metabolites of interest.Biomarker analysis allows for the creation of a list of putative urinary biomarkers including GABA, malic acid, glutamic acid, epichoric acid etc., with an accuracy of 99.8 % to 100 % for OSA screening. Subsequently, pathway analysis revealed that related biochemical pathways like the tricarboxylic acid cycle (TCA), glutamate/glutamine, amino acid and fatty acid metabolism, that are significantly interlinked with these metabolic biomarkers can play a crucial role in the pathogenesis of OSA. This study paves the way to undertake mass screening in a larger population to identify specific and reliable biomarkers.PMID:38007916 | DOI:10.1016/j.jchromb.2023.123938

Liriodendrin exerts protective effects against chronic endometritis in rats by modulating gut microbiota composition and the arginine/nitric oxide metabolic pathway

Sun, 26/11/2023 - 12:00
Int Immunopharmacol. 2023 Nov 25;126:111235. doi: 10.1016/j.intimp.2023.111235. Online ahead of print.ABSTRACTBACKGROUND: Chronic endometritis (CE), a gynecological disease, is characterized by inflammation. Liriodendrin is reported to exhibit anti-inflammatory properties. However, the therapeutic effects of liriodendrin on CE and the underlying molecular mechanisms have not been elucidated. This study aimed to investigate the therapeutic effects of liriodendrin on CE in rats and the underlying mechanisms.METHODS: A CE rat model was established and administered with liriodendrin for 21 days. The serum levels of inflammatory cytokines were examined using enzyme-linked immunosorbent assay. The uterine mRNA levels of cytokines were examined using quantitative real-time polymerase chain reaction analysis. The activation of the Toll-like receptor 4 (TLR4)/NF-κB pathway was investigated using western blotting analysis. The effects of liriodendrin on intestinal flora and serum metabolites were examined using 16S rRNA sequencing and untargeted serum metabolomics, respectively. The protein and mRNA levels of arginase-2 (Arg-2) and the nitric oxide (NO) metabolic pathway-related factors were assessed. Molecular docking was performed to explore the interaction between liriodendrin and Arg-2.RESULTS: Liriodendrin alleviated the CE-induced pathological changes in the uterus, modulated the serum levels of inflammatory cytokines, and downregulated the mRNA and protein levels of TLR4/NF-κB pathway-related factors. Treatment with liriodendrin mitigated the CE-induced upregulation of Firmicutes/Bacteroidetes ratio and Lachnospiraceae abundance and downregulation of Ruminococcaceae abundance. Serum metabolomic analysis revealed that liriodendrin regulated the biosynthesis of choline metabolism pathway-related factors. Liriodendrin suppressed the CE-induced upregulation of Arg-2 and downregulation of inducible nitric oxide synthase (iNOS) expression, and NO levels by directly binding to the amino acid residues of Arg-2 through hydroxyl bonds.CONCLUSIONS: Liriodendrin exerted therapeutic effects on CE in rats through the alleviation of inflammation by modulating the gut microbiota structure, directly downregulating Arg-2, and regulating the arginine/NO metabolic pathway.PMID:38007851 | DOI:10.1016/j.intimp.2023.111235

Pages