PubMed
Multiomics Analyses Reveal <em>MsC3H29</em> Positively Regulates Flavonoid Biosynthesis to Improve Drought Resistance of Autotetraploid Cultivated Alfalfa (<em>Medicago sativa</em> L.)
J Agric Food Chem. 2024 Jun 12. doi: 10.1021/acs.jafc.4c02472. Online ahead of print.ABSTRACTAlfalfa (Medicago sativa subsp. sativa), the "queen of forage," is the most important perennial legume, with high productivity and an excellent nutritional profile. Medicago sativa subsp. falcata is a subspecies of the alfalfa complex and exhibits better drought tolerance. However, drought stress significantly hampers their development and yield. The molecular mechanisms underlying the aboveground and underground tissues of sativa and falcata responding to drought stress remain obscure. Here, we performed a comprehensive comparative analysis of the physiological and transcriptomic responses of sativa and falcata under drought stress. The results showed that photosynthesis was inhibited, and antioxidant enzymes were activated under drought stress. MsC3H29, a CCCH-type zinc finger protein, was identified as a hub gene through weighted gene coexpression network analysis (WGCNA) and was significantly induced by drought in underground tissue. The MsC3H29 protein was localized in the nucleus. Overexpression (OE) of MsC3H29 can increase the primary root length and fresh weight of transgenic alfalfa hairy roots, while RNA interference (RNAi) decreases them under drought stress. The 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) staining revealed that MsC3H29 promoted drought tolerance of alfalfa hairy roots through decreasing ROS accumulation. The targeted metabolome analysis showed that the overexpression of MsC3H29 resulted in higher levels of accumulation for flavonoid monomers, including vicenin, daidzein, apigenin, isorhamnetin, quercetin, and tricin, in transgenic alfalfa hairy roots before and after drought stress, while RNAi led to a reduction. Our study provided a key candidate gene for molecular breeding to improve drought resistance in alfalfa.PMID:38864675 | DOI:10.1021/acs.jafc.4c02472
A metabolomics perspective on clorobiocin biosynthesis: discovery of bromobiocin and novel derivatives through LC-MS(E)-based molecular networking
Microbiol Spectr. 2024 Jun 12:e0042324. doi: 10.1128/spectrum.00423-24. Online ahead of print.ABSTRACTClorobiocin is a well-known, highly effective inhibitor of DNA gyrase belonging to the aminocoumarin antibiotics. To identify potentially novel derivatives of this natural product, we conducted an untargeted investigation of clorobiocin biosynthesis in the known producer Streptomyces roseochromogenes DS 12.976 using LC-MSE, molecular networking, and analysis of fragmentation spectra. Previously undescribed clorobiocin derivatives uncovered in this study include bromobiocin, a variant halogenated with bromine instead of chlorine, hydroxylated clorobiocin, carrying an additional hydroxyl group on its 5-methyl-pyrrole 2-carboxyl moiety, and two other derivatives with modifications on their 3-dimethylallyl 4-hydroxybenzoate moieties. Furthermore, we identified several compounds not previously considered clorobiocin pathway products, which provide new insights into the clorobiocin biosynthetic pathway. By supplementing the medium with different concentrations of potassium bromide, we confirmed that the clorobiocin halogenase can utilize bromine instead of chlorine. The reaction, however, is impeded such that non-halogenated clorobiocin derivatives accumulate. Preliminary assays indicate that the antibacterial activity of bromobioin against Bacillus subtilis and efflux-impaired Escherichia coli matches that of clorobiocin. Our findings emphasize that yet unexplored compounds can be discovered from established strains and biosynthetic gene clusters by means of metabolomics analysis and highlight the utility of LC-MSE-based methods to contribute to unraveling natural product biosynthetic pathways.IMPORTANCE: The aminocoumarin clorobiocin is a well-known gyrase inhibitor produced by the gram-positive bacterium Streptomyces roseochromogenes DS 12.976. To gain a deeper understanding of the biosynthetic pathway of this complex composite of three chemically distinct entities and the product spectrum, we chose a metabolite-centric approach. Employing high-resolution LC-MSE analysis, we investigated the pathway products in extracted culture supernatants of the natural producer. Novel pathway products were identified that expand our understanding of three aspects of the biosynthetic pathway, namely the modification of the noviose, transfer and methylation of the pyrrole 2-carboxyl moiety, and halogenation. For the first time, brominated products were detected. Their levels and the levels of non-halogenated products increased in medium supplemented with KBr. Based on the presented data, we propose that the enzyme promiscuity contributes to a broad product spectrum.PMID:38864648 | DOI:10.1128/spectrum.00423-24
Nuclear magnetic resonance spectroscopy reveals biomarkers of stroke recovery in a mouse model of obesity-associated type 2 diabetes
Biosci Rep. 2024 Jun 12:BSR20240249. doi: 10.1042/BSR20240249. Online ahead of print.ABSTRACTObesity and type 2 diabetes (T2D) are known to exacerbate cerebral injury caused by stroke. Metabolomics can provide signatures of metabolic disease, and now we explored whether the analysis of plasma metabolites carries biomarkers of how obesity and T2D impact post-stroke recovery. Male mice were fed a high-fat diet (HFD) for 10 months leading to development of obesity with type 2 diabetes (T2D), or a standard diet (non-diabetic mice). Then, mice were subjected to either transient middle cerebral artery occlusion (tMCAO) or sham surgery and allowed to recover on standard diet for 2 months before serum samples were collected. Nuclear magnetic resonance (NMR) spectroscopy of serum samples was used to investigate metabolite signals and metabolic pathways that were associated with tMCAO recovery in either T2D or non-diabetic mice. Overall, after post-stroke recovery there were different serum metabolite profiles in T2D and non-diabetic mice. In non-diabetic mice, which show full neurological recovery after stroke, we observed a reduction of isovalerate, and an increase of kynurenate, uridine monophosphate, gluconate and N6-acetyllysine in tMCAO relative to sham mice. In contrast, in mice with T2D, which show impaired stroke recovery, there was a reduction of N,N-dimethylglycine, succinate and proline, and an increase of 2-oxocaproate in serum of tMCAO versus sham mice. Given the inability of T2D mice to recover from stroke, in contrast to non-diabetic mice, we propose that these specific metabolite changes following tMCAO might be used as biomarkers of neurophysiological recovery after stroke in T2D.PMID:38864508 | DOI:10.1042/BSR20240249
Multi-omics analysis of kidney tissue metabolome and proteome reveals the protective effect of sheep milk against adenine-induced chronic kidney disease in mice
Food Funct. 2024 Jun 12. doi: 10.1039/d4fo00619d. Online ahead of print.ABSTRACTChronic kidney disease (CKD) is characterized by impaired renal function and is associated with inflammation, oxidative stress, and fibrosis. Sheep milk contains several bioactive molecules with protective effects against inflammation and oxidative stress. In the current study, we investigated the potential renoprotective effects of sheep milk and the associated mechanisms of action in an adenine-induced CKD murine model. Sheep milk delayed renal chronic inflammation (e.g., significant reduction in levels of inflammatory factors Vcam1, Icam1, Il6, and Tnfa), fibrosis (significant reduction in levels of fibrosis factors Col1a1, Fn1, and Tgfb), oxidative stress (significant increase in levels of antioxidants and decrease in oxidative markers), mineral disorders, and renal injury in adenine-treated mice (e.g. reduced levels of kidney injury markers NGAL and KIM-1). The combined proteomics and metabolomics analyses showed that sheep milk may affect the metabolic processes of several compounds, including proteins, lipids, minerals, and hormones in mice with adenine-induced chronic kidney disease. In addition, it may regulate the expression of fibrosis-related factors and inflammatory factors through the JAK1/STAT3/HIF-1α signaling pathway, thus exerting its renoprotective effects. Therefore, sheep milk may be beneficial for patients with CKD and should be evaluated in preclinical and clinical studies.PMID:38864415 | DOI:10.1039/d4fo00619d
Persistence and Sexual Dimorphism of Gut Dysbiosis and Pathobiome after Sepsis and Trauma
Ann Surg. 2024 Jun 12. doi: 10.1097/SLA.0000000000006385. Online ahead of print.ABSTRACTOBJECTIVE: To evaluate the persistence of intestinal microbiome dysbiosis and gut-plasma metabolomic perturbations following severe trauma or sepsis weeks after admission in patients experiencing chronic critical illness (CCI).SUMMARY: Trauma and sepsis can lead to gut dysbiosis and alterations in the plasma and fecal metabolome. However, the impact of these perturbations and correlations between gut dysbiosis and the plasma metabolome in chronic critical illness have not been studied.METHODS: A prospective observational cohort study was performed with healthy subjects, severe trauma patients, patients with sepsis residing in an intensive care unit (ICU) for 2-3 weeks. A high-throughput multi-omics approach was utilized to evaluate the gut microbial and gut-plasma metabolite responses in critically ill trauma and sepsis patients 14-21 days after ICU admission.RESULTS: Patients in the sepsis and trauma cohorts demonstrated strikingly depleted gut microbiome diversity, with significant alterations and specific pathobiome patterns in the microbiota composition compared to healthy subjects. Further subgroup analyses based on sex revealed resistance to changes in microbiome diversity among female trauma patients compared to healthy counterparts. Sex-specific changes in fecal metabolites were also observed after trauma and sepsis, while plasma metabolite changes were similar in both males and females.CONCLUSIONS: Dysbiosis induced by trauma and sepsis persists up to 14-21 days after onset and is sex-specific, underscoring the implication of pathobiome and entero-septic microbial-metabolite perturbations in post-sepsis and post-trauma CCI. This indicates resilience to infection or injury in females' microbiome and should inform and facilitate future precision/personalized medicine strategies in the intensive care unit.PMID:38864230 | DOI:10.1097/SLA.0000000000006385
Malate dehydrogenase (MDH) in cancer: a promiscuous enzyme, a redox regulator, and a metabolic co-conspirator
Essays Biochem. 2024 Jun 12:EBC20230088. doi: 10.1042/EBC20230088. Online ahead of print.ABSTRACTMalate dehydrogenase (MDH) is an essential enzyme in the tricarboxylic acid cycle that functions in cellular respiration and redox homeostasis. Recent studies indicate that MDH facilitates metabolic plasticity in tumor cells, catalyzing the formation of an oncometabolite, contributing to altered epigenetics, and maintaining redox capacity to support the rewired energy metabolism and biosynthesis that enables cancer progression. This minireview summarizes current findings on the unique supporting roles played by MDH in human cancers and provides an update on targeting MDH in cancer chemotherapy.PMID:38864161 | DOI:10.1042/EBC20230088
Microbial dysbiosis in systemic lupus erythematosus: a scientometric study
Front Microbiol. 2024 May 28;15:1319654. doi: 10.3389/fmicb.2024.1319654. eCollection 2024.ABSTRACTINTRODUCTION: Systemic lupus erythematosus (SLE) is a chronic autoimmune disease. Mounting evidence suggests microbiota dysbiosis augment autoimmune response. This study aims to provide a systematic overview of this research field in SLE through a bibliometric analysis.METHODS: We conducted a comprehensive search and retrieval of literature related to microbial researches in SLE from the Web of Science Core Collection (WOSCC) database. The retrieved articles were subjected to bibliometric analysis using VOSviewer and Bibliometricx to explore annual publication output, collaborative patterns, research hotspots, current research status, and emerging trends.RESULTS: In this study, we conducted a comprehensive analysis of 218 research articles and 118 review articles. The quantity of publications rises annually, notably surging in 2015 and 2018. The United States and China emerged as the leading contributors in microbial research of SLE. Mashhad University of Medical Sciences had the highest publication outputs among the institutions. Frontiers in Immunology published the most papers. Luo XM and Margolles A were the most prolific and highly cited contributors among individual authors. Microbial research in SLE primarily focused on changes in microbial composition, particularly gut microbiota, as well as the mechanisms and practical applications in SLE. Recent trends emphasize "metabolites," "metabolomics," "fatty acids," "T cells," "lactobacillus," and "dietary supplementation," indicating a growing emphasis on microbial metabolism and interventions in SLE.CONCLUSION: This study provides a thorough analysis of the research landscape concerning microbiota in SLE. The microbial research in SLE mainly focused on three aspects: microbial dysbiosis, mechanism studies and translational studies (microbiota-based therapeutics). It identifies current research trends and focal points, offering valuable guidance for scholars in the field.PMID:38863759 | PMC:PMC11166128 | DOI:10.3389/fmicb.2024.1319654
The investigation of the role of oral-originated <em>Prevotella-</em>induced inflammation in childhood asthma
Front Microbiol. 2024 May 28;15:1400079. doi: 10.3389/fmicb.2024.1400079. eCollection 2024.ABSTRACTBACKGROUND AND OBJECTIVES: The oral and gut microbiota play significant roles in childhood asthma pathogenesis. However, the communication dynamics and pathogenic mechanisms by which oral microbiota influence gut microbiota and disease development remain incompletely understood. This study investigated potential mechanisms by which oral-originated gut microbiota, specifically Prevotella genus, may contribute to childhood asthma etiology.METHODS: Oral swab and fecal samples from 30 asthmatic children and 30 healthy controls were collected. Microbiome composition was characterized using 16S rRNA gene sequencing and metagenomics. Genetic distances identified potential oral-originated bacteria in asthmatic children. Functional validation assessed pro-inflammatory properties of in silico predicted microbial mimicry peptides from enriched asthma-associated species. Fecal metabolome profiling combined with metagenomic correlations explored links between gut microbiota and metabolism. HBE cells treated with Prevotella bivia culture supernatant were analyzed for lipid pathway impacts using UPLC-MS/MS.RESULTS: Children with asthma exhibited distinct oral and gut microbiota structures. Prevotella bivia, P. disiens, P. oris and Bacteroides fragilis were enriched orally and intestinally in asthmatics, while Streptococcus thermophilus decreased. P. bivia, P. disiens and P. oris in asthmatic gut likely originated orally. Microbial peptides induced inflammatory cytokines from immune cells. Aberrant lipid pathways characterized asthmatic children. P. bivia increased pro-inflammatory and decreased anti-inflammatory lipid metabolites in HBE cells.CONCLUSION: This study provides evidence of Prevotella transfer from oral to gut microbiota in childhood asthma. Prevotella's microbial mimicry peptides and effects on lipid metabolism contribute to disease pathogenesis by eliciting immune responses. Findings offer mechanistic insights into oral-gut connections in childhood asthma etiology.PMID:38863747 | PMC:PMC11165567 | DOI:10.3389/fmicb.2024.1400079
Variations in colostrum metabolite profiles in association with sow parity
Transl Anim Sci. 2024 May 3;8:txae062. doi: 10.1093/tas/txae062. eCollection 2024.ABSTRACTInformation about the full spectrum of metabolites present in porcine colostrum and factors that influence metabolite abundances is still incomplete. Parity number appears to modulate the concentration of single metabolites in colostrum. This study aimed to 1) characterize the metabolome composition and 2) assess the effect of parity on metabolite profiles in porcine colostrum. Sows (n = 20) were divided into three parity groups: A) sows in parity 1 and 2 (n = 8), B) sows in parity 3 and 4 (n = 6), and C) sows in parity 5 and 6 (n = 6). Colostrum was collected within 12 h after parturition. A total of 125 metabolites were identified using targeted reversed-phase high-performance liquid chromatography-tandem mass spectrometry and anion-exchange chromatography-high resolution mass spectrometry. Gas chromatography additionally identified 19 fatty acids (FAs). Across parities, colostrum was rich in creatine and creatinine, 1,3-dioleyl-2-palmitatoylglycerol, 1,3-dipalmitoyl-2-oleoylglycerol, and sialyllactose. Alterations in colostrum concentrations were found for eight metabolites among parity groups (P < 0.05) but the effects were not linear. For instance, colostrum from parity group C comprised 75.4% more valine but 15.7%, 34.1%, and 47.9% less citric, pyruvic, and pyroglutamic acid, respectively, compared to group A (P < 0.05). By contrast, colostrum from parity group B contained 39.5% more spermidine than from group A (P < 0.05). Of the FAs, C18:1, C16:0, and C18:2 n6 were the main FAs across parities. Parity affected four FAs (C18:3n3, C14:1, C17:0ai, and C17:1), including 43.1% less α-linolenic acid (C18:3n3) in colostrum from parity group C compared to groups A and B (P < 0.05). Signature feature ranking identified 1-stearoyl-2-hydroxy-sn-glycero-3-phosphatidylcholine and the secondary bile acid hyodeoxycholic acid as the most discriminative metabolites, showing a higher variable importance in the projection score in colostrum from parity group A than from groups B and C. Overall, results provided a comprehensive overview about the metabolome composition of sow colostrum. The consequences of the changes in colostrum metabolites with increasing parity for the nutrient supply of the piglets should be investigated in the future. The knowledge gained in this study could be used to optimize feeding strategies for sows.PMID:38863596 | PMC:PMC11165641 | DOI:10.1093/tas/txae062
Unraveling verticillium wilt resistance: insight from the integration of transcriptome and metabolome in wild eggplant
Front Plant Sci. 2024 May 28;15:1378748. doi: 10.3389/fpls.2024.1378748. eCollection 2024.ABSTRACTVerticillium wilt, caused by Verticillium dahliae, is a soil-borne disease affecting eggplant. Wild eggplant, recognized as an excellent disease-resistant resource against verticillium wilt, plays a pivotal role in grafting and breeding for disease resistance. However, the underlying resistance mechanisms of wild eggplant remain poorly understood. This study compared two wild eggplant varieties, LC-2 (high resistance) and LC-7 (sensitive) at the phenotypic, transcriptomic, and metabolomic levels to determine the molecular basis of their resistance to verticillium wilt. These two varieties exhibit substantial phenotypic differences in petal color, leaf spines, and fruit traits. Following inoculation with V. dahliae, LC-2 demonstrated significantly higher activities of polyphenol oxidase, superoxide dismutase, peroxidase, phenylalanine ammonia lyase, β-1,3 glucanase, and chitinase than did LC-7. RNA sequencing revealed 4,017 differentially expressed genes (DEGs), with a significant portion implicated in processes associated with disease resistance and growth. These processes encompassed defense responses, cell wall biogenesis, developmental processes, and biosynthesis of spermidine, cinnamic acid, and cutin. A gene co-expression analysis identified 13 transcription factors as hub genes in modules related to plant defense response. Some genes exhibited distinct expression patterns between LC-2 and LC-7, suggesting their crucial roles in responding to infection. Further, metabolome analysis identified 549 differentially accumulated metabolites (DAMs) between LC-2 and LC-7, primarily consisting of compounds such as flavonoids, phenolic acids, lipids, and other metabolites. Integrated transcriptome and metabolome analyses revealed the association of 35 gene-metabolite pairs in modules related to the plant defense response, highlighting the interconnected processes underlying the plant defense response. These findings characterize the molecular basis of LC-2 resistance to verticillium wilt and thus have potential value for future breeding of wilt-resistant eggplant varieties.PMID:38863534 | PMC:PMC11165189 | DOI:10.3389/fpls.2024.1378748
Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
World J Mens Health. 2024 May 22. doi: 10.5534/wjmh.230344. Online ahead of print.ABSTRACTPURPOSE: Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.MATERIALS AND METHODS: Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.RESULTS: The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88-0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.CONCLUSIONS: Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.PMID:38863374 | DOI:10.5534/wjmh.230344
The Promise and Challenges of Metabolomic Studies in Pediatric CKD
Clin J Am Soc Nephrol. 2024 Jun 12. doi: 10.2215/CJN.0000000000000501. Online ahead of print.NO ABSTRACTPMID:38863115 | DOI:10.2215/CJN.0000000000000501
3-CMC, 4-CMC, and 4-BMC Human Metabolic Profiling: New Major Pathways to Document Consumption of Methcathinone Analogues?
AAPS J. 2024 Jun 11;26(4):70. doi: 10.1208/s12248-024-00940-8.ABSTRACTSynthetic cathinones represent one of the largest and most abused new psychoactive substance classes, and have been involved in numerous intoxications and fatalities worldwide. Methcathinone analogues like 3-methylmethcathinone (3-MMC), 3-chloromethcathinone (3-CMC), and 4-CMC currently constitute most of synthetic cathinone seizures in Europe. Documenting their consumption in clinical/forensic casework is therefore essential to tackle this trend. Targeting metabolite markers is a go-to to document consumption in analytical toxicology, and metabolite profiling is crucial to support investigations. We sought to identify 3-CMC, 4-CMC, and 4-bromomethcathinone (4-BMC) human metabolites. The substances were incubated with human hepatocytes; incubates were screened by liquid chromatography-high-resolution tandem mass spectrometry and data were mined with Compound Discoverer (Themo Scientific). 3-CMC-positive blood, urine, and oral fluid and 4-CMC-positive urine and saliva from clinical/forensic casework were analyzed. Analyses were supported by metabolite predictions with GLORYx freeware. Twelve, ten, and ten metabolites were identified for 3-CMC, 4-CMC, and 4-BMC, respectively, with similar transformations occurring for the three cathinones. Major reactions included ketoreduction and N-demethylation. Surprisingly, predominant metabolites were produced by combination of N-demethylation and ω-carboxylation (main metabolite in 3-CMC-positive urine), and combination of β-ketoreduction, oxidative deamination, and O-glucuronidation (main metabolite in 4-CMC-positive urine). These latter metabolites were detected in negative-ionization mode only and their non-conjugated form was not detected after glucuronide hydrolysis; this metabolic pathway was never reported for any methcathinone analogue susceptible to undergo the same transformations. These results support the need for comprehensive screening strategies in metabolite identification studies, to avoid overlooking significant metabolites and major markers of consumption.PMID:38862871 | DOI:10.1208/s12248-024-00940-8
Combining transcriptome and metabolome analysis to understand the response of sorghum to Melanaphis sacchari
BMC Plant Biol. 2024 Jun 11;24(1):529. doi: 10.1186/s12870-024-05229-8.ABSTRACTBACKGROUND: The sorghum aphid Melanaphis sacchari (Zehntner) (Homoptera: Aphididae) is an important insect in the late growth phase of sorghum (Sorghum bicolor L.). However, the mechanisms of sorghum response to aphid infestation are unclear.RESULTS: In this paper, the mechanisms of aphid resistance in different types of sorghum varieties were revealed by studying the epidermal cell structure and performing a transcriptome and metabolome association analysis of aphid-resistant and aphid-susceptible varieties. The epidermal cell results showed that the resistance of sorghum to aphids was positively correlated with epidermal cell regularity and negatively correlated with the intercellular space and leaf thickness. Transcriptome and metabolomic analyses showed that differentially expressed genes in the resistant variety HN16 and susceptible variety BTX623 were mainly enriched in the flavonoid biosynthesis pathway and differentially expressed metabolites were mainly related to isoflavonoid biosynthesis and flavonoid biosynthesis. The q-PCR results of key genes were consistent with the transcriptome expression results. Meanwhile, the metabolome test results showed that after aphidinfestation, naringenin and genistein were significantly upregulated in the aphid-resistant variety HN16 and aphid-susceptible variety BTX623 while luteolin was only significantly upregulated in BTX623. These results show that naringenin, genistein, and luteolin play important roles in plant resistance to aphid infestation. The results of exogenous spraying tests showed that a 1‰ concentration of naringenin and genistein is optimal for improving sorghum resistance to aphid feeding.CONCLUSIONS: In summary, the physical properties of the sorghum leaf structure related to aphid resistance were studied to provide a reference for the breeding of aphid-resistant varieties. The flavonoid biosynthesis pathway plays an important role in the response of sorghum aphids and represents an important basis for the biological control of these pests. The results of the spraying experiment provide insights for developing anti-aphid substances in the future.PMID:38862926 | DOI:10.1186/s12870-024-05229-8
Integrated transcriptomic and metabolomic analysis provides insight into the pollen development of CMS-D1 rice
BMC Plant Biol. 2024 Jun 12;24(1):535. doi: 10.1186/s12870-024-05259-2.ABSTRACTBACKGROUND: Cytoplasmic male sterility (CMS) has greatly improved the utilization of heterosis in crops due to the absence of functional male gametophyte. The newly developed sporophytic D1 type CMS (CMS-D1) rice exhibits unique characteristics compared to the well-known sporophytic CMS-WA line, making it a valuable resource for rice breeding.RESULTS: In this research, a novel CMS-D1 line named Xingye A (XYA) was established, characterized by small, transparent, and shriveled anthers. Histological and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assays conducted on anthers from XYA and its maintainer line XYB revealed that male sterility in XYA is a result of delayed degradation of tapetal cells and abnormal programmed cell death (PCD) of microspores. Transcriptome analysis of young panicles revealed that differentially expressed genes (DEGs) in XYA, compared to XYB, were significantly enriched in processes related to chromatin structure and nucleosomes during the microspore mother cell (MMC) stage. Conversely, processes associated with sporopollenin biosynthesis, pollen exine formation, chitinase activity, and pollen wall assembly were enriched during the meiosis stage. Metabolome analysis identified 176 specific differentially accumulated metabolites (DAMs) during the meiosis stage, enriched in pathways such as α-linoleic acid metabolism, flavone and flavonol biosynthesis, and linolenic acid metabolism. Integration of transcriptomic and metabolomic data underscored the jasmonic acid (JA) biosynthesis pathway was significant enriched in XYA during the meiosis stage compared to XYB. Furthermore, levels of JA, MeJA, OPC4, OPDA, and JA-Ile were all higher in XYA than in XYB at the meiosis stage.CONCLUSIONS: These findings emphasize the involvement of the JA biosynthetic pathway in pollen development in the CMS-D1 line, providing a foundation for further exploration of the molecular mechanisms involved in CMS-D1 sterility.PMID:38862889 | DOI:10.1186/s12870-024-05259-2
Cosmic kidney disease: an integrated pan-omic, physiological and morphological study into spaceflight-induced renal dysfunction
Nat Commun. 2024 Jun 11;15(1):4923. doi: 10.1038/s41467-024-49212-1.ABSTRACTMissions into Deep Space are planned this decade. Yet the health consequences of exposure to microgravity and galactic cosmic radiation (GCR) over years-long missions on indispensable visceral organs such as the kidney are largely unexplored. We performed biomolecular (epigenomic, transcriptomic, proteomic, epiproteomic, metabolomic, metagenomic), clinical chemistry (electrolytes, endocrinology, biochemistry) and morphometry (histology, 3D imaging, miRNA-ISH, tissue weights) analyses using samples and datasets available from 11 spaceflight-exposed mouse and 5 human, 1 simulated microgravity rat and 4 simulated GCR-exposed mouse missions. We found that spaceflight induces: 1) renal transporter dephosphorylation which may indicate astronauts' increased risk of nephrolithiasis is in part a primary renal phenomenon rather than solely a secondary consequence of bone loss; 2) remodelling of the nephron that results in expansion of distal convoluted tubule size but loss of overall tubule density; 3) renal damage and dysfunction when exposed to a Mars roundtrip dose-equivalent of simulated GCR.PMID:38862484 | DOI:10.1038/s41467-024-49212-1
Secretome profiling reveals acute changes in oxidative stress, brain homeostasis, and coagulation following short-duration spaceflight
Nat Commun. 2024 Jun 11;15(1):4862. doi: 10.1038/s41467-024-48841-w.ABSTRACTAs spaceflight becomes more common with commercial crews, blood-based measures of crew health can guide both astronaut biomedicine and countermeasures. By profiling plasma proteins, metabolites, and extracellular vesicles/particles (EVPs) from the SpaceX Inspiration4 crew, we generated "spaceflight secretome profiles," which showed significant differences in coagulation, oxidative stress, and brain-enriched proteins. While >93% of differentially abundant proteins (DAPs) in vesicles and metabolites recovered within six months, the majority (73%) of plasma DAPs were still perturbed post-flight. Moreover, these proteomic alterations correlated better with peripheral blood mononuclear cells than whole blood, suggesting that immune cells contribute more DAPs than erythrocytes. Finally, to discern possible mechanisms leading to brain-enriched protein detection and blood-brain barrier (BBB) disruption, we examined protein changes in dissected brains of spaceflight mice, which showed increases in PECAM-1, a marker of BBB integrity. These data highlight how even short-duration spaceflight can disrupt human and murine physiology and identify spaceflight biomarkers that can guide countermeasure development.PMID:38862464 | DOI:10.1038/s41467-024-48841-w
Gut microbiome composition and dysbiosis in immune thrombocytopenia: A review of literature
Blood Rev. 2024 Jun 6:101219. doi: 10.1016/j.blre.2024.101219. Online ahead of print.ABSTRACTImmune thrombocytopenia (ITP) is an autoimmune bleeding disorder characterized by excessive reticuloendothelial platelet destruction and inadequate compensatory platelet production. However, the pathogenesis of ITP is relatively complex, and its exact mechanisms and etiology have not been definitively established. The gut microbiome, namely a diverse community of symbiotic microorganisms residing in the gastrointestinal system, affects health through involvement in human metabolism, immune modulation, and maintaining physiological balance. Emerging evidence reveals that the gut microbiome composition differs in patients with ITP compared to healthy individuals, which is related with platelet count, disease duration, and response to treatment. These findings suggest that the microbiome and metabolome profiles of individuals could unveil a new pathway for aiding diagnosis, predicting prognosis, assessing treatment response, and formulating personalized therapeutic approaches for ITP. However, due to controversial reports, definitive conclusions cannot be drawn, and further investigations are needed.PMID:38862311 | DOI:10.1016/j.blre.2024.101219
The Space Omics and Medical Atlas (SOMA) and international astronaut biobank
Nature. 2024 Jun 11. doi: 10.1038/s41586-024-07639-y. Online ahead of print.ABSTRACTSpaceflight induces molecular, cellular, and physiological shifts in astronauts and poses myriad biomedical challenges to the human body, which are becoming increasingly relevant as more humans venture into space1-6. Yet, current frameworks for aerospace medicine are nascent and lag far behind advancements in precision medicine on Earth, underscoring the need for rapid development of space medicine databases, tools, and protocols. Here, we present the Space Omics and Medical Atlas (SOMA), an integrated data and sample repository for clinical, cellular, and multi-omic research profiles from a diverse range of missions, including the NASA Twins Study7, JAXA CFE study8,9, SpaceX Inspiration4 crew10-12, plus Axiom and Polaris. The SOMA resource represents a >10-fold increase in publicly available human space omics data, with matched samples available from the Cornell Aerospace Medicine Biobank. The Atlas includes extensive molecular and physiological profiles encompassing genomics, epigenomics, transcriptomics, proteomics, metabolomics, and microbiome data sets, which reveal some consistent features across missions, including cytokine shifts, telomere elongation, and gene expression changes, as well as mission-specific molecular responses and links to orthologous, tissue-specific murine data sets. Leveraging the datasets, tools, and resources in SOMA can help accelerate precision aerospace medicine, bringing needed health monitoring, risk mitigation, and countermeasures data for upcoming lunar, Mars, and exploration-class missions.PMID:38862028 | DOI:10.1038/s41586-024-07639-y
Chronic treatment with glucagon-like peptide-1 and glucagon receptor co-agonist causes weight loss-independent improvements in hepatic steatosis in mice with diet-induced obesity
Biomed Pharmacother. 2024 Jun 10;176:116888. doi: 10.1016/j.biopha.2024.116888. Online ahead of print.ABSTRACTOBJECTIVES: Co-agonists at the glucagon-like peptide-1 and glucagon receptors (GLP1R/GCGR) show promise as treatments for metabolic dysfunction-associated steatotic liver disease (MASLD). Although most co-agonists to date have been heavily GLP1R-biased, glucagon directly acts on the liver to reduce fat content. The aims of this study were to investigate a GCGR-biased co-agonist as treatment for hepatic steatosis in mice.METHODS: Mice with diet-induced obesity (DIO) were treated with Dicretin, a GLP1/GCGR co-agonist with high potency at the GCGR, Semaglutide (GLP1R monoagonist) or food restriction over 24 days, such that their weight loss was matched. Hepatic steatosis, glucose tolerance, hepatic transcriptomics, metabolomics and lipidomics at the end of the study were compared with Vehicle-treated mice.RESULTS: Dicretin lead to superior reduction of hepatic lipid content when compared to Semaglutide or equivalent weight loss by calorie restriction. Markers of glucose tolerance and insulin resistance improved in all treatment groups. Hepatic transcriptomic and metabolomic profiling demonstrated many changes that were unique to Dicretin-treated mice. These include some known targets of glucagon signaling and others with as yet unclear physiological significance.CONCLUSIONS: Our study supports the development of GCGR-biased GLP1/GCGR co-agonists for treatment of MASLD and related conditions.PMID:38861859 | DOI:10.1016/j.biopha.2024.116888