Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Acute changes in the metabolome following resistance exercise combined with intake of different protein sources (cricket, pea, whey)

Fri, 24/11/2023 - 12:00
Metabolomics. 2023 Nov 24;19(12):98. doi: 10.1007/s11306-023-02064-0.ABSTRACTINTRODUCTION: Separately, both exercise and protein ingestion have been shown to alter the blood and urine metabolome. This study goes a step further and examines changes in the metabolome derived from blood, urine and muscle tissue extracts in response to resistance exercise combined with ingestion of three different protein sources.METHODS: In an acute parallel study, 52 young males performed one-legged resistance exercise (leg extension, 4 × 10 repetitions at 10 repetition maximum) followed by ingestion of either cricket (insect), pea or whey protein (0.25 g protein/kg fat free mass). Blood and muscle tissue were collected at baseline and three hours after protein ingestion. Urine was collected at baseline and four hours after protein ingestion. Mixed-effects analyses were applied to examine the effect of the time (baseline vs. post), protein (cricket, pea, whey), and time x protein interaction.RESULTS: Nuclear magnetic resonance (NMR)-based metabolomics resulted in the annotation and quantification of 25 metabolites in blood, 35 in urine and 21 in muscle tissue. Changes in the muscle metabolome after combined exercise and protein intake indicated effects related to the protein source ingested. Muscle concentrations of leucine, methionine, glutamate and myo-inositol were higher after intake of whey protein compared to both cricket and pea protein. The blood metabolome revealed changes in a more ketogenic direction three hours after exercise reflecting that the trial was conducted after overnight fasting. Urinary concentration of trimethylamine N-oxide was significantly higher after ingestion of cricket than pea and whey protein.CONCLUSION: The blood, urine and muscle metabolome showed different and supplementary responses to exercise and ingestion of the different protein sources, and in synergy the summarized results provided a more complete picture of the metabolic state of the body.PMID:37999866 | DOI:10.1007/s11306-023-02064-0

Metabolomics and Microbiomics Insights into Differential Surface Fouling of Three Macroalgal Species of <em>Fucus</em> (Fucales, Phaeophyceae) That Co-Exist in the German Baltic Sea

Fri, 24/11/2023 - 12:00
Mar Drugs. 2023 Nov 16;21(11):595. doi: 10.3390/md21110595.ABSTRACTThe brown algal genus Fucus provides essential ecosystem services crucial for marine environments. Macroalgae (seaweeds) release dissolved organic matter, hence, are under strong settlement pressure from micro- and macrofoulers. Seaweeds are able to control surface epibionts directly by releasing antimicrobial compounds onto their surfaces, and indirectly by recruiting beneficial microorganisms that produce antimicrobial/antifouling metabolites. In the Kiel Fjord, in the German Baltic Sea, three distinct Fucus species coexist: F. vesiculosus, F. serratus, and F. distichus subsp. evanescens. Despite sharing the same habitat, they show varying fouling levels; F. distichus subsp. evanescens is the least fouled, while F. vesiculosus is the most fouled. The present study explored the surface metabolomes and epiphytic microbiota of these three Fucus spp., aiming to uncover the factors that contribute to the differences in the fouling intensity on their surfaces. Towards this aim, algal surface metabolomes were analyzed using comparative untargeted LC-MS/MS-based metabolomics, to identify the marker metabolites influencing surface fouling. Their epiphytic microbial communities were also comparatively characterized using high-throughput amplicon sequencing, to pinpoint the differences in the surface microbiomes of the algae. Our results show that the surface of the least fouling species, F. distichus subsp. evanescens, is enriched with bioactive compounds, such as betaine lipids MGTA, 4-pyridoxic acid, and ulvaline, which are absent from the other species. Additionally, it exhibits a high abundance of the fungal genera Mucor and Alternaria, along with the bacterial genus Yoonia-Loktanella. These taxa are known for producing antimicrobial/antifouling compounds, suggesting their potential role in the observed fouling resistance on the surface of the F. distichus subsp. evanescens compared to F. serratus and F. vesiculosus. These findings provide valuable clues on the differential surface fouling intensity of Fucus spp., and their importance in marine chemical defense and fouling dynamics.PMID:37999420 | DOI:10.3390/md21110595

Computational methods for processing and interpreting mass spectrometry-based metabolomics

Fri, 24/11/2023 - 12:00
Essays Biochem. 2023 Nov 24:EBC20230019. doi: 10.1042/EBC20230019. Online ahead of print.ABSTRACTMetabolomics has emerged as an indispensable tool for exploring complex biological questions, providing the ability to investigate a substantial portion of the metabolome. However, the vast complexity and structural diversity intrinsic to metabolites imposes a great challenge for data analysis and interpretation. Liquid chromatography mass spectrometry (LC-MS) stands out as a versatile technique offering extensive metabolite coverage. In this mini-review, we address some of the hurdles posed by the complex nature of LC-MS data, providing a brief overview of computational tools designed to help tackling these challenges. Our focus centers on two major steps that are essential to most metabolomics investigations: the translation of raw data into quantifiable features, and the extraction of structural insights from mass spectra to facilitate metabolite identification. By exploring current computational solutions, we aim at providing a critical overview of the capabilities and constraints of mass spectrometry-based metabolomics, while introduce some of the most recent trends in data processing and analysis within the field.PMID:37999335 | DOI:10.1042/EBC20230019

The Metabolomics Response of <em>Solanum melongena</em> L. Leaves to Various Forms of Pb

Fri, 24/11/2023 - 12:00
Nanomaterials (Basel). 2023 Nov 8;13(22):2911. doi: 10.3390/nano13222911.ABSTRACTDue to activities like mining and smelting, lead (Pb) enters the atmosphere in various forms in coarse and fine particles. It enters plants mainly through leaves, and goes up the food chain. In this study, PbXn (nano-PbS, mic-PbO and PbCl2) was applied to eggplant (Solanum melongena L.) leaves, and 379 differential metabolites were identified and analyzed in eggplant leaves using liquid chromatography-mass spectrometry. Multivariate statistical analysis revealed that all three Pb treatments significantly altered the metabolite profile. Compared with nano-PbS, mic-PbO and PbCl2 induced more identical metabolite changes. However, the alterations in metabolites related to the TCA cycle and pyrimidine metabolism, such as succinic acid, citric acid and cytidine, were specific to PbCl2. The number of differential metabolites induced by mic-PbO and PbCl2 was three times that of nano-PbS, even though the amount of nano-PbS absorbed by leaves was ten times that of PbO and seven times that of PbCl2. This suggests that the metabolic response of eggplant leaves to Pb is influenced by both concentration and form. This study enhances the current understanding of plants' metabolic response to Pb, and demonstrates that the metabolomics map provides a more comprehensive view of a plant's response to specific metals.PMID:37999265 | DOI:10.3390/nano13222911

Correction: Nielson et al. Similarity Downselection: Finding the <em>n</em> Most Dissimilar Molecular Conformers for Reference-Free Metabolomics. <em>Metabolites</em> 2023, <em>13</em>, 105

Fri, 24/11/2023 - 12:00
Metabolites. 2023 Nov 17;13(11):1158. doi: 10.3390/metabo13111158.ABSTRACTThere were missing figures and associated legends for Figure 3 and Figure 4 as published due to a publication error [...].PMID:37999262 | DOI:10.3390/metabo13111158

Metabolomics Assessment of Volume Overload-Induced Heart Failure and Oxidative Stress in the Kidney

Fri, 24/11/2023 - 12:00
Metabolites. 2023 Nov 20;13(11):1165. doi: 10.3390/metabo13111165.ABSTRACTThe incidence of heart failure (HF) is increasing and is associated with a poor prognosis. Moreover, HF often coexists with renal dysfunction and is associated with a worsened outcome. In many experimental studies on cardiac dysfunction, the function of other organs was either not addressed or did not show any decline. Until now, the exact mechanisms for initiating and sustaining this interaction are still unknown. The objective of this study is to use volume overload to induce cardiac hypertrophy and HF in aortocaval fistula (ACF) rat models, and to elucidate how volume overload affects metabolic changes in the kidney, even with normal renal function, in HF. The results showed the metabolic changes between control and ACF rats, including taurine metabolism; purine metabolism; glycine, serine, and threonine metabolism; glycerophospholipid metabolism; and histidine metabolism. Increasing the downstream purine metabolism from inosine to uric acid in the kidneys of ACF rats induced oxidative stress through xanthine oxidase. This result was consistent with HK-2 cells treated with xanthine and xanthine oxidase. Under oxidative stress, taurine accumulation was observed in ACF rats, indicating increased activity of the hypotaurine-taurine pathway as a defense mechanism against oxidative stress in the kidney. Another antioxidant, ascorbic acid 2-sulfate, showed lower levels in ACF rats, indicating that the kidneys experience elevated oxidative stress due to volume overload and HF. In summary, metabolic profiles are more sensitive than clinical parameters in reacting to damage to the kidney in HF.PMID:37999260 | DOI:10.3390/metabo13111165

Metabolomic Insights into the Mechanisms of Ganoderic Acid: Protection against α-Amanitin-Induced Liver Injury

Fri, 24/11/2023 - 12:00
Metabolites. 2023 Nov 20;13(11):1164. doi: 10.3390/metabo13111164.ABSTRACTα-Amanitin is a representative toxin found in the Amanita genus of mushrooms, and the consumption of mushrooms containing α-Amanitin can lead to severe liver damage. In this study, we conduct toxicological experiments to validate the protective effects of Ganoderic acid A against α-amanitin-induced liver damage. By establishing animal models with different durations of Ganoderic acid A treatment and conducting a metabolomic analysis of the serum samples, we further confirmed the differences in serum metabolites between the AMA+GA and AMA groups. The analysis of differential serum metabolites after the Ganoderic acid A intervention suggests that Ganoderic acid A may intervene in α-amanitin-induced liver damage by participating in the regulation of retinol metabolism, tyrosine and tryptophan biosynthesis, fatty acid biosynthesis, sphingosine biosynthesis, spermidine and spermine biosynthesis, and branched-chain amino acid metabolism. This provides initial insights into the protective intervention mechanisms of GA against α-amanitin-induced liver damage and offers new avenues for the development of therapeutic drugs for α-Amanitin poisoning.PMID:37999259 | DOI:10.3390/metabo13111164

Identification of Novel Biomarkers for Early Diagnosis of Atherosclerosis Using High-Resolution Metabolomics

Fri, 24/11/2023 - 12:00
Metabolites. 2023 Nov 18;13(11):1160. doi: 10.3390/metabo13111160.ABSTRACTAtherosclerosis (AS) is a metabolic disorder and the pre-stage of several cardiovascular diseases, including myocardial infarction, stroke, and angina pectoris. Early detection of AS can provide the opportunity for effective management and better clinical results, along with the prevention of further progression of the disease. In the current study, an untargeted and targeted metabolomic approach was used to identify possible metabolic signatures that have altered levels in AS patients. A total of 200 serum samples from individuals with AS and normal were analyzed via liquid chromatography-high-resolution mass spectrometry. Univariate and multivariate analysis approaches were used to identify differential metabolites. A group of metabolites associated with bile acids, amino acids, steroid hormones, and purine metabolism were identified that are capable of distinguishing AS-risk sera from normal. Further, the targeted metabolomics approach confirmed that six metabolites, namely taurocholic acid, cholic acid, cortisol, hypoxanthine, trimethylamine N-oxide (TMAO), and isoleucine, were found to be significantly upregulated, while the concentrations of glycoursodeoxycholic acid, glycocholic acid, testosterone, leucine, methionine, phenylalanine, tyrosine, and valine were found to be significantly downregulated in the AS-risk sera. The receiver operating characteristic curves of three metabolites, including cortisol, hypoxanthine, and isoleucine, showed high sensitivity and specificity. Taken together, these findings suggest cortisol, hypoxanthine, and isoleucine as novel biomarkers for the early and non-invasive detection of AS. Thus, this study provides new insights for further investigations into the prevention and management of AS.PMID:37999255 | DOI:10.3390/metabo13111160

Changes in Uterine Metabolome Associated with Metritis Development and Cure in Lactating Holstein Cows

Fri, 24/11/2023 - 12:00
Metabolites. 2023 Nov 16;13(11):1156. doi: 10.3390/metabo13111156.ABSTRACTThe objective of this study was to identify alterations in the vaginal discharge (VD) metabolome and potential biomarkers to predict metritis development and a cure in dairy cows. This prospective cohort study was conducted on two dairies located in CA and TX. Vaginal discharge was evaluated and collected using the Metricheck® device. Cows were examined for metritis at 4, 7, and 9 days in milk (DIM). Cows with a fetid, watery, and reddish-brown uterine discharge were classified as having metritis and randomized to receive ceftiofur (n = 10) or remain untreated (n = 7). A cure was defined as the absence of a fetid, watery, reddish-brown uterine discharge at 14 d after enrollment. Vaginal discharge samples were collected from 86 cows within 6 h after parturition, at 4 and 7 DIM, at metritis diagnosis, and at 4 and 7 days after metritis diagnosis. Cows with metritis (MET; n = 17) were paired with counterparts without metritis (HTH) of a similar DIM and parity (n = 34). The uterine metabolome was evaluated using untargeted gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). Metabolomic data were analyzed using the MetaboAnalyst 5.0. Data were log-transformed and auto-scaled for normalization. Univariate analyses, including the fold-change, were performed to identify the metabolites linked to metritis development and its cure and principal component analysis and partial least squares discriminant analysis were performed to explain metabolite variance between animals developing or not developing metritis and being cured or not being cured of metritis. Comparing HTH with MET cows at calving, 12 metabolites were upregulated, and one was downregulated. At four and seven DIM, 51 and 74 metabolites, respectively, were altered between MET and HTH cows. After metritis development, three and five metabolites were upregulated in cows that were cured and in cows that received treatment and were cured, respectively. In all scenarios, the metabolites lignoceric, malic, and maleic acids, ornithine, and hypotaurine, which are associated with arginine/aminoacyl-tRNA biosynthesis and taurine/purine metabolism, were upregulated in HTH cows. Metritis was associated with changes in the uterine metabolome. Cows not being cured of metritis had changes in the uterus metabolome independent of receiving ceftiofur or remaining untreated. Metabolome analysis may be an important tool to understand the vaginal discharge changes during postpartum and the dynamics of metritis development and cures and help to identify biomarkers to predict metritis being cured.PMID:37999252 | DOI:10.3390/metabo13111156

Assessing the Biological Mechanisms Linking Smoking Behavior and Cognitive Function: A Mediation Analysis of Untargeted Metabolomics

Fri, 24/11/2023 - 12:00
Metabolites. 2023 Nov 16;13(11):1154. doi: 10.3390/metabo13111154.ABSTRACT(1) Smoking is the most significant preventable health hazard in the modern world. It increases the risk of vascular problems, which are also risk factors for dementia. In addition, toxins in cigarettes increase oxidative stress and inflammation, which have both been linked to the development of Alzheimer's disease and related dementias (ADRD). This study identified potential mechanisms of the smoking-cognitive function relationship using metabolomics data from the longitudinal Wisconsin Registry for Alzheimer's Prevention (WRAP). (2) 1266 WRAP participants were included to assess the association between smoking status and four cognitive composite scores. Next, untargeted metabolomic data were used to assess the relationships between smoking and metabolites. Metabolites significantly associated with smoking were then tested for association with cognitive composite scores. Total effect models and mediation models were used to explore the role of metabolites in smoking-cognitive function pathways. (3) Plasma N-acetylneuraminate was associated with smoking status Preclinical Alzheimer Cognitive Composite 3 (PACC3) and Immediate Learning (IMM). N-acetylneuraminate mediated 12% of the smoking-PACC3 relationship and 13% of the smoking-IMM relationship. (4) These findings provide links between previous studies that can enhance our understanding of potential biological pathways between smoking and cognitive function.PMID:37999250 | DOI:10.3390/metabo13111154

Mass Spectrometry Chromatography-Based Metabolomics: The Effect of Long-Term Aerobic Exercise on Learning Ability and the Metabolism of Intestinal Contents in Mice with Alzheimer's Disease

Fri, 24/11/2023 - 12:00
Metabolites. 2023 Nov 14;13(11):1150. doi: 10.3390/metabo13111150.ABSTRACTThis study aimed to investigate the effect of long-term aerobic exercise on the metabolism of intestinal contents in APP/PS1 mice was studied using a non-targeted metabolomics technique based on high-performance liquid chromatography-mass spectrometry (HPLC-MS) coupling, providing a theoretical basis for exercise to regulate the metabolism of Alzheimer's disease (AD) organisms. Three-month-old male C57BL/6JNju mice, six wild-type (NC, n = 6); 12 APP/PS1 double transgenic species in total, were randomly divided into AD model (AM, n = 6) and AD model exercise (AE, n = 6) groups. The mice in the NC group were fed naturally, the mice in the AM group were statically placed on a running platform, and the mice in the AE group received a 20-week long-term moderate intensity running platform exercise intervention. Following the exercise intervention, the cecum contents of the mice in each group were collected and analyzed using the HPLC-MS technique, with those meeting both variable important in projection (VIP)> 1.5 and p < 0.05 being screened as differential metabolites. A total of 32 different metabolites were detected between the AM and NC groups, with 19 up-regulated in the AM group such as phosphatidic acid (PA) (18:4(6Z,9Z,12Z,15Z)/21:0) and 13 down-regulated in the AM group, such as 4,8-dimethylnonanoyl, compared to the NC group; 98 different metabolites were found between the AM and AE groups, 41 of which were upregulated such as Lyso phosphatidylcholine (LysoPC) and 57 of which were downregulated compared to the AM group such as Phosphatidylinositol (PI). The regulation of linoleic acid metabolism, glycerophospholipid metabolism, bile secretion, phenylalanine metabolism, and other pathways was predominantly regulated by nine metabolites, which were subsequently identified as indicators of exercise intervention to enhance metabolism in AD mice. The metabolomic technique can identify the metabolic problems of intestinal contents in AD mice and initially screen the biomarkers of exercise to improve the metabolic disorders in AD. These findings can help us better understand the impact of aerobic exercise on AD metabolism.PMID:37999246 | DOI:10.3390/metabo13111150

Metabolomic Profiling of Second-Trimester Amniotic Fluid for Predicting Preterm Delivery: Insights from NMR Analysis

Fri, 24/11/2023 - 12:00
Metabolites. 2023 Nov 12;13(11):1147. doi: 10.3390/metabo13111147.ABSTRACTPreterm delivery (PTD) is a notable pregnancy complication, affecting one out of every ten births. This study set out to investigate whether analyzing the metabolic composition of amniotic fluid (AF) collected from pregnant women during the second trimester of pregnancy could offer valuable insights into prematurity. The research employed 1H-NMR metabolomics to examine AF samples obtained from 17 women who gave birth prematurely (between 29+0 and 36+5 weeks of gestation) and 43 women who delivered at full term. The application of multivariate analysis revealed metabolites (dimethylglycine, glucose, myo-inositol, and succinate) that can serve as possible biomarkers for the prognosis and early diagnosis of preterm delivery. Additionally, pathway analysis unveiled the most critical metabolic pathways relevant to our research hypothesis. In summary, these findings suggest that the metabolic composition of AF in the second trimester can be a potential indicator for identifying biomarkers associated with the risk of PTD.PMID:37999243 | DOI:10.3390/metabo13111147

Sphingolipids in Childhood Asthma and Obesity (SOAP Study): A Protocol of a Cross-Sectional Study

Fri, 24/11/2023 - 12:00
Metabolites. 2023 Nov 11;13(11):1146. doi: 10.3390/metabo13111146.ABSTRACTAsthma and obesity are two of the most common chronic conditions in children and adolescents. There is increasing evidence that sphingolipid metabolism is altered in childhood asthma and is linked to airway hyperreactivity. Dysregulated sphingolipid metabolism is also reported in obesity. However, the functional link between sphingolipid metabolism, asthma, and obesity is not completely understood. This paper describes the protocol of an ongoing study on sphingolipids that aims to examine the pathophysiology of sphingolipids in childhood asthma and obesity. In addition, this study aims to explore the novel biomarkers through a comprehensive multi-omics approach including genomics, genome-wide DNA methylation, RNA-Seq, microRNA (miRNA) profiling, lipidomics, metabolomics, and cytokine profiling. This is a cross-sectional study aiming to recruit 440 children from different groups: children with asthma and normal weight (n = 100), asthma with overweight or obesity (n = 100), overweight or obesity (n = 100), normal weight (n = 70), and siblings of asthmatic children with normal weight, overweight, or obesity (n = 70). These participants will be recruited from the pediatric pulmonology, pediatric endocrinology, and general pediatric outpatient clinics at Sidra Medicine, Doha, Qatar. Information will be obtained from self-reported questionnaires on asthma, quality of life, food frequency (FFQ), and a 3-day food diary that are completed by the children and their parents. Clinical measurements will include anthropometry, blood pressure, biochemistry, bioelectrical impedance, and pulmonary function tests. Blood samples will be obtained for sphingolipid analysis, serine palmitoyltransferase (SPT) assay, whole-genome sequencing (WGS), genome-wide DNA methylation study, RNA-Seq, miRNA profiling, metabolomics, lipidomics, and cytokine analysis. Group comparisons of continuous outcome variables will be carried out by a one-way analysis of variance or the Kruskal-Wallis test using an appropriate pairwise multiple comparison test. The chi-squared test or a Fisher's exact test will be used to test the associations between categorical variables. Finally, multivariate analysis will be carried out to integrate the clinical data with multi-omics data. This study will help us to understand the role of dysregulated sphingolipid metabolism in obesity and asthma. In addition, the multi-omics data from the study will help to identify novel genetic and epigenetic signatures, inflammatory markers, and mechanistic pathways that link asthma and obesity in children. Furthermore, the integration of clinical and multi-omics data will help us to uncover the potential interactions between these diseases and to offer a new paradigm for the treatment of pediatric obesity-associated asthma.PMID:37999242 | DOI:10.3390/metabo13111146

Modeling Red Blood Cell Metabolism in the Omics Era

Fri, 24/11/2023 - 12:00
Metabolites. 2023 Nov 11;13(11):1145. doi: 10.3390/metabo13111145.ABSTRACTRed blood cells (RBCs) are abundant (more than 80% of the total cells in the human body), yet relatively simple, as they lack nuclei and organelles, including mitochondria. Since the earliest days of biochemistry, the accessibility of blood and RBCs made them an ideal matrix for the characterization of metabolism. Because of this, investigations into RBC metabolism are of extreme relevance for research and diagnostic purposes in scientific and clinical endeavors. The relative simplicity of RBCs has made them an eligible model for the development of reconstruction maps of eukaryotic cell metabolism since the early days of systems biology. Computational models hold the potential to deepen knowledge of RBC metabolism, but also and foremost to predict in silico RBC metabolic behaviors in response to environmental stimuli. Here, we review now classic concepts on RBC metabolism, prior work in systems biology of unicellular organisms, and how this work paved the way for the development of reconstruction models of RBC metabolism. Translationally, we discuss how the fields of metabolomics and systems biology have generated evidence to advance our understanding of the RBC storage lesion, a process of decline in storage quality that impacts over a hundred million blood units transfused every year.PMID:37999241 | DOI:10.3390/metabo13111145

Metabolic Features of a Novel <em>Trichoderma asperellum</em> YNQJ1002 with Potent Antagonistic Activity against <em>Fusarium graminearum</em>

Fri, 24/11/2023 - 12:00
Metabolites. 2023 Nov 11;13(11):1144. doi: 10.3390/metabo13111144.ABSTRACTTrichoderma, a well-known and extensively studied fungal genus, has gained significant attention for its remarkable antagonistic abilities against a wide range of plant pathogens. In this study, a total of 108 Trichoderma isolates were screened through in vitro dual antagonistic assays and culture filtrate inhibition against Fusarium graminearum. Of these, the YNQJ1002 displayed noteworthy inhibitory activities along with thermal stability. To validate the metabolic differences between YNQJ1002 and GZLX3001 (with strong and weak antagonism, respectively), UPLC-TOF-MS/MS mass spectrometry was employed to analyze and compare the metabolite profiles. We identified 12 significantly up-regulated metabolites in YNQJ1002, which include compounds like Trigoneoside, Torvoside, trans,trans-hepta-2,4,6-trienoic acid, and Chamazulene. These metabolites are known for their antimicrobial properties or signaling roles as components of cell membranes. Enriched KEGG analysis revealed a significant enrichment in sphingolipid metabolism and linoleic acid metabolism, as well as autophagy. The results demonstrated that YNQJ1002's abundance of antimicrobial substances, resulting from specific metabolic pathways, enhanced its superior antagonistic activity against F. graminearum. Finally, YNQJ1002 was identified using the ITS, tef1-1α, and rpb2 regions, with MIST system sequence matching confirming its classification within the species. Overall, we have obtained a novel strain, T. asperellum YNQJ1002, which is rich in metabolites and shows potential antagonistic activity against F. graminearum. This study has opened promising prospects for the development of innovative Trichoderma-derived antifungal compounds, featuring a unique mechanism against pathogens.PMID:37999240 | DOI:10.3390/metabo13111144

Metabolomics Analysis of Mesenchymal Stem Cell (MSC) Therapy in a Phase I Clinical Trial of Septic Shock: An Exploratory Study

Fri, 24/11/2023 - 12:00
Metabolites. 2023 Nov 10;13(11):1142. doi: 10.3390/metabo13111142.ABSTRACTSepsis is the result of an uncontrolled host inflammatory response to infection that may lead to septic shock with multiorgan failure and a high mortality rate. There is an urgent need to improve early diagnosis and to find markers identifying those who will develop septic shock and certainly a need to develop targeted treatments to prevent septic shock and its high mortality. Herein, we explore metabolic alterations due to mesenchymal stromal cell (MSC) treatment of septic shock. The clinical findings for this study were already reported; MSC therapy was well-tolerated and safe in patients in this phase I clinical trial. In this exploratory metabolomics study, 9 out of 30 patients received an escalating dose of MSC treatment, while 21 patients were without MSC treatment. Serum metabolomics profiling was performed to detect and characterize metabolite changes due to MSC treatment and to help determine the sample size needed for a phase II clinical trial and to define a metabolomic response to MSC treatment. Serum metabolites were measured using 1H-NMR and HILIC-MS at times 0, 24 and 72 h after MSC infusion. The results demonstrated the significant impact of MSC treatment on serum metabolic changes in a dose- and time-dependent manner compared to non-MSC-treated septic shock patients. This study suggests that plasma metabolomics can be used to assess the response to MSC therapy and that treatment-related metabolomics effects can be used to help determine the sample size needed in a phase II trial. As this study was not powered to detect outcome, how the treatment-induced metabolomic changes described in this study of MSC-treated septic shock patients are related to outcomes of septic shock in the short and long term will need to be explored in a larger adequately powered phase II clinical trial.PMID:37999238 | DOI:10.3390/metabo13111142

PPA1 Deficiency Causes a Deranged Galactose Metabolism Recognizable in Neonatal Screening

Fri, 24/11/2023 - 12:00
Metabolites. 2023 Nov 10;13(11):1141. doi: 10.3390/metabo13111141.ABSTRACTTwo siblings showed increased galactose and galactose-related metabolites in neonatal screening. Diagnostic workup did not reveal abnormalities in any of the known disease-causing enzymes involved in galactose metabolism. Using whole-exome sequencing, we identified a homozygous missense variant in PPA1 encoding the cytosolic pyrophosphatase 1 (PPA1), c.557C>T (p.Thr186Ile). The enzyme activity of PPA1 was determined using a colorimetric assay, and the protein content was visualized via western blotting in skin fibroblasts from one of the affected individuals. The galactolytic activity of the affected fibroblasts was determined by measuring extracellular acidification with a Seahorse XFe96 analyzer. PPA1 activity decreased to 22% of that of controls in the cytosolic fraction of homogenates from patient fibroblasts. PPA1 protein content decreased by 50% according to western blot analysis, indicating a reduced stability of the variant protein. The extracellular acidification rate was reduced in patient fibroblasts when galactose was used as a substrate. Untargeted metabolomics of blood samples revealed an elevation of other metabolites related to pyrophosphate metabolism. Besides hyperbilirubinemia in the neonatal period in one child, both children were clinically unremarkable at the ages of 3 and 14 years, respectively. We hypothesize that the observed metabolic derangement is a possible mild manifestation of PPA1 deficiency. Unresolved abnormalities in galactosemia screening might result in the identification of more individuals with PPA1 deficiency, a newly discovered inborn metabolic disorder (IMD).PMID:37999237 | DOI:10.3390/metabo13111141

Cord Blood Metabolite Profiles and Their Association with Autistic Traits in Childhood

Fri, 24/11/2023 - 12:00
Metabolites. 2023 Nov 9;13(11):1140. doi: 10.3390/metabo13111140.ABSTRACTAutism Spectrum Disorder (ASD) is a diverse neurodevelopmental condition. Gene-environmental interactions in early stages of life might alter metabolic pathways, possibly contributing to ASD pathophysiology. Metabolomics may serve as a tool to identify underlying metabolic mechanisms contributing to ASD phenotype and could help to unravel its complex etiology. In a population-based, prospective cohort study among 783 mother-child pairs, cord blood serum concentrations of amino acids, non-esterified fatty acids, phospholipids, and carnitines were obtained using liquid chromatography coupled with tandem mass spectrometry. Autistic traits were measured at the children's ages of 6 (n = 716) and 13 (n = 648) years using the parent-reported Social Responsiveness Scale. Lower cord blood concentrations of SM.C.39.2 and NEFA16:1/16:0 were associated with higher autistic traits among 6-year-old children, adjusted for sex and age at outcome. After more stringent adjustment for confounders, no significant associations of cord blood metabolites and autistic traits at ages 6 and 13 were detected. Differences in lipid metabolism (SM and NEFA) might be involved in ASD-related pathways and are worth further investigation.PMID:37999236 | DOI:10.3390/metabo13111140

Matrix Selection for the Visualization of Small Molecules and Lipids in Brain Tumors Using Untargeted MALDI-TOF Mass Spectrometry Imaging

Fri, 24/11/2023 - 12:00
Metabolites. 2023 Nov 9;13(11):1139. doi: 10.3390/metabo13111139.ABSTRACTMatrix-assisted laser desorption/ionization mass spectrometry imaging allows for the study of metabolic activity in the tumor microenvironment of brain cancers. The detectable metabolites within these tumors are contingent upon the choice of matrix, deposition technique, and polarity setting. In this study, we compared the performance of three different matrices, two deposition techniques, and the use of positive and negative polarity in two different brain cancer types and across two species. Optimal combinations were confirmed by a comparative analysis of lipid and small-molecule abundance by using liquid chromatography-mass spectrometry and RNA sequencing to assess differential metabolites and enzymes between normal and tumor regions. Our findings indicate that in the tumor-bearing brain, the recrystallized α-cyano-4-hydroxycinnamic acid matrix with positive polarity offered superior performance for both detected metabolites and consistency with other techniques. Beyond these implications for brain cancer, our work establishes a workflow to identify optimal matrices for spatial metabolomics studies.PMID:37999235 | DOI:10.3390/metabo13111139

Depuration and Starvation Regulate Metabolism and Improve Flesh Quality of Yellow Catfish (<em>Pelteobagrus fulvidraco</em>)

Fri, 24/11/2023 - 12:00
Metabolites. 2023 Nov 8;13(11):1137. doi: 10.3390/metabo13111137.ABSTRACTFat deposition and off-flavor in the muscle are the main problems affecting flesh quality in aquaculture fish, especially in catfish, leading to low acceptability and reduced market price. Yellow catfish is an important aquaculture fish in China. In this study, 40 days of depuration and starvation treatment were explored to improve the muscle quality of aquaculture yellow catfish. After depuration and starvation, the body weight, condition factor (CF) and mesenteric fat index (MFI) were all significantly decreased 20 days after treatment. The metabolomic profiles in muscle were characterized to analyze the muscle quality in yellow catfish. The results showed that the content of ADP, AMP, IMP, glutamic acid and taurine were significantly increased between 20 and 40 days post-treatment in the muscle of yellow catfish during the treatment, which was positively associated with the flesh tenderness and quality. In contrast, aldehydes and ketones associated with off-flavors and corticosterone associated with bitter taste were all decreased at 20 days post-treatment. Considering the balance of body weight loss and flesh quality improvement, depuration and starvation for around 20 days is suitable for aquaculture yellow catfish. Our study not only provides an effective method to improve the flesh quality of aquaculture yellow catfish but also reveals the potential mechanism in this process.PMID:37999233 | DOI:10.3390/metabo13111137

Pages