Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

MAL2 reprograms lipid metabolism in intrahepatic cholangiocarcinoma via EGFR/SREBP-1 pathway based on single-cell RNA sequencing

Wed, 12/06/2024 - 12:00
Cell Death Dis. 2024 Jun 12;15(6):411. doi: 10.1038/s41419-024-06775-7.ABSTRACTIntrahepatic cholangiocarcinoma (ICC) is a highly aggressive cancer characterized by a poor prognosis and resistance to chemotherapy. In this study, utilizing scRNA-seq, we discovered that the tetra-transmembrane protein mal, T cell differentiation protein 2 (MAL2), exhibited specific enrichment in ICC cancer cells and was strongly associated with a poor prognosis. The inhibition of MAL2 effectively suppressed cell proliferation, invasion, and migration. Transcriptomics and metabolomics analyses suggested that MAL2 promoted lipid accumulation in ICC by stabilizing EGFR membrane localization and activated the PI3K/AKT/SREBP-1 axis. Molecular docking and Co-IP proved that MAL2 interacted directly with EGFR. Based on constructed ICC organoids, the downregulation of MAL2 enhanced apoptosis and sensitized ICC cells to cisplatin. Lastly, we conducted a virtual screen to identify sarizotan, a small molecule inhibitor of MAL2, and successfully validated its ability to inhibit MAL2 function. Our findings highlight the tumorigenic role of MAL2 and its involvement in cisplatin sensitivity, suggesting the potential for novel combination therapeutic strategies in ICC.PMID:38866777 | DOI:10.1038/s41419-024-06775-7

Gel-assisted mass spectrometry imaging enables sub-micrometer spatial lipidomics

Wed, 12/06/2024 - 12:00
Nat Commun. 2024 Jun 12;15(1):5036. doi: 10.1038/s41467-024-49384-w.ABSTRACTA technique capable of label-free detection, mass spectrometry imaging (MSI) is a powerful tool for spatial investigation of native biomolecules in intact specimens. However, MSI has often been precluded from single-cell applications due to the spatial resolution limit set forth by the physical and instrumental constraints of the method. By taking advantage of the reversible interaction between the analytes and a superabsorbent hydrogel, we have developed a sample preparation and imaging workflow named Gel-Assisted Mass Spectrometry Imaging (GAMSI) to overcome the spatial resolution limits of modern mass spectrometers. With GAMSI, we show that the spatial resolution of MALDI-MSI can be enhanced ~3-6-fold to the sub-micrometer level without changing the existing mass spectrometry hardware or analysis pipeline. This approach will vastly enhance the accessibility of MSI-based spatial analysis at the cellular scale.PMID:38866734 | DOI:10.1038/s41467-024-49384-w

A Novel Dry-Cured Ham Broth-Derived Peptide JHBp2 Effectively Inhibits Salmonella typhimurium In Vitro: Integrated Metabolomic, Proteomic, and Molecular Simulation Analyses

Wed, 12/06/2024 - 12:00
J Agric Food Chem. 2024 Jun 12. doi: 10.1021/acs.jafc.4c01531. Online ahead of print.ABSTRACTJHBp2 is a peptide purified from Jinhua ham broth with antibacterial activity against Salmonella typhimurium. Untargeted metabolomics and label-free quantitative proteomics were used to analyze metabolic and protein expression changes in S. typhimurium after JHBp2 treatment. Cell wall and membrane damage results indicate that JHBp2 has membrane-disruptive properties, causing leakage of intracellular nucleic acids and proteins. Metabolomics revealed 516 differentially expressed metabolites, involving cofactor biosynthesis, purine metabolism, ABC transporters, glutathione metabolism, pyrimidine metabolism, etc. Proteomics detected 735 differentially expressed proteins, involving pyruvate metabolism, amino acid biosynthesis, purine metabolism, carbon metabolism, glycolysis/gluconeogenesis, etc. RT-qPCR and proteomics results showed a positive correlation, and molecular docking demonstrated stable binding of JHBp2 to some differentially expressed proteins. In summary, JHBp2 could disrupt the S. typhimurium cell wall and membrane structure, interfere with synthesis of membrane-related proteins, trigger intracellular substance leak, and reduce levels of enzymes and metabolites involved in energy metabolism, amino acid anabolism, and nucleotide anabolism.PMID:38866717 | DOI:10.1021/acs.jafc.4c01531

SLC7A11 and the glutathione pathway as novel prognostic markers in resectable pancreatic ductal adenocarcinoma: A metabolomics study of clinical specimens

Wed, 12/06/2024 - 12:00
Pancreatology. 2024 Jun 3:S1424-3903(24)00655-0. doi: 10.1016/j.pan.2024.05.530. Online ahead of print.ABSTRACTBACKGROUND/OBJECTIVES: Despite the poor prognosis associated with pancreatic ductal adenocarcinoma (PDAC), there remains a lack of clarity regarding the metabolic pathways and their significant impact on its phenotype. Therefore, we aimed to utilize metabolomics to capture changes in clinical PDAC tissues and elucidate the significant metabolic pathways close to its phenotypes.METHODS: This basic research was retrospectively validated using database research, immunohistochemistry, and protein analysis based on the findings obtained from metabolomics using clinical tissues collected from prospectively registered patients with PDAC. mRNA expression analysis using a database and protein analysis using archived clinical specimens was performed to validate the candidate pathways identified using metabolomics. Between-group comparisons were analyzed using paired t-tests and log-rank test, and Kaplan-Meier curves illustrated survival times.RESULTS: Patients subjected to metabolomics revealed a significant increase in glutathione disulfide levels in PDAC tissues when compared to normal pancreatic tissues. The Cancer Genome Atlas database analysis revealed significant changes in glutathione pathway-related mRNAs in PDAC compared to that in the normal pancreas. Protein analysis of previously resected specimens demonstrated a significant increase in SLC7A11 expression in PDAC tissues. The abundance ratio of SLC7A11 isoforms was associated with the post-operative prognosis in resectable PDAC.CONCLUSION: Glutathione disulfide levels were significantly increased in clinical PDAC metabolomics. Additionally, increased mRNA and protein expression in SLC7A11 was observed in PDAC. Furthermore, the SLC7A11 isoform abundance ratio may be a valuable prognostic marker in patients with resectable PDAC.PMID:38866682 | DOI:10.1016/j.pan.2024.05.530

Nutrient-sensitizing drug repurposing screen identifies lomerizine as a mitochondrial metabolism inhibitor of chronic myeloid leukemia

Wed, 12/06/2024 - 12:00
Sci Transl Med. 2024 Jun 12;16(751):eadi5336. doi: 10.1126/scitranslmed.adi5336. Epub 2024 Jun 12.ABSTRACTIn chronic myeloid leukemia (CML), the persistence of leukemic stem cells (LSCs) after treatment with tyrosine kinase inhibitors (TKIs), such as imatinib, can lead to disease relapse. It is known that therapy-resistant LSCs rely on oxidative phosphorylation (OXPHOS) for their survival and that targeting mitochondrial respiration sensitizes CML LSCs to imatinib treatment. However, current OXPHOS inhibitors have demonstrated limited efficacy or have shown adverse effects in clinical trials, highlighting that identification of clinically safe oxidative pathway inhibitors is warranted. We performed a high-throughput drug repurposing screen designed to identify mitochondrial metabolism inhibitors in myeloid leukemia cells. This identified lomerizine, a US Food and Drug Administration (FDA)-approved voltage-gated Ca2+ channel blocker now used for the treatment of migraines, as one of the top hits. Transcriptome analysis revealed increased expression of voltage-gated CACNA1D and receptor-activated TRPC6 Ca2+ channels in CML LSCs (CD34+CD38-) compared with normal counterparts. This correlated with increased endoplasmic reticulum (ER) mass and increased ER and mitochondrial Ca2+ content in CML stem/progenitor cells. We demonstrate that lomerizine-mediated inhibition of Ca2+ uptake leads to ER and mitochondrial Ca2+ depletion, with similar effects seen after CACNA1D and TRPC6 knockdown. Through stable isotope-assisted metabolomics and functional assays, we observe that lomerizine treatment inhibits mitochondrial isocitrate dehydrogenase activity and mitochondrial oxidative metabolism and selectively sensitizes CML LSCs to imatinib treatment. In addition, combination treatment with imatinib and lomerizine reduced CML tumor burden, targeted CML LSCs, and extended survival in xenotransplantation model of human CML, suggesting this as a potential therapeutic strategy to prevent disease relapse in patients.PMID:38865484 | DOI:10.1126/scitranslmed.adi5336

Three Arabidopsis UMP kinases have different roles in pyrimidine nucleotide biosynthesis and (deoxy)CMP salvage

Wed, 12/06/2024 - 12:00
Plant Cell. 2024 Jun 12:koae170. doi: 10.1093/plcell/koae170. Online ahead of print.ABSTRACTPyrimidine nucleotide monophosphate biosynthesis ends in the cytosol with uridine monophosphate (UMP). UMP phosphorylation to uridine diphosphate (UDP) by UMP KINASEs (UMKs) is required for the generation of all pyrimidine (deoxy)nucleoside triphosphates as building blocks for nucleic acids and central metabolites like UDP-glucose. The Arabidopsis (Arabidopsis thaliana) genome encodes five UMKs and three belong to the AMP KINASE (AMK)-like UMKs, which were characterized to elucidate their contribution to pyrimidine metabolism. Mitochondrial UMK2 and cytosolic UMK3 are evolutionarily conserved, whereas cytosolic UMK1 is specific to the Brassicaceae. In vitro, all UMKs can phosphorylate UMP, cytidine monophosphate (CMP) and deoxycytidine monophosphate (dCMP), but with different efficiencies. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9)-induced null mutants were generated for UMK1 and UMK2, but not for UMK3, since frameshift alleles were lethal for germline cells. However, a mutant with diminished UMK3 activity showing reduced growth was obtained. Metabolome analyses of germinating seeds and adult plants of single and higher-order mutants revealed that UMK3 plays an indispensable role in the biosynthesis of all pyrimidine (deoxy)nucleotides and UDP-sugars, while UMK2 is important for dCMP recycling that contributes to mitochondrial DNA stability. UMK1 is primarily involved in CMP recycling. We discuss the specific roles of these UMKs referring also to the regulation of pyrimidine nucleoside triphosphate synthesis.PMID:38865437 | DOI:10.1093/plcell/koae170

Gut microbial diversity and functional characterization in people with alcohol use disorder: A case-control study

Wed, 12/06/2024 - 12:00
PLoS One. 2024 Jun 12;19(6):e0302195. doi: 10.1371/journal.pone.0302195. eCollection 2024.ABSTRACTIndividuals with Alcohol Use Disorder (AUD) typically have comorbid chronic health conditions, including anxiety and depression disorders, increased sleep disruption, and poor nutrition status, along with gut microbial dysbiosis. To better understand the effects of gut dysbiosis previously shown in individuals with AUD, gut microbiome and metabolome were investigated between three cohorts. Two groups of individuals with AUD included treatment-seeking newly abstinent for at least six weeks (AB: N = 10) and non-treatment-seeking currently drinking (CD: N = 9) individuals. The third group was age, gender, and BMI-matched healthy controls (HC: N = 12). Deep phenotyping during two weeks of outpatient National Institutes of Health Clinical Center visits was performed, including clinical, psychological, medical, metabolic, dietary, and experimental assessments. Alpha and beta diversity and differential microbial taxa and metabolite abundance of the gut microbiome were examined across the three groups. Metabolites derived from the lipid super-pathway were identified to be more abundant in the AB group compared to CD and HC groups. The AB individuals appeared to be most clinically different from CD and HC individuals with respect to their gut microbiome and metabolome. These findings highlight the potential long-term effects of chronic alcohol use in individuals with AUD, even during short-term abstinence.PMID:38865325 | DOI:10.1371/journal.pone.0302195

The Plasma Metabolome and Risk of Incident Kidney Stones

Wed, 12/06/2024 - 12:00
J Am Soc Nephrol. 2024 Jun 12. doi: 10.1681/ASN.0000000000000421. Online ahead of print.ABSTRACTBACKGROUND: Information on metabolomic profiles in kidney stone formers is limited. To examine independent associations between plasma metabolomic profiles and the risk of incident, symptomatic kidney stones in adults, we conducted prospective nested case-control studies in two large cohorts.METHODS: We performed plasma metabolomics on 1,758 participants, including 879 stone formers (346 from the Health Professionals Follow-up [HPFS] cohort, 533 from the Nurses' Health Study [NHS] II cohort) and 879 non-stone formers (346 from HPFS, 533 from NHS II) matched for age, race, time of blood collection, fasting status and (for NHS II) menopausal status and luteal day of menstrual cycle for premenopausal participants. Conditional logistic regression models were used to estimate the odds ratio of kidney stones adjusted for body mass index (BMI), hypertension, diabetes, thiazide use, and intake of potassium, animal protein, oxalate, dietary and supplemental calcium, caffeine, and alcohol. A plasma metabolite based score was developed in each cohort in a conditional logistic regression model with a lasso penalty. The scores derived in the HPFS ('KMS_HPFS') and the NHS II ('KMS_NHS') were tested for their association with kidney stone risk in the other cohort.RESULTS: A variety of individual metabolites were associated with incident kidney stone formation at prespecified levels of metabolome-wide statistical significance. We identified three metabolites associated with kidney stones in both HPFS and NHS II: beta-cryptoxanthin, sphingomyelin (d18:2/24:1, d18:1/24:2), and sphingomyelin (d18:2/24:2). The standardized KMS_HPFS yielded an OR for stones in the NHS II cohort of 1.23 (95% CI 1.05, 1.44). The standardized KMS_NHS was in the expected direction but did not reach statistical significance in HPFS (OR 1.16, 95% CI 0.97, 1.39).CONCLUSIONS: The findings of specific metabolites associated with kidney stone status in two cohorts as well as a plasma metabolomic signature offer a novel approach to characterize stone formers.PMID:38865256 | DOI:10.1681/ASN.0000000000000421

Multiomics Analyses Reveal <em>MsC3H29</em> Positively Regulates Flavonoid Biosynthesis to Improve Drought Resistance of Autotetraploid Cultivated Alfalfa (<em>Medicago sativa</em> L.)

Wed, 12/06/2024 - 12:00
J Agric Food Chem. 2024 Jun 12. doi: 10.1021/acs.jafc.4c02472. Online ahead of print.ABSTRACTAlfalfa (Medicago sativa subsp. sativa), the "queen of forage," is the most important perennial legume, with high productivity and an excellent nutritional profile. Medicago sativa subsp. falcata is a subspecies of the alfalfa complex and exhibits better drought tolerance. However, drought stress significantly hampers their development and yield. The molecular mechanisms underlying the aboveground and underground tissues of sativa and falcata responding to drought stress remain obscure. Here, we performed a comprehensive comparative analysis of the physiological and transcriptomic responses of sativa and falcata under drought stress. The results showed that photosynthesis was inhibited, and antioxidant enzymes were activated under drought stress. MsC3H29, a CCCH-type zinc finger protein, was identified as a hub gene through weighted gene coexpression network analysis (WGCNA) and was significantly induced by drought in underground tissue. The MsC3H29 protein was localized in the nucleus. Overexpression (OE) of MsC3H29 can increase the primary root length and fresh weight of transgenic alfalfa hairy roots, while RNA interference (RNAi) decreases them under drought stress. The 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) staining revealed that MsC3H29 promoted drought tolerance of alfalfa hairy roots through decreasing ROS accumulation. The targeted metabolome analysis showed that the overexpression of MsC3H29 resulted in higher levels of accumulation for flavonoid monomers, including vicenin, daidzein, apigenin, isorhamnetin, quercetin, and tricin, in transgenic alfalfa hairy roots before and after drought stress, while RNAi led to a reduction. Our study provided a key candidate gene for molecular breeding to improve drought resistance in alfalfa.PMID:38864675 | DOI:10.1021/acs.jafc.4c02472

A metabolomics perspective on clorobiocin biosynthesis: discovery of bromobiocin and novel derivatives through LC-MS(E)-based molecular networking

Wed, 12/06/2024 - 12:00
Microbiol Spectr. 2024 Jun 12:e0042324. doi: 10.1128/spectrum.00423-24. Online ahead of print.ABSTRACTClorobiocin is a well-known, highly effective inhibitor of DNA gyrase belonging to the aminocoumarin antibiotics. To identify potentially novel derivatives of this natural product, we conducted an untargeted investigation of clorobiocin biosynthesis in the known producer Streptomyces roseochromogenes DS 12.976 using LC-MSE, molecular networking, and analysis of fragmentation spectra. Previously undescribed clorobiocin derivatives uncovered in this study include bromobiocin, a variant halogenated with bromine instead of chlorine, hydroxylated clorobiocin, carrying an additional hydroxyl group on its 5-methyl-pyrrole 2-carboxyl moiety, and two other derivatives with modifications on their 3-dimethylallyl 4-hydroxybenzoate moieties. Furthermore, we identified several compounds not previously considered clorobiocin pathway products, which provide new insights into the clorobiocin biosynthetic pathway. By supplementing the medium with different concentrations of potassium bromide, we confirmed that the clorobiocin halogenase can utilize bromine instead of chlorine. The reaction, however, is impeded such that non-halogenated clorobiocin derivatives accumulate. Preliminary assays indicate that the antibacterial activity of bromobioin against Bacillus subtilis and efflux-impaired Escherichia coli matches that of clorobiocin. Our findings emphasize that yet unexplored compounds can be discovered from established strains and biosynthetic gene clusters by means of metabolomics analysis and highlight the utility of LC-MSE-based methods to contribute to unraveling natural product biosynthetic pathways.IMPORTANCE: The aminocoumarin clorobiocin is a well-known gyrase inhibitor produced by the gram-positive bacterium Streptomyces roseochromogenes DS 12.976. To gain a deeper understanding of the biosynthetic pathway of this complex composite of three chemically distinct entities and the product spectrum, we chose a metabolite-centric approach. Employing high-resolution LC-MSE analysis, we investigated the pathway products in extracted culture supernatants of the natural producer. Novel pathway products were identified that expand our understanding of three aspects of the biosynthetic pathway, namely the modification of the noviose, transfer and methylation of the pyrrole 2-carboxyl moiety, and halogenation. For the first time, brominated products were detected. Their levels and the levels of non-halogenated products increased in medium supplemented with KBr. Based on the presented data, we propose that the enzyme promiscuity contributes to a broad product spectrum.PMID:38864648 | DOI:10.1128/spectrum.00423-24

Nuclear magnetic resonance spectroscopy reveals biomarkers of stroke recovery in a mouse model of obesity-associated type 2 diabetes

Wed, 12/06/2024 - 12:00
Biosci Rep. 2024 Jun 12:BSR20240249. doi: 10.1042/BSR20240249. Online ahead of print.ABSTRACTObesity and type 2 diabetes (T2D) are known to exacerbate cerebral injury caused by stroke. Metabolomics can provide signatures of metabolic disease, and now we explored whether the analysis of plasma metabolites carries biomarkers of how obesity and T2D impact post-stroke recovery. Male mice were fed a high-fat diet (HFD) for 10 months leading to development of obesity with type 2 diabetes (T2D), or a standard diet (non-diabetic mice). Then, mice were subjected to either transient middle cerebral artery occlusion (tMCAO) or sham surgery and allowed to recover on standard diet for 2 months before serum samples were collected. Nuclear magnetic resonance (NMR) spectroscopy of serum samples was used to investigate metabolite signals and metabolic pathways that were associated with tMCAO recovery in either T2D or non-diabetic mice. Overall, after post-stroke recovery there were different serum metabolite profiles in T2D and non-diabetic mice. In non-diabetic mice, which show full neurological recovery after stroke, we observed a reduction of isovalerate, and an increase of kynurenate, uridine monophosphate, gluconate and N6-acetyllysine in tMCAO relative to sham mice. In contrast, in mice with T2D, which show impaired stroke recovery, there was a reduction of N,N-dimethylglycine, succinate and proline, and an increase of 2-oxocaproate in serum of tMCAO versus sham mice. Given the inability of T2D mice to recover from stroke, in contrast to non-diabetic mice, we propose that these specific metabolite changes following tMCAO might be used as biomarkers of neurophysiological recovery after stroke in T2D.PMID:38864508 | DOI:10.1042/BSR20240249

Multi-omics analysis of kidney tissue metabolome and proteome reveals the protective effect of sheep milk against adenine-induced chronic kidney disease in mice

Wed, 12/06/2024 - 12:00
Food Funct. 2024 Jun 12. doi: 10.1039/d4fo00619d. Online ahead of print.ABSTRACTChronic kidney disease (CKD) is characterized by impaired renal function and is associated with inflammation, oxidative stress, and fibrosis. Sheep milk contains several bioactive molecules with protective effects against inflammation and oxidative stress. In the current study, we investigated the potential renoprotective effects of sheep milk and the associated mechanisms of action in an adenine-induced CKD murine model. Sheep milk delayed renal chronic inflammation (e.g., significant reduction in levels of inflammatory factors Vcam1, Icam1, Il6, and Tnfa), fibrosis (significant reduction in levels of fibrosis factors Col1a1, Fn1, and Tgfb), oxidative stress (significant increase in levels of antioxidants and decrease in oxidative markers), mineral disorders, and renal injury in adenine-treated mice (e.g. reduced levels of kidney injury markers NGAL and KIM-1). The combined proteomics and metabolomics analyses showed that sheep milk may affect the metabolic processes of several compounds, including proteins, lipids, minerals, and hormones in mice with adenine-induced chronic kidney disease. In addition, it may regulate the expression of fibrosis-related factors and inflammatory factors through the JAK1/STAT3/HIF-1α signaling pathway, thus exerting its renoprotective effects. Therefore, sheep milk may be beneficial for patients with CKD and should be evaluated in preclinical and clinical studies.PMID:38864415 | DOI:10.1039/d4fo00619d

Persistence and Sexual Dimorphism of Gut Dysbiosis and Pathobiome after Sepsis and Trauma

Wed, 12/06/2024 - 12:00
Ann Surg. 2024 Jun 12. doi: 10.1097/SLA.0000000000006385. Online ahead of print.ABSTRACTOBJECTIVE: To evaluate the persistence of intestinal microbiome dysbiosis and gut-plasma metabolomic perturbations following severe trauma or sepsis weeks after admission in patients experiencing chronic critical illness (CCI).SUMMARY: Trauma and sepsis can lead to gut dysbiosis and alterations in the plasma and fecal metabolome. However, the impact of these perturbations and correlations between gut dysbiosis and the plasma metabolome in chronic critical illness have not been studied.METHODS: A prospective observational cohort study was performed with healthy subjects, severe trauma patients, patients with sepsis residing in an intensive care unit (ICU) for 2-3 weeks. A high-throughput multi-omics approach was utilized to evaluate the gut microbial and gut-plasma metabolite responses in critically ill trauma and sepsis patients 14-21 days after ICU admission.RESULTS: Patients in the sepsis and trauma cohorts demonstrated strikingly depleted gut microbiome diversity, with significant alterations and specific pathobiome patterns in the microbiota composition compared to healthy subjects. Further subgroup analyses based on sex revealed resistance to changes in microbiome diversity among female trauma patients compared to healthy counterparts. Sex-specific changes in fecal metabolites were also observed after trauma and sepsis, while plasma metabolite changes were similar in both males and females.CONCLUSIONS: Dysbiosis induced by trauma and sepsis persists up to 14-21 days after onset and is sex-specific, underscoring the implication of pathobiome and entero-septic microbial-metabolite perturbations in post-sepsis and post-trauma CCI. This indicates resilience to infection or injury in females' microbiome and should inform and facilitate future precision/personalized medicine strategies in the intensive care unit.PMID:38864230 | DOI:10.1097/SLA.0000000000006385

Malate dehydrogenase (MDH) in cancer: a promiscuous enzyme, a redox regulator, and a metabolic co-conspirator

Wed, 12/06/2024 - 12:00
Essays Biochem. 2024 Jun 12:EBC20230088. doi: 10.1042/EBC20230088. Online ahead of print.ABSTRACTMalate dehydrogenase (MDH) is an essential enzyme in the tricarboxylic acid cycle that functions in cellular respiration and redox homeostasis. Recent studies indicate that MDH facilitates metabolic plasticity in tumor cells, catalyzing the formation of an oncometabolite, contributing to altered epigenetics, and maintaining redox capacity to support the rewired energy metabolism and biosynthesis that enables cancer progression. This minireview summarizes current findings on the unique supporting roles played by MDH in human cancers and provides an update on targeting MDH in cancer chemotherapy.PMID:38864161 | DOI:10.1042/EBC20230088

Microbial dysbiosis in systemic lupus erythematosus: a scientometric study

Wed, 12/06/2024 - 12:00
Front Microbiol. 2024 May 28;15:1319654. doi: 10.3389/fmicb.2024.1319654. eCollection 2024.ABSTRACTINTRODUCTION: Systemic lupus erythematosus (SLE) is a chronic autoimmune disease. Mounting evidence suggests microbiota dysbiosis augment autoimmune response. This study aims to provide a systematic overview of this research field in SLE through a bibliometric analysis.METHODS: We conducted a comprehensive search and retrieval of literature related to microbial researches in SLE from the Web of Science Core Collection (WOSCC) database. The retrieved articles were subjected to bibliometric analysis using VOSviewer and Bibliometricx to explore annual publication output, collaborative patterns, research hotspots, current research status, and emerging trends.RESULTS: In this study, we conducted a comprehensive analysis of 218 research articles and 118 review articles. The quantity of publications rises annually, notably surging in 2015 and 2018. The United States and China emerged as the leading contributors in microbial research of SLE. Mashhad University of Medical Sciences had the highest publication outputs among the institutions. Frontiers in Immunology published the most papers. Luo XM and Margolles A were the most prolific and highly cited contributors among individual authors. Microbial research in SLE primarily focused on changes in microbial composition, particularly gut microbiota, as well as the mechanisms and practical applications in SLE. Recent trends emphasize "metabolites," "metabolomics," "fatty acids," "T cells," "lactobacillus," and "dietary supplementation," indicating a growing emphasis on microbial metabolism and interventions in SLE.CONCLUSION: This study provides a thorough analysis of the research landscape concerning microbiota in SLE. The microbial research in SLE mainly focused on three aspects: microbial dysbiosis, mechanism studies and translational studies (microbiota-based therapeutics). It identifies current research trends and focal points, offering valuable guidance for scholars in the field.PMID:38863759 | PMC:PMC11166128 | DOI:10.3389/fmicb.2024.1319654

The investigation of the role of oral-originated <em>Prevotella-</em>induced inflammation in childhood asthma

Wed, 12/06/2024 - 12:00
Front Microbiol. 2024 May 28;15:1400079. doi: 10.3389/fmicb.2024.1400079. eCollection 2024.ABSTRACTBACKGROUND AND OBJECTIVES: The oral and gut microbiota play significant roles in childhood asthma pathogenesis. However, the communication dynamics and pathogenic mechanisms by which oral microbiota influence gut microbiota and disease development remain incompletely understood. This study investigated potential mechanisms by which oral-originated gut microbiota, specifically Prevotella genus, may contribute to childhood asthma etiology.METHODS: Oral swab and fecal samples from 30 asthmatic children and 30 healthy controls were collected. Microbiome composition was characterized using 16S rRNA gene sequencing and metagenomics. Genetic distances identified potential oral-originated bacteria in asthmatic children. Functional validation assessed pro-inflammatory properties of in silico predicted microbial mimicry peptides from enriched asthma-associated species. Fecal metabolome profiling combined with metagenomic correlations explored links between gut microbiota and metabolism. HBE cells treated with Prevotella bivia culture supernatant were analyzed for lipid pathway impacts using UPLC-MS/MS.RESULTS: Children with asthma exhibited distinct oral and gut microbiota structures. Prevotella bivia, P. disiens, P. oris and Bacteroides fragilis were enriched orally and intestinally in asthmatics, while Streptococcus thermophilus decreased. P. bivia, P. disiens and P. oris in asthmatic gut likely originated orally. Microbial peptides induced inflammatory cytokines from immune cells. Aberrant lipid pathways characterized asthmatic children. P. bivia increased pro-inflammatory and decreased anti-inflammatory lipid metabolites in HBE cells.CONCLUSION: This study provides evidence of Prevotella transfer from oral to gut microbiota in childhood asthma. Prevotella's microbial mimicry peptides and effects on lipid metabolism contribute to disease pathogenesis by eliciting immune responses. Findings offer mechanistic insights into oral-gut connections in childhood asthma etiology.PMID:38863747 | PMC:PMC11165567 | DOI:10.3389/fmicb.2024.1400079

Variations in colostrum metabolite profiles in association with sow parity

Wed, 12/06/2024 - 12:00
Transl Anim Sci. 2024 May 3;8:txae062. doi: 10.1093/tas/txae062. eCollection 2024.ABSTRACTInformation about the full spectrum of metabolites present in porcine colostrum and factors that influence metabolite abundances is still incomplete. Parity number appears to modulate the concentration of single metabolites in colostrum. This study aimed to 1) characterize the metabolome composition and 2) assess the effect of parity on metabolite profiles in porcine colostrum. Sows (n = 20) were divided into three parity groups: A) sows in parity 1 and 2 (n = 8), B) sows in parity 3 and 4 (n = 6), and C) sows in parity 5 and 6 (n = 6). Colostrum was collected within 12 h after parturition. A total of 125 metabolites were identified using targeted reversed-phase high-performance liquid chromatography-tandem mass spectrometry and anion-exchange chromatography-high resolution mass spectrometry. Gas chromatography additionally identified 19 fatty acids (FAs). Across parities, colostrum was rich in creatine and creatinine, 1,3-dioleyl-2-palmitatoylglycerol, 1,3-dipalmitoyl-2-oleoylglycerol, and sialyllactose. Alterations in colostrum concentrations were found for eight metabolites among parity groups (P < 0.05) but the effects were not linear. For instance, colostrum from parity group C comprised 75.4% more valine but 15.7%, 34.1%, and 47.9% less citric, pyruvic, and pyroglutamic acid, respectively, compared to group A (P < 0.05). By contrast, colostrum from parity group B contained 39.5% more spermidine than from group A (P < 0.05). Of the FAs, C18:1, C16:0, and C18:2 n6 were the main FAs across parities. Parity affected four FAs (C18:3n3, C14:1, C17:0ai, and C17:1), including 43.1% less α-linolenic acid (C18:3n3) in colostrum from parity group C compared to groups A and B (P < 0.05). Signature feature ranking identified 1-stearoyl-2-hydroxy-sn-glycero-3-phosphatidylcholine and the secondary bile acid hyodeoxycholic acid as the most discriminative metabolites, showing a higher variable importance in the projection score in colostrum from parity group A than from groups B and C. Overall, results provided a comprehensive overview about the metabolome composition of sow colostrum. The consequences of the changes in colostrum metabolites with increasing parity for the nutrient supply of the piglets should be investigated in the future. The knowledge gained in this study could be used to optimize feeding strategies for sows.PMID:38863596 | PMC:PMC11165641 | DOI:10.1093/tas/txae062

Unraveling verticillium wilt resistance: insight from the integration of transcriptome and metabolome in wild eggplant

Wed, 12/06/2024 - 12:00
Front Plant Sci. 2024 May 28;15:1378748. doi: 10.3389/fpls.2024.1378748. eCollection 2024.ABSTRACTVerticillium wilt, caused by Verticillium dahliae, is a soil-borne disease affecting eggplant. Wild eggplant, recognized as an excellent disease-resistant resource against verticillium wilt, plays a pivotal role in grafting and breeding for disease resistance. However, the underlying resistance mechanisms of wild eggplant remain poorly understood. This study compared two wild eggplant varieties, LC-2 (high resistance) and LC-7 (sensitive) at the phenotypic, transcriptomic, and metabolomic levels to determine the molecular basis of their resistance to verticillium wilt. These two varieties exhibit substantial phenotypic differences in petal color, leaf spines, and fruit traits. Following inoculation with V. dahliae, LC-2 demonstrated significantly higher activities of polyphenol oxidase, superoxide dismutase, peroxidase, phenylalanine ammonia lyase, β-1,3 glucanase, and chitinase than did LC-7. RNA sequencing revealed 4,017 differentially expressed genes (DEGs), with a significant portion implicated in processes associated with disease resistance and growth. These processes encompassed defense responses, cell wall biogenesis, developmental processes, and biosynthesis of spermidine, cinnamic acid, and cutin. A gene co-expression analysis identified 13 transcription factors as hub genes in modules related to plant defense response. Some genes exhibited distinct expression patterns between LC-2 and LC-7, suggesting their crucial roles in responding to infection. Further, metabolome analysis identified 549 differentially accumulated metabolites (DAMs) between LC-2 and LC-7, primarily consisting of compounds such as flavonoids, phenolic acids, lipids, and other metabolites. Integrated transcriptome and metabolome analyses revealed the association of 35 gene-metabolite pairs in modules related to the plant defense response, highlighting the interconnected processes underlying the plant defense response. These findings characterize the molecular basis of LC-2 resistance to verticillium wilt and thus have potential value for future breeding of wilt-resistant eggplant varieties.PMID:38863534 | PMC:PMC11165189 | DOI:10.3389/fpls.2024.1378748

Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry

Wed, 12/06/2024 - 12:00
World J Mens Health. 2024 May 22. doi: 10.5534/wjmh.230344. Online ahead of print.ABSTRACTPURPOSE: Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.MATERIALS AND METHODS: Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.RESULTS: The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88-0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.CONCLUSIONS: Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.PMID:38863374 | DOI:10.5534/wjmh.230344

The Promise and Challenges of Metabolomic Studies in Pediatric CKD

Wed, 12/06/2024 - 12:00
Clin J Am Soc Nephrol. 2024 Jun 12. doi: 10.2215/CJN.0000000000000501. Online ahead of print.NO ABSTRACTPMID:38863115 | DOI:10.2215/CJN.0000000000000501

Pages