Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Plasma metabolomics and lipidomics reveal potential novel biomarkers in early gastric cancer: An explorative study

Tue, 11/06/2024 - 12:00
Int J Biol Markers. 2024 Jun 11:3936155241258780. doi: 10.1177/03936155241258780. Online ahead of print.ABSTRACTBACKGROUND: Early identification and therapy can significantly improve the outcome for gastric cancer. However, there is still no perfect biomarker available for the detection of early gastric cancer. This study aimed to investigate the alterations in the plasma metabolites of early gastric cancer using metabolomics and lipidomics based on high-performance liquid chromatography-mass spectrometry (HPLC-MS), which detected potential biomarkers that could be used for clinical diagnosis.METHODS: To investigate the changes in metabolomics and lipidomics, a total of 30 plasma samples were collected, consisting of 15 patients with early gastric cancer and 15 healthy controls. Extensive HPLC-MS-based untargeted metabolomic and lipidomic investigations were conducted. Differential metabolites and metabolic pathways were uncovered through the utilization of statistical analysis and bioinformatics analysis. Candidate biomarker screening was performed using support vector machine-based multivariate receiver operating characteristic analysis.RESULTS: A disturbance was observed in a combined total of 19 metabolites and 67 lipids of the early gastric cancer patients. The analysis of KEGG pathways showed that the early gastric cancer patients experienced disruptions in the arginine biosynthesis pathway, the pathway for alanine, aspartate, and glutamate metabolism, as well as the pathway for glyoxylate and dicarboxylate metabolism. Plasma metabolomics and lipidomics have identified multiple biomarker panels that can effectively differentiate early gastric cancer patients from healthy controls, exhibiting an area under the curve exceeding 0.9.CONCLUSION: These metabolites and lipids could potentially serve as biomarkers for the screening of early gastric cancer, thereby optimizing the strategy for the detection of early gastric cancer. The disrupted pathways implicated in early gastric cancer provide new clues for additional understanding of gastric cancer's pathogenesis. Nonetheless, large-scale clinical data are required to prove our findings.PMID:38859802 | DOI:10.1177/03936155241258780

Multi-omic analysis tools for microbial metabolites prediction

Tue, 11/06/2024 - 12:00
Brief Bioinform. 2024 May 23;25(4):bbae264. doi: 10.1093/bib/bbae264.ABSTRACTHow to resolve the metabolic dark matter of microorganisms has long been a challenging problem in discovering active molecules. Diverse omics tools have been developed to guide the discovery and characterization of various microbial metabolites, which make it gradually possible to predict the overall metabolites for individual strains. The combinations of multi-omic analysis tools effectively compensates for the shortcomings of current studies that focus only on single omics or a broad class of metabolites. In this review, we systematically update, categorize and sort out different analysis tools for microbial metabolites prediction in the last five years to appeal for the multi-omic combination on the understanding of the metabolic nature of microbes. First, we provide the general survey on different updated prediction databases, webservers, or software that based on genomics, transcriptomics, proteomics, and metabolomics, respectively. Then, we discuss the essentiality on the integration of multi-omics data to predict metabolites of different microbial strains and communities, as well as stressing the combination of other techniques, such as systems biology methods and data-driven algorithms. Finally, we identify key challenges and trends in developing multi-omic analysis tools for more comprehensive prediction on diverse microbial metabolites that contribute to human health and disease treatment.PMID:38859767 | DOI:10.1093/bib/bbae264

The analysis of the skeletal muscle metabolism is crucial for designing optimal exercise paradigms in type 2 diabetes mellitus

Mon, 10/06/2024 - 12:00
Mol Med. 2024 Jun 10;30(1):80. doi: 10.1186/s10020-024-00850-7.ABSTRACTBACKGROUND: Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease that commonly results from a high-calorie diet and sedentary lifestyle, leading to insulin resistance and glucose homeostasis perturbation. Physical activity is recommended as one first-line treatment in T2DM, but it leads to contrasted results. We hypothesized that, instead of applying standard exercise protocols, the prescription of personalized exercise programs specifically designed to reverse the potential metabolic alterations in skeletal muscle could result in better results.METHODS: To test this hypothesis, we drew the metabolic signature of the fast-twitch quadriceps muscle, based on a combined unbiased NMR spectroscopy and RT-qPCR study, in several T2DM mouse models of different genetic background (129S1/SvImJ, C57Bl/6J), sex and aetiology (high-fat diet (HFD) or HFD/Streptozotocin (STZ) induction or transgenic MKR (FVB-Tg Ckm-IGF1R*K1003R)1Dlr/J) mice. Three selected mouse models with unique muscular metabolic signatures were submitted to three different swimming-based programs, designed to address each metabolic specificity.RESULTS: We found that depending on the genetic background, the sex, and the mode of T2DM induction, specific muscular adaptations occurred, including depressed glycolysis associated with elevated PDK4 expression, shift to β-oxidation, or deregulation of amino-acid homeostasis. Interestingly, dedicated swimming-based exercises designed to restore specific metabolic alterations in muscle were found optimal in improving systemic T2DM hallmarks, including a significant reduction in insulin resistance, the improvement of glucose homeostasis, and a delay in sensorimotor function alterations.CONCLUSION: The muscle metabolism constitutes an important clue for the design of precision exercises with potential clinical implications for T2DM patients.PMID:38858657 | DOI:10.1186/s10020-024-00850-7

Application of omics in the diagnosis, prognosis, and treatment of acute myeloid leukemia

Mon, 10/06/2024 - 12:00
Biomark Res. 2024 Jun 10;12(1):60. doi: 10.1186/s40364-024-00600-1.ABSTRACTAcute myeloid leukemia (AML) is the most frequent leukemia in adults with a high mortality rate. Current diagnostic criteria and selections of therapeutic strategies are generally based on gene mutations and cytogenetic abnormalities. Chemotherapy, targeted therapies, and hematopoietic stem cell transplantation (HSCT) are the major therapeutic strategies for AML. Two dilemmas in the clinical management of AML are related to its poor prognosis. One is the inaccurate risk stratification at diagnosis, leading to incorrect treatment selections. The other is the frequent resistance to chemotherapy and/or targeted therapies. Genomic features have been the focus of AML studies. However, the DNA-level aberrations do not always predict the expression levels of genes and proteins and the latter is more closely linked to disease phenotypes. With the development of high-throughput sequencing and mass spectrometry technologies, studying downstream effectors including RNA, proteins, and metabolites becomes possible. Transcriptomics can reveal gene expression and regulatory networks, proteomics can discover protein expression and signaling pathways intimately associated with the disease, and metabolomics can reflect precise changes in metabolites during disease progression. Moreover, omics profiling at the single-cell level enables studying cellular components and hierarchies of the AML microenvironment. The abundance of data from different omics layers enables the better risk stratification of AML by identifying prognosis-related biomarkers, and has the prospective application in identifying drug targets, therefore potentially discovering solutions to the two dilemmas. In this review, we summarize the existing AML studies using omics methods, both separately and combined, covering research fields of disease diagnosis, risk stratification, prognosis prediction, chemotherapy, as well as targeted therapy. Finally, we discuss the directions and challenges in the application of multi-omics in precision medicine of AML. Our review may inspire both omics researchers and clinical physicians to study AML from a different angle.PMID:38858750 | DOI:10.1186/s40364-024-00600-1

Transcriptome and metabolome analysis reveals mechanism of light intensity modulating iridoid biosynthesis in Gentiana macrophylla Pall

Mon, 10/06/2024 - 12:00
BMC Plant Biol. 2024 Jun 11;24(1):526. doi: 10.1186/s12870-024-05217-y.ABSTRACTLight intensity is a key factor affecting the synthesis of secondary metabolites in plants. However, the response mechanisms of metabolites and genes in Gentiana macrophylla under different light intensities have not been determined. In the present study, G. macrophylla seedlings were treated with LED light intensities of 15 µmol/m2/s (low light, LL), 90 µmol/m2/s (medium light, ML), and 200 µmol/m2/s (high light, HL), and leaves were collected on the 5th day for further investigation. A total of 2162 metabolites were detected, in which, the most abundant metabolites were identified as flavonoids, carbohydrates, terpenoids and amino acids. A total of 3313 and 613 differentially expressed genes (DEGs) were identified in the LL and HL groups compared with the ML group, respectively, mainly enriched in KEGG pathways such as carotenoid biosynthesis, carbon metabolism, glycolysis/gluconeogenesis, amino acids biosynthesis, plant MAPK pathway and plant hormone signaling. Besides, the transcription factors of GmMYB5 and GmbHLH20 were determined to be significantly correlated with loganic acid biosynthesis; the expression of photosystem-related enzyme genes was altered under different light intensities, regulating the expression of enzyme genes involved in the carotenoid, chlorophyll, glycolysis and amino acids pathway, then affecting their metabolic biosynthesis. As a result, low light inhibited photosynthesis, delayed glycolysis, thus, increased certain amino acids and decreased loganic acid production, while high light got an opposite trend. Our research contributed significantly to understand the molecular mechanism of light intensity in controlling metabolic accumulation in G. macrophylla.PMID:38858643 | DOI:10.1186/s12870-024-05217-y

Metabolomics combined with network pharmacology reveals a role for astragaloside IV in inhibiting enterovirus 71 replication via PI3K-AKT signaling

Mon, 10/06/2024 - 12:00
J Transl Med. 2024 Jun 10;22(1):555. doi: 10.1186/s12967-024-05355-9.ABSTRACTBACKGROUND: Astragaloside IV (AST-IV), as an effective active ingredient of Astragalus membranaceus (Fisch.) Bunge. It has been found that AST-IV inhibits the replication of dengue virus, hepatitis B virus, adenovirus, and coxsackievirus B3. Enterovirus 71 (EV71) serves as the main pathogen in severe hand-foot-mouth disease (HFMD), but there are no specific drugs available. In this study, we focus on investigating whether AST-IV can inhibit EV71 replication and explore the potential underlying mechanisms.METHODS: The GES-1 or RD cells were infected with EV71, treated with AST-IV, or co-treated with both EV71 and AST-IV. The EV71 structural protein VP1 levels, the viral titers in the supernatant were measured using western blot and 50% tissue culture infective dose (TCID50), respectively. Network pharmacology was used to predict possible pathways and targets for AST-IV to inhibit EV71 replication. Additionally, ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) was used to investigate the potential targeted metabolites of AST-IV. Associations between metabolites and apparent indicators were performed via Spearman's algorithm.RESULTS: This study illustrated that AST-IV effectively inhibited EV71 replication. Network pharmacology suggested that AST-IV inhibits EV71 replication by targeting PI3K-AKT. Metabolomics results showed that AST-IV achieved these effects by elevating the levels of hypoxanthine, 2-ketobutyric acid, adenine, nicotinic acid mononucleotide, prostaglandin H2, 6-hydroxy-1 H-indole-3- acetamide, oxypurinol, while reducing the levels of PC (14:0/15:0). Furthermore, AST-IV also mitigated EV71-induced oxidative stress by reducing the levels of MDA, ROS, while increasing the activity of T-AOC, CAT, GSH-Px. The inhibition of EV71 replication was also observed when using the ROS inhibitor N-Acetylcysteine (NAC). Additionally, AST-IV exhibited the ability to activate the PI3K-AKT signaling pathway and suppress EV71-induced apoptosis.CONCLUSION: This study suggests that AST-IV may activate the cAMP and the antioxidant stress response by targeting eight key metabolites, including hypoxanthine, 2-ketobutyric acid, adenine, nicotinic acid mononucleotide, prostaglandin H2, 6-Hydroxy-1 H-indole-3-acetamide, oxypurinol and PC (14:0/15:0). This activation can further stimulate the PI3K-AKT signaling to inhibit EV71-induced apoptosis and EV71 replication.PMID:38858642 | DOI:10.1186/s12967-024-05355-9

Combinatorial metabolomic and transcriptomic analysis of muscle growth in hybrid striped bass (female white bass Morone chrysops x male striped bass M. saxatilis)

Mon, 10/06/2024 - 12:00
BMC Genomics. 2024 Jun 10;25(1):580. doi: 10.1186/s12864-024-10325-y.ABSTRACTBACKGROUND: Understanding growth regulatory pathways is important in aquaculture, fisheries, and vertebrate physiology generally. Machine learning pattern recognition and sensitivity analysis were employed to examine metabolomic small molecule profiles and transcriptomic gene expression data generated from liver and white skeletal muscle of hybrid striped bass (white bass Morone chrysops x striped bass M. saxatilis) representative of the top and bottom 10 % by body size of a production cohort.RESULTS: Larger fish (good-growth) had significantly greater weight, total length, hepatosomatic index, and specific growth rate compared to smaller fish (poor-growth) and also had significantly more muscle fibers of smaller diameter (≤ 20 µm diameter), indicating active hyperplasia. Differences in metabolomic pathways included enhanced energetics (glycolysis, citric acid cycle) and amino acid metabolism in good-growth fish, and enhanced stress, muscle inflammation (cortisol, eicosanoids) and dysfunctional liver cholesterol metabolism in poor-growth fish. The majority of gene transcripts identified as differentially expressed between groups were down-regulated in good-growth fish. Several molecules associated with important growth-regulatory pathways were up-regulated in muscle of fish that grew poorly: growth factors including agt and agtr2 (angiotensins), nicotinic acid (which stimulates growth hormone production), gadd45b, rgl1, zfp36, cebpb, and hmgb1; insulin-like growth factor signaling (igfbp1 and igf1); cytokine signaling (socs3, cxcr4); cell signaling (rgs13, rundc3a), and differentiation (rhou, mmp17, cd22, msi1); mitochondrial uncoupling proteins (ucp3, ucp2); and regulators of lipid metabolism (apoa1, ldlr). Growth factors pttg1, egfr, myc, notch1, and sirt1 were notably up-regulated in muscle of good-growing fish.CONCLUSION: A combinatorial pathway analysis using metabolomic and transcriptomic data collectively suggested promotion of cell signaling, proliferation, and differentiation in muscle of good-growth fish, whereas muscle inflammation and apoptosis was observed in poor-growth fish, along with elevated cortisol (an anti-inflammatory hormone), perhaps related to muscle wasting, hypertrophy, and inferior growth. These findings provide important biomarkers and mechanisms by which growth is regulated in fishes and other vertebrates as well.PMID:38858615 | DOI:10.1186/s12864-024-10325-y

Phytate metabolism is mediated by microbial cross-feeding in the gut microbiota

Mon, 10/06/2024 - 12:00
Nat Microbiol. 2024 Jun 10. doi: 10.1038/s41564-024-01698-7. Online ahead of print.ABSTRACTDietary intake of phytate has various reported health benefits. Previous work showed that the gut microbiota can convert phytate to short-chain fatty acids (SCFAs), but the microbial species and metabolic pathway are unclear. Here we identified Mitsuokella jalaludinii as an efficient phytate degrader, which works synergistically with Anaerostipes rhamnosivorans to produce the SCFA propionate. Analysis of published human gut taxonomic profiles revealed that Mitsuokella spp., in particular M. jalaludinii, are prevalent in human gut microbiomes. NMR spectroscopy using 13C-isotope labelling, metabolomic and transcriptomic analyses identified a complete phytate degradation pathway in M. jalaludinii, including production of the intermediate Ins(2)P/myo-inositol. The major end product, 3-hydroxypropionate, was converted into propionate via a synergistic interaction with Anaerostipes rhamnosivorans both in vitro and in mice. Upon [13C6]phytate administration, various 13C-labelled components were detected in mouse caecum in contrast with the absence of [13C6] InsPs or [13C6]myo-inositol in plasma. Caco-2 cells incubated with co-culture supernatants exhibited improved intestinal barrier integrity. These results suggest that the microbiome plays a major role in the metabolism of this phytochemical and that its fermentation to propionate by M. jalaludinii and A. rhamnosivorans may contribute to phytate-driven health benefits.PMID:38858593 | DOI:10.1038/s41564-024-01698-7

Biomarkers for ideal protein: rabbit diet metabolomics varying key amino acids

Mon, 10/06/2024 - 12:00
Commun Biol. 2024 Jun 10;7(1):712. doi: 10.1038/s42003-024-06322-2.ABSTRACTWith the main aim of identifying biomarkers that contribute to defining the concept of ideal protein in growing rabbits under the most diverse conditions possible this work describes two different experiments. Experiment 1: 24 growing rabbits are included at 56 days of age. The rabbits are fed ad libitum one of the two experimental diets only differing in lysine levels. Experiment 2: 53 growing rabbits are included at 46 days of age, under a fasting and eating one of the five experimental diets, with identical chemical composition except for the three typically limiting amino acids (being fed commercial diets ad libitum in both experiments). Blood samples are taken for targeted and untargeted metabolomics analysis. Here we show that the metabolic phenotype undergoes alterations when animals experience a rapid dietary shift in the amino acid levels. While some of the differential metabolites can be attributed directly to changes in specific amino acids, creatinine, urea, hydroxypropionic acid and hydroxyoctadecadienoic acid are suggested as a biomarker of amino acid imbalances in growing rabbits' diets, since its changes are not attributable to a single amino acid. The fluctuations in their levels suggest intricate amino acid interactions. Consequently, we propose these metabolites as promising biomarkers for further research into the concept of the ideal protein using rabbit as a model.PMID:38858508 | DOI:10.1038/s42003-024-06322-2

Metabolomics efficiently discriminates monozygotic twins in peripheral blood

Mon, 10/06/2024 - 12:00
Int J Legal Med. 2024 Jun 11. doi: 10.1007/s00414-024-03269-1. Online ahead of print.ABSTRACTMonozygotic (MZ) twins cannot be distinguished using conventional forensic STR typing because they present identical STR genotypings. However, MZ twins do not always live in the same environment and often have different dietary and other lifestyle habits. Metabolic profiles are deyermined by individual characteristics and are also influenced by the environment in which they live. Therefore, they are potential markers capable of identifying MZ twins. Moreover, the production of proteins varies from organism to organism and is influenced by both the physiological state of the body and the external environment. Hence, we used metabolomics and proteomics to identify metabolites and proteins in peripheral blood to discriminate MZ twins. We identified 1749 known metabolites and 622 proteins in proteomic analysis. The metabolic profiles of four pairs of MZ twins revealed minor differences in intra-MZ twins and major differences in inter-MZ twins. Each pair of MZ twins exhibited distinct characteristics, and four metabolites-methyl picolinate, acesulfame, paraxanthine, and phenylbenzimidazole sulfonic acid-were observed in all four MZ twin pairs. These four differential exogenous metabolites conincidently show that the different external environments and life styles can be well distinguished by metabolites, considering that twins do not all have the same eating habits and living environments. Moreover, MZ twins showed different protein profiles in serum but not in whole blood. Thus, our results indicate that differential metabolites provide potential biomarkers for the personal identification of MZ twins in forensic medicine.PMID:38858273 | DOI:10.1007/s00414-024-03269-1

The 2024 Metabolomics publication awards

Mon, 10/06/2024 - 12:00
Metabolomics. 2024 Jun 10;20(3):64. doi: 10.1007/s11306-024-02132-z.NO ABSTRACTPMID:38858240 | DOI:10.1007/s11306-024-02132-z

Brain network topological changes in inflammatory bowel disease: an exploratory study

Mon, 10/06/2024 - 12:00
Eur J Neurosci. 2024 Jun 10. doi: 10.1111/ejn.16442. Online ahead of print.ABSTRACTAlthough the aetio-pathogenesis of inflammatory bowel diseases (IBD) is not entirely clear, the interaction between genetic and adverse environmental factors may induce an intestinal dysbiosis, resulting in chronic inflammation having effects on the large-scale brain network. Here, we hypothesized inflammation-related changes in brain topology of IBD patients, regardless of the clinical form [ulcerative colitis (UC) or Crohn's disease (CD)]. To test this hypothesis, we analysed source-reconstructed magnetoencephalography (MEG) signals in 25 IBD patients (15 males, 10 females; mean age ± SD, 42.28 ± 13.15; mean education ± SD, 14.36 ± 3.58) and 28 healthy controls (HC) (16 males, 12 females; mean age ± SD, 45.18 ± 12.26; mean education ± SD, 16.25 ± 2.59), evaluating the brain topology. The betweenness centrality (BC) of the left hippocampus was higher in patients as compared with controls, in the gamma frequency band. It indicates how much a brain region is involved in the flow of information through the brain network. Furthermore, the comparison among UC, CD and HC showed statistically significant differences between UC and HC and between CD and HC, but not between the two clinical forms. Our results demonstrated that these topological changes were not dependent on the specific clinical form, but due to the inflammatory process itself. Broader future studies involving panels of inflammatory factors and metabolomic analyses on biological samples could help to monitor the brain involvement in IBD and to clarify the clinical impact.PMID:38858102 | DOI:10.1111/ejn.16442

Association of childhood food consumption and dietary pattern with cardiometabolic risk factors and metabolomics in late adolescence: prospective evidence from 'Children of 1997' birth cohort

Mon, 10/06/2024 - 12:00
J Epidemiol Community Health. 2024 Jun 10:jech-2023-221245. doi: 10.1136/jech-2023-221245. Online ahead of print.ABSTRACTBACKGROUND: Healthy diet might protect against cardiometabolic diseases, but uncertainty exists about its definition and role in adolescence.METHOD: In a subset of Hong Kong's 'Children of 1997' birth cohort (n=2844 out of 8327), we prospectively examined sex-specific associations of food consumption and dietary pattern, proxied by the Global Diet Quality Score (GDQS) at~12.0 years, with cardiometabolic risk factors and metabolomics at~17.6 years.RESULT: Higher vegetable (-0.04 SD, 95% CIs: -0.09 to 0.00) and soy consumption (-0.05 SD, 95% CI: -0.09 to -0.01) were associated with lower waist-to-hip ratio. Higher fruit and vegetable consumption were associated with lower fasting glucose (p<0.05). Higher fish consumption was associated with 0.06 SD (95% CI: 0.01 to 0.10) high-density lipoprotein cholesterol and -0.07 SD (95% CI: -0.11 to -0.02) triglycerides. After correcting for multiple comparisons (p<0.001), higher fish, fruit and vegetable consumption were associated with higher fatty acid unsaturation, higher concentration and percentage of omega-3 and a lower ratio of omega-6/omega-3. At nominal significance (p<0.05), higher fish consumption was associated with lower very-low-density lipoprotein and triglycerides relevant metabolomics. Higher vegetable and fruit consumption were associated with lower glycolysis-related metabolomics. Lower sugar-sweetened beverages (SSBs) consumption was associated with lower branched-chain amino acids. Similar associations with adiposity and metabolomics biomarkers were observed for GDQS.CONCLUSIONS: Higher consumption of fruit, vegetables and fish and lower ice cream and SSBs consumption were associated with lower cardiometabolic risk in adolescents.PMID:38857919 | DOI:10.1136/jech-2023-221245

Comparative metabolomics and transcriptome analysis provide insights into branching changes induced by heterografting in Pinus massoniana seedlings

Mon, 10/06/2024 - 12:00
Genomics. 2024 Jun 8:110882. doi: 10.1016/j.ygeno.2024.110882. Online ahead of print.ABSTRACTThe investigation of dwarfing rootstocks for the establishment of high-generation seed orchards is a prospective avenue of research. In this investigation, Pinus massoniana, Pinus yunnanensis var. pygmaea (P. pygmaea), and P. elliottii seedlings were used as rootstocks for grafting with P. massoniana scions. Grafting P. massoniana onto P. pygmaea rootstock resulted in observable phenotypic alterations in lateral branches, apical buds, and needle length. Certain characteristic metabolites of rootstocks, such as fatty acyls, pregnenolones, steroids, and steroid derivatives, were found to be highly expressed in scions after grafting. RNA-seq analysis revealed MYB-related, SBP, and bHLH demonstrating a significant positive correlation, while C2H2 and Orphans exhibited negative correlations with the differential intensity of metabolites related to lipids and lipid-like molecules. This study offers valuable insights for the establishment of rootstock breeding programs.PMID:38857814 | DOI:10.1016/j.ygeno.2024.110882

Transcriptome and metabolome analyses reveal chlorogenic acid accumulation in pigmented potatoes at different altitudes

Mon, 10/06/2024 - 12:00
Genomics. 2024 Jun 8:110883. doi: 10.1016/j.ygeno.2024.110883. Online ahead of print.ABSTRACTPigmented potato tubers are abundant in chlorogenic acid (CGAs), a metabolite with pharmacological activity. This article comprehensively analyzes the metabolome and transcriptome of Pigmented potatoes Huaxingyangyu and Jianchuanhong at four altitudes of 1800 m, 2300 m, 2800 m, and 3300 m. A total of 20 CGAs and intermediate CGA compounds were identified, including 3-o-caffeoylquinic acid, 4-o-caffeoylquinic acid, and 5-o-caffeoylquinic acid. The CGA content in Huaxinyangyu and Jianchuanhong reached its maximum at an altitude of 2800 m and slightly decreased at 3300 m. 48 candidate genes related to the biosynthesis pathway of CGA were screened through transcriptome analysis. Weighted gene co-expression network analysis (WGCNA) identified that Phenylalanine deaminase (PAL), Coumarate-3 hydroxylase (C3H), and Cinnamic acid 4-hydroxylase (C4H) genes and MYB and bHLH transcription factors co-regulate CGA biosynthesis. The results of this study provide valuable information to reveal the changes in CGA components in colored potatoes at different altitudes.PMID:38857813 | DOI:10.1016/j.ygeno.2024.110883

Unlocking Nature's Secrets: The Pivotal Role of WRKY Transcription Factors in Plant Flowering and Fruit Development

Mon, 10/06/2024 - 12:00
Plant Sci. 2024 Jun 8:112150. doi: 10.1016/j.plantsci.2024.112150. Online ahead of print.ABSTRACTThe WRKY transcription factor family is a key player in the regulatory mechanisms of flowering plants, significantly influencing both their biotic and abiotic response systems as well as being vital to numerous physiological and biological functions. Over the past two decades, the functionality of WRKY proteins has been the subject of extensive research in over 50 plant species, with a strong focus on their roles in responding to various stresses. Despite this extensive research, there remains a notable gap in comprehensive studies aimed at understanding how specific WRKY genes directly influence the timing of flowering and fruit development. This review offers an up-to-date look at WRKY family genes and provides insights into the key genes of WRKY to control flowering, enhance fruit ripening and secondary metabolism synthesis, and maintain fruit quality of various plants, including annuals, perennials, medicinal, and crop plants. The WRKY transcription factors serve as critical regulators within the transcriptional regulatory network, playing a crucial role in the precise enhancement of flowering processes. It is also involved in the up-regulation of fruit ripening was strongly demonstrated by combined transcriptomics and metabolomic investigation. Therefore, we speculated that the WRKY family is known to be a key regulator of flowering and fruiting in plants. This detailed insight will enable the identification of the series of molecular occurrences featuring WRKY proteins throughout the stages of flowering and fruiting.PMID:38857658 | DOI:10.1016/j.plantsci.2024.112150

Toxic effects and mechanisms of chronic cadmium exposure on Litopenaeus vannamei growth performance based on combined microbiome and metabolome analysis

Mon, 10/06/2024 - 12:00
Chemosphere. 2024 Jun 8:142578. doi: 10.1016/j.chemosphere.2024.142578. Online ahead of print.ABSTRACTCadmium (Cd) pollution seriously affects marine organisms' health and poses a threat to food safety. Although Cd pollution has attracted widespread attention in aquaculture, little is known about the toxic mechanisms of chronic Cd exposure on shrimp growth performance. The study investigated the combined effects of chronic exposure to Cd of different concentrations including 0, 75, 150, and 300 μg/L for 30 days on the growth performance, tissue bioaccumulation, intestinal microbiology, and metabolic responses of Litopenaeus vannamei. The results revealed that the growth was significantly inhibited under exposure to 150 and 300 μg/L Cd2+. The bioaccumulation in gills and intestines respectively showed an increasing and inverted "U" shaped trend with increasing Cd2+ concentration. Chronic Cd altered the intestinal microflora with a significant decrease in microbial richness and increasing trends in the abundances of the potentially pathogenic bacteria Vibrio and Maribacter at exposure to 75 and 150 μg/L Cd2+, and Maribacter at 300 μg/L. In addition, chronic Cd interfered with intestinal metabolic processes. The expressions of certain metabolites associated with growth promotion and enhanced antioxidant power, including N-methyl-D-aspartic acid, L-malic acid, guanidoacetic acid, betaine, and gluconic acid were significantly down-regulated, especially at exposure to 150 and 300 μg/L Cd2+, and were negatively correlated with Vibrio and Maribacter abundance levels. In summary, chronic Cd exposure resulted in severe growth inhibition and increased Cd accumulation in shrimp tissues. Increased levels of intestinal pathogenic bacteria and decreased levels of growth-promoting metabolites may be the key causes of growth inhibition. Harmful bacteria Vibrio and Maribacter may be associated with the inhibition of growth-promoting metabolite expression and may be involved in disrupting intestinal metabolic functions, ultimately impairing shrimp growth potential. This study sheds light on the potential toxicological mechanisms of chronic Cd inhibition on shrimp growth performance, offering new insights into Cd toxicity studies in aquaculture.PMID:38857631 | DOI:10.1016/j.chemosphere.2024.142578

Dietary sulforaphane glucosinolate mitigates depression-like behaviors in mice with hepatic ischemia/reperfusion injury: A role of the gut-liver-brain axis

Mon, 10/06/2024 - 12:00
J Psychiatr Res. 2024 Jun 5;176:129-139. doi: 10.1016/j.jpsychires.2024.06.005. Online ahead of print.ABSTRACTNutrition has been increasingly recognized for its use in mental health. Depression is commonly observed in patients with chronic liver disease (CLD). Building on our recent findings of depression-like behaviors in mice with hepatic ischemia/reperfusion (HI/R) injury, mediated by the gut-liver-brain axis, this study explored the potential influence of dietary sulforaphane glucosinolate (SGS) on these behaviors. Behavioral assessments for depression-like behaviors were conducted 7 days post either sham or HI/R injury surgery. Dietary intake of SGS significantly prevented splenomegaly, systemic inflammation, depression-like behaviors, and downregulation of synaptic proteins in the prefrontal cortex (PFC) of HI/R-injured mice. Through 16S rRNA analysis and untargeted metabolomic analyses, distinct bacterial profiles and metabolites were identified between control + HI/R group and SGS + HI/R group. Correlations were observed between the relative abundance of gut microbiota and both behavioral outcomes and blood metabolites. These findings suggest that SGS intake could mitigate depression-like phenotypes in mice with HI/R injury, potentially through the gut-liver-brain axis. Additionally, SGS, found in crucial vegetables like broccoli, could offer prophylactic nutritional benefits for depression in patients with CLD.PMID:38857554 | DOI:10.1016/j.jpsychires.2024.06.005

Obese mice have decreased uterine contractility and altered energy metabolism in the uterus at term gestation

Mon, 10/06/2024 - 12:00
Biol Reprod. 2024 Jun 10:ioae086. doi: 10.1093/biolre/ioae086. Online ahead of print.ABSTRACTOver 35% of reproductive-age women in the US are obese, putting them at increased risk for numerous obstetric complications due to abnormal labor. While the association between maternal obesity and abnormal labor has been well documented, the mechanisms responsible for this remain understudied. The uterine smooth muscle, myometrium, has high energy needs in order to fuel regular uterine contractions during parturition. However, the precise mechanisms by which the myometrium meets its energy demands has not been defined. Here, our objective was to define the effects of obesity on energy utilization in the myometrium during labor. We generated a mouse model of maternal diet-induced obesity (DIO) and found that these mice had a higher rate of dystocia than control chow-fed (CON) mice. Moreover, compared to CON mice, DIO mice at term, both before and during labor had lower in vivo spontaneous uterine contractility. Untargeted transcriptomic and metabolomic analyses suggest that DIO is associated with elevated long-chain fatty acid uptake and utilization in the uterus, but also an accumulation of medium-chain fatty acids. DIO uteri also had an increase in the abundance of long chain-specific β-oxidation enzymes, which may be responsible for the observed increase in long-chain fatty acid utilization. This altered energy substrate utilization may be a contributor to the observed contractile dysfunction.PMID:38857377 | DOI:10.1093/biolre/ioae086

Transcriptome and metabolome revealed the effects of ABA promotion and inhibition on flavonoid and amino acid metabolism in tea plant

Mon, 10/06/2024 - 12:00
Tree Physiol. 2024 Jun 10:tpae065. doi: 10.1093/treephys/tpae065. Online ahead of print.ABSTRACTFlavonoids (especially anthocyanins and catechins) and amino acids represent the high abundance of health-promoting metabolites. Although we observed ABA accumulation in purple leaves and low levels in albino tea leaves, the specific mechanism behind its impact on flavor compounds remains unclear. In this study, we treated tea leaves with exogenous ABA and ABA biosynthesis inhibitors (Flu), measured physiological indicators, and conducted comprehensive transcriptomic and metabolomic analyses to elucidate the potential mechanisms underlying color change. Our results demonstrate that ABA treatment induces purple coloration, while Flu treatment causes discoloration in tea leaves. Metabolomic analysis revealed higher levels of four anthocyanins and six catechins in the group treated with ABA in comparison to the control group. Additionally, there was a notable increase in 15 amino acids in the Flu-treated group. Notably, the levels of flavonoids and amino acids showed an inverse relationship between the two treatments. Transcriptomic comparison between the treatments and the control group revealed upregulation of differentially expressed genes (DEGs) encoding DFR and UFGT in the ABA-treated group, leading to the accumulation of identified anthocyanins and catechins. In contrast, DEGs encoding NR and NRT exhibited elevated expression in the group treated with Flu, consequently facilitating the accumulation of amino acids, specifically L-theanine and L-glutamine. Furthermore, our co-expression network analysis suggests that MYB and bHLH transcription factors (TFs) may play crucial roles in regulating the expression of DEGs involved in the biosynthesis of flavonoids and amino acids. This study provides insights for targeted genetic engineering to enhance the nutritional and market value of tea, together with the potential application of purple and albino tea leaves as functional beverages. It also offers guidance for future breeding programs and production.PMID:38857368 | DOI:10.1093/treephys/tpae065

Pages