PubMed
Exogenous curcumin mitigates As stress in spinach plants: A biochemical and metabolomics investigation
Plant Physiol Biochem. 2024 May 8;211:108713. doi: 10.1016/j.plaphy.2024.108713. Online ahead of print.ABSTRACTThe spinach (S. oleracea L.) was used as a model plant to investigate As toxicity on physio-biochemical processes, exploring the potential mitigation effect of curcumin (Cur) applied exogenously at three concentrations (1, 10, and 20 μM Cur). The employment of Cur significantly mitigated As-induced stress in spinach photosynthetic performance (Fv/Fm, Fo/Fm, and Fv/Fo). Moreover, the co-incubation of Cur with As improved physiological processes mainly associated with plant water systems affected by As stress by recovering the leaf's relative water content (RWC) and osmotic potential (ψπ) nearly to the control level and increasing the transpiration rate (E; 39-59%), stomatal conductivity (gs; 86-116%), and carbon assimilation rate (A; 84-121%) compared to As stressed plants. The beneficial effect of Cur in coping with As-induced stress was also assessed at the plant's oxidative level by reducing oxidative stress biomarkers (H2O2 and MDA) and increasing non-enzymatic antioxidant capacity. Untargeted metabolomics analysis was adopted to investigate the main processes affected by As and Cur application. A multifactorial ANOVA discrimination model (AMOPLS-DA) and canonical correlation analysis (rCCA) were employed to identify relevant metabolic changes and biomarkers associated with Cur and As treatments. The results highlighted that Cur significantly determined the accumulation of glucosinolates, phenolic compounds, and an increase in glutathione redox cycle activities, suggesting an overall elicitation of plant secondary metabolisms. Specifically, the correlation analysis reported a strong and positive correlation between (+)-dihydrokaempferol, L-phenylalanine (precursor of phenolic compounds), and serotonin-related metabolites with antioxidant activities (ABTS and DPPH), suggesting the involvement of Cur application in promoting a cross-talk between ROS signaling and phytohormones, especially melatonin and serotonin, working coordinately to alleviate As-induced oxidative stress. The modulation of plant metabolism was also observed at the level of amino acids, fatty acids, and secondary metabolites synthesis, including N-containing compounds, terpenes, and phenylpropanoids to cooperate with As-induced stress response.PMID:38739963 | DOI:10.1016/j.plaphy.2024.108713
The <em>GPAT4</em>/<em>6</em>/<em>8</em> clade functions in Arabidopsis root suberization nonredundantly with the <em>GPAT5/7</em> clade required for suberin lamellae
Proc Natl Acad Sci U S A. 2024 May 21;121(21):e2314570121. doi: 10.1073/pnas.2314570121. Epub 2024 May 13.ABSTRACTLipid polymers such as cutin and suberin strengthen the diffusion barrier properties of the cell wall in specific cell types and are essential for water relations, mineral nutrition, and stress protection in plants. Land plant-specific glycerol-3-phosphate acyltransferases (GPATs) of different clades are central players in cutin and suberin monomer biosynthesis. Here, we show that the GPAT4/6/8 clade in Arabidopsis thaliana, which is known to mediate cutin formation, is also required for developmentally regulated root suberization, in addition to the established roles of GPAT5/7 in suberization. The GPAT5/7 clade is mainly required for abscisic acid-regulated suberization. In addition, the GPAT5/7 clade is crucial for the formation of the typical lamellated suberin ultrastructure observed by transmission electron microscopy, as distinct amorphous globular polyester structures were deposited in the apoplast of the gpat5 gpat7 double mutant, in contrast to the thinner but still lamellated suberin deposition in the gpat4 gpat6 gpat8 triple mutant. Site-directed mutagenesis revealed that the intrinsic phosphatase activity of GPAT4, GPAT6, and GPAT8, which leads to monoacylglycerol biosynthesis, contributes to suberin formation. GPAT5/7 lack an active phosphatase domain and the amorphous globular polyester structure observed in the gpat5 gpat7 double mutant was partially reverted by treatment with a phosphatase inhibitor or the expression of phosphatase-dead variants of GPAT4/6/8. Thus, GPATs that lack an active phosphatase domain synthetize lysophosphatidic acids that might play a role in the formation of the lamellated structure of suberin. GPATs with active and nonactive phosphatase domains appear to have nonredundant functions and must cooperate to achieve the efficient biosynthesis of correctly structured suberin.PMID:38739804 | DOI:10.1073/pnas.2314570121
Unraveling the Complex Relationship Between Gut Microbiome and Cardiovascular Diseases
Circulation. 2024 May 14;149(20):1543-1545. doi: 10.1161/CIRCULATIONAHA.123.067547. Epub 2024 May 13.NO ABSTRACTPMID:38739698 | DOI:10.1161/CIRCULATIONAHA.123.067547
A study protocol to characterise pathophysiological and molecular markers of rheumatic heart disease and degenerative aortic stenosis using multiparametric cardiovascular imaging and multiomics techniques
PLoS One. 2024 May 13;19(5):e0303496. doi: 10.1371/journal.pone.0303496. eCollection 2024.ABSTRACTINTRODUCTION: Rheumatic heart disease (RHD), degenerative aortic stenosis (AS), and congenital valve diseases are prevalent in sub-Saharan Africa. Many knowledge gaps remain in understanding disease mechanisms, stratifying phenotypes, and prognostication. Therefore, we aimed to characterise patients through clinical profiling, imaging, histology, and molecular biomarkers to improve our understanding of the pathophysiology, diagnosis, and prognosis of RHD and AS.METHODS: In this cross-sectional, case-controlled study, we plan to recruit RHD and AS patients and compare them to matched controls. Living participants will undergo clinical assessment, echocardiography, CMR and blood sampling for circulatory biomarker analyses. Tissue samples will be obtained from patients undergoing valve replacement, while healthy tissues will be obtained from cadavers. Immunohistology, proteomics, metabolomics, and transcriptome analyses will be used to analyse circulatory- and tissue-specific biomarkers. Univariate and multivariate statistical analyses will be used for hypothesis testing and identification of important biomarkers. In summary, this study aims to delineate the pathophysiology of RHD and degenerative AS using multiparametric CMR imaging. In addition to discover novel biomarkers and explore the pathomechanisms associated with RHD and AS through high-throughput profiling of the tissue and blood proteome and metabolome and provide a proof of concept of the suitability of using cadaveric tissues as controls for cardiovascular disease studies.PMID:38739622 | DOI:10.1371/journal.pone.0303496
LCMS-Metabolomic Profiling and Genome Mining of Delftia lacustris DSM 21246 Revealed Lipophilic Delftibactin Metallophores
J Nat Prod. 2024 May 13. doi: 10.1021/acs.jnatprod.4c00049. Online ahead of print.ABSTRACTBacteria have evolved various strategies to combat heavy metal stress, including the secretion of small molecules, known as metallophores. These molecules hold a potential role in the mitigation of toxic metal contamination from the environment (bioremediation). Herein, we employed combined comparative metabolomic and genomic analyses to study the metallophores excreted by Delftia lacustris DSM 21246. LCMS-metabolomic analysis of this bacterium cultured under iron limitation led to a suite of lipophilic metallophores exclusively secreted in response to iron starvation. Additionally, we conducted genome sequencing of the DSM 21246 strain using nanopore sequencing technology and employed antiSMASH to mine the genome, leading to the identification of a biosynthetic gene cluster (BGC) matching the known BGC responsible for delftibactin A production. The isolated suite of amphiphilic metallophores, termed delftibactins C-F (1-4), was characterized using various chromatographic, spectroscopic, and bioinformatic techniques. The planar structure of these compounds was elucidated through 1D and 2D NMR analyses, as well as LCMS/MS-based fragmentation studies. Notably, their structures differed from previously known delftibactins due to the presence of a lipid tail. Marfey's and bioinformatic analyses were employed to determine the absolute configuration of the peptide scaffold. Delftibactin A, a previously identified metallophore, has exhibited a gold biomineralizing property; compound 1 was tested for and also demonstrated this property.PMID:38739531 | DOI:10.1021/acs.jnatprod.4c00049
Retinal metabolism displays evidence for uncoupling of glycolysis and oxidative phosphorylation via Cori-, Cahill-, and mini-Krebs-cycle
Elife. 2024 May 13;12:RP91141. doi: 10.7554/eLife.91141.ABSTRACTThe retina consumes massive amounts of energy, yet its metabolism and substrate exploitation remain poorly understood. Here, we used a murine explant model to manipulate retinal energy metabolism under entirely controlled conditions and utilised 1H-NMR spectroscopy-based metabolomics, in situ enzyme detection, and cell viability readouts to uncover the pathways of retinal energy production. Our experimental manipulations resulted in varying degrees of photoreceptor degeneration, while the inner retina and retinal pigment epithelium were essentially unaffected. This selective vulnerability of photoreceptors suggested very specific adaptations in their energy metabolism. Rod photoreceptors were found to rely strongly on oxidative phosphorylation, but only mildly on glycolysis. Conversely, cone photoreceptors were dependent on glycolysis but insensitive to electron transport chain decoupling. Importantly, photoreceptors appeared to uncouple glycolytic and Krebs-cycle metabolism via three different pathways: (1) the mini-Krebs-cycle, fuelled by glutamine and branched chain amino acids, generating N-acetylaspartate; (2) the alanine-generating Cahill-cycle; (3) the lactate-releasing Cori-cycle. Moreover, the metabolomics data indicated a shuttling of taurine and hypotaurine between the retinal pigment epithelium and photoreceptors, likely resulting in an additional net transfer of reducing power to photoreceptors. These findings expand our understanding of retinal physiology and pathology and shed new light on neuronal energy homeostasis and the pathogenesis of neurodegenerative diseases.PMID:38739438 | DOI:10.7554/eLife.91141
Efficient Enzymatic Synthesis of Carbamates in Water Using Promiscuous Esterases/Acyltransferases
Angew Chem Int Ed Engl. 2024 May 13:e202405152. doi: 10.1002/anie.202405152. Online ahead of print.ABSTRACTBiocatalysis provides an attractive approach to facilitate synthetic reactions in aqueous media. Motivated by the discovery of promiscuous aminolysis activity of esterases, we exploited the esterase from Pyrobaculum calidifontis VA1 (PestE) for the synthesis of carbamates from different aliphatic, aromatic, and arylaliphatic amines and a set of carbonates such as dimethyl-, dibenzyl-, or diallyl carbonate. Thus, aniline and benzylamine derivatives, aliphatic and even secondary amines could be efficiently converted into the corresponding benzyloxycarbonyl (Cbz)- or allyloxycarbonyl (Alloc)-protected products in bulk water, with (isolated) yields of up to 99%.PMID:38739413 | DOI:10.1002/anie.202405152
Metabolomics signature of blood pressure salt sensitivity and its link to cardiovascular disease: A dietary salt-intervention trial
Sci China Life Sci. 2024 May 9. doi: 10.1007/s11427-023-2507-9. Online ahead of print.ABSTRACTIndividuals with a high degree of salt sensitivity (SS) have a greater risk of cardiovascular disease (CVD), but whether SS fosters CVD by influencing metabolomics homeostasis remains unclear. This study aimed to reveal the role of the SS-related metabolomics signature in the development of CVDs, based on the MetaSalt study, which was a dietary salt-intervention trial conducted at four centers in China in 2019. A total of 528 participants were recruited and underwent 3 days of baseline observations, a 10-day low-salt intervention, and a 10-day high-salt intervention. Plasma untargeted metabolomics, lipidomics, and BP measurements were scheduled at each stage. Participants were grouped into extreme SS, moderate SS, and salt-resistant (SR) individuals according to their BP responses to salt. Linear mixed models were used to identify SS-related metabolites and determine the relationship between the SS-related metabolomics signature and arterial stiffness. Mendelian randomization (MR) analyses were applied to establish the causal pathways among the SS-related metabolites, BP, and CVDs. Among the 713 metabolites, 467 were significantly changed after the high-salt intervention. Among them, the changes in 30 metabolites from the low-salt to the high-salt intervention differed among the SS groups. Of the remaining nonsalt-related metabolites, the baseline levels of 11 metabolites were related to SS. These 41 metabolites explained 23% of the variance in SS. Moreover, SS and its metabolomics signature were positively correlated with arterial stiffness. MR analyses demonstrated that the SS-related metabolites may affect CVD risk by altering BP, indicating that the increase in BP was the consequence of the changes in SS-related metabolites rather than the cause. Our study revealed that the metabolomics signature of SS individuals differs from that of SR individuals and that the changes in SS-related metabolites may increase arterial stiffness and foster CVDs. This study provides insight into understanding the biology and targets of SS and its role in CVDs.PMID:38739172 | DOI:10.1007/s11427-023-2507-9
Metabolomics Signature in Prediabetes and Diabetes: Insights From Tandem Mass Spectrometry Analysis
Endocrinol Diabetes Metab. 2024 May;7(3):e00484. doi: 10.1002/edm2.484.ABSTRACTOBJECTIVE: This study investigates the metabolic differences between normal, prediabetic and diabetic patients with good and poor glycaemic control (GGC and PGC).DESIGN: In this study, 1102 individuals were included, and 50 metabolites were analysed using tandem mass spectrometry. The diabetes diagnosis and treatment standards of the American Diabetes Association (ADA) were used to classify patients.METHODS: The nearest neighbour method was used to match controls and cases in each group on the basis of age, sex and BMI. Factor analysis was used to reduce the number of variables and find influential underlying factors. Finally, Pearson's correlation coefficient was used to check the correlation between both glucose and HbAc1 as independent factors with binary classes.RESULTS: Amino acids such as glycine, serine and proline, and acylcarnitines (AcylCs) such as C16 and C18 showed significant differences between the prediabetes and normal groups. Additionally, several metabolites, including C0, C5, C8 and C16, showed significant differences between the diabetes and normal groups. Moreover, the study found that several metabolites significantly differed between the GGC and PGC diabetes groups, such as C2, C6, C10, C16 and C18. The correlation analysis revealed that glucose and HbA1c levels significantly correlated with several metabolites, including glycine, serine and C16, in both the prediabetes and diabetes groups. Additionally, the correlation analysis showed that HbA1c significantly correlated with several metabolites, such as C2, C5 and C18, in the controlled and uncontrolled diabetes groups.CONCLUSIONS: These findings could help identify new biomarkers or underlying markers for the early detection and management of diabetes.PMID:38739122 | DOI:10.1002/edm2.484
Millifluidic magnetophoresis-based chip for age-specific fractionation: evaluating the impact of age on metabolomics and gene expression in yeast
Lab Chip. 2024 May 13. doi: 10.1039/d4lc00185k. Online ahead of print.ABSTRACTA novel millifluidic process introduces age-based fractionation of S. pastorianus var. carlsbergensis yeast culture through magnetophoresis. Saccharomyces yeast is a model organism for aging research used in various industries. Traditional age-based cell separation methods were labor-intensive, but techniques like magnetic labeling have eased the process by being non-invasive and scalable. Our approach introduces an age-specific fractionation using a 3D-printed millfluidic chip in a two-step process, ensuring efficient cell deflection in the magnetic field and counteracting magnetic induced convection. Among various channel designs, the pinch-shaped channel proved most effective for age differentiation based on magnetically labeled bud scar numbers. Metabolomic analyses revealed changes in certain amino acids and increased NAD+ levels, suggesting metabolic shifts in aging cells. Gene expression studies further underlined these age-related metabolic changes. This innovative platform offers a high-throughput, non-invasive method for age-specific yeast cell fractionation, with potential applications in industries ranging from food and beverages to pharmaceuticals.PMID:38739033 | DOI:10.1039/d4lc00185k
Rapid biotransformation of STW 5 constituents by human gut microbiome from IBS- and non-IBS donors
Microbiol Spectr. 2024 May 13:e0403123. doi: 10.1128/spectrum.04031-23. Online ahead of print.ABSTRACTSTW 5, a blend of nine medicinal plant extracts, exhibits promising efficacy in treating functional gastrointestinal disorders, notably irritable bowel syndrome (IBS). Nonetheless, its effects on the gastrointestinal microbiome and the role of microbiota on the conversion of its constituents are still largely unexplored. This study employed an experimental ex vivo model to investigate STW 5's differential effects on fecal microbial communities and metabolite production in samples from individuals with and without IBS. Using 560 fecal microcosms (IBS patients, n = 6; healthy controls, n = 10), we evaluated the influence of pre-digested STW 5 and controls on microbial and metabolite composition at time points 0, 0.5, 4, and 24 h. Our findings demonstrate the potential of this ex vivo platform to analyze herbal medicine turnover within 4 h with minimal microbiome shifts due to abiotic factors. While only minor taxonomic disparities were noted between IBS- and non-IBS samples and upon treatment with STW 5, rapid metabolic turnover of STW 5 components into specific degradation products, such as 18β-glycyrrhetinic acid, davidigenin, herniarin, 3-(3-hydroxyphenyl)propanoic acid, and 3-(2-hydroxy-4-methoxyphenyl)propanoic acid occurred. For davidigenin, 3-(3-hydroxyphenyl)propanoic acid and 18β-glycyrrhetinic acid, anti-inflammatory, cytoprotective, or spasmolytic activities have been previously described. Notably, the microbiome-driven metabolic transformation did not induce a global microbiome shift, and the detected metabolites were minimally linked to specific taxa. Observed biotransformations were independent of IBS diagnosis, suggesting potential benefits for IBS patients from biotransformation products of STW 5.IMPORTANCE: STW 5 is an herbal medicinal product with proven clinical efficacy in the treatment of functional gastrointestinal disorders, like functional dyspepsia and irritable bowel syndrome (IBS). The effects of STW 5 on fecal microbial communities and metabolite production effects have been studied in an experimental model with fecal samples from individuals with and without IBS. While only minor taxonomic disparities were noted between IBS- and non-IBS samples and upon treatment with STW 5, rapid metabolic turnover of STW 5 components into specific degradation products with reported anti-inflammatory, cytoprotective, or spasmolytic activities was observed, which may be relevant for the pharmacological activity of STW 5.PMID:38738925 | DOI:10.1128/spectrum.04031-23
Spatio-temporal dynamics of the human small intestinal microbiome and its response to a synbiotic
Gut Microbes. 2024 Jan-Dec;16(1):2350173. doi: 10.1080/19490976.2024.2350173. Epub 2024 May 13.ABSTRACTAlthough fecal microbiota composition is considered to preserve relevant and representative information for distal colonic content, it is evident that it does not represent microbial communities inhabiting the small intestine. Nevertheless, studies investigating the human small intestinal microbiome and its response to dietary intervention are still scarce. The current study investigated the spatio-temporal dynamics of the small intestinal microbiome within a day and over 20 days, as well as its responses to a 14-day synbiotic or placebo control supplementation in 20 healthy subjects. Microbial composition and metabolome of luminal content of duodenum, jejunum, proximal ileum and feces differed significantly from each other. Additionally, differences in microbiota composition along the small intestine were most pronounced in the morning after overnight fasting, whereas differences in composition were not always measurable around noon or in the afternoon. Although overall small intestinal microbiota composition did not change significantly within 1 day and during 20 days, remarkable, individual-specific temporal dynamics were observed in individual subjects. In response to the synbiotic supplementation, only the microbial diversity in jejunum changed significantly. Increased metabolic activity of probiotic strains during intestinal passage, as assessed by metatranscriptome analysis, was not observed. Nevertheless, synbiotic supplementation led to a short-term spike in the relative abundance of genera included in the product in the small intestine approximately 2 hours post-ingestion. Collectively, small intestinal microbiota are highly dynamic. Ingested probiotic bacteria could lead to a transient spike in the relative abundance of corresponding genera and ASVs, suggesting their passage through the entire gastrointestinal tract. This study was registered to http://www.clinicaltrials.gov, NCT02018900.PMID:38738780 | DOI:10.1080/19490976.2024.2350173
Nitrogen-mediated volatilisation of defensive metabolites in tomato confers resistance to herbivores
Plant Cell Environ. 2024 May 13. doi: 10.1111/pce.14945. Online ahead of print.ABSTRACTPlants synthesise a vast array of volatile organic compounds (VOCs), which serve as chemical defence and communication agents in their interactions with insect herbivores. Although nitrogen (N) is a critical resource in the production of plant metabolites, its regulatory effects on defensive VOCs remain largely unknown. Here, we investigated the effect of N content in tomato (Solanum lycopersicum) on the tobacco cutworm (Spodoptera litura), a notorious agricultural pest, using biochemical and molecular experiments in combination with insect behavioural and performance analyses. We observed that on tomato leaves with different N contents, S. litura showed distinct feeding preference and growth and developmental performance. Particularly, metabolomics profiling revealed that limited N availability conferred resistance upon tomato plants to S. litura is likely associated with the biosynthesis and emission of the volatile metabolite α-humulene as a repellent. Moreover, exogenous application of α-humulene on tomato leaves elicited a significant repellent response against herbivores. Thus, our findings unravel the key factors involved in N-mediated plant defence against insect herbivores and pave the way for innovation of N management to improve the plant defence responses to facilitate pest control strategies within agroecosystems.PMID:38738504 | DOI:10.1111/pce.14945
Identification and analysis of immunogenicity and immunotherapy efficacy by fatty acid genes: a novel prognostic features of lumbar disc herniation and Mendelian randomization analysis
Int J Neurosci. 2024 May 13:1-14. doi: 10.1080/00207454.2024.2353367. Online ahead of print.ABSTRACTBackground: Sciatica is a phrase used to describe radiating leg discomfort. The most common cause is lumbar disc herniation (LDH), which is considered to start in the nucleus pulposus. Advancements in lipidomics and metabolomics have unveiled the complex role of fatty acid metabolism (FAM) in both healthy and pathological states. However, the specific roles of fatty acid metabolism-related genes (FAMGs) in shaping therapeutic approaches, especially in LDH, remain largely unexplored and are a subject of ongoing research. Methods: The junction of the weighted correlation network analysis (WGCNA) test with 6 FAMGs enabled the finding of FAMGs. Gene set variation analysis (GSVA) was used to identify the possible biological activities and pathways of FAMGs. LASSO was used to determine diagnostic effectiveness of the four FAMGs in diagnosing LDH. GSE124272, GSE147383, GSE150408, and GSE153761 were utilized to confirm the levels of expression of four FAMGs. Results: Four FAMGs were discovered [Acyl-CoA Thioesterase 4 (ACOT4), Cytochrome P450 Family 4 Subfamily A Member 11 (CYP4A11), Acyl-CoA Dehydrogenase Long Chain (ACADL), Enoyl-CoA Hydratase and 3-Hydroxyacyl CoA Dehydrogenase (EHHADH)] For biological function analysis, mhc class ib receptor activity, response to thyroxine, response to l phenylalanine derivative were emphasized. Conclusions: FAMGs can help with prognosis and immunology, and provide evidence for fatty acid metabolism-related targeted therapeutics. In LDH, FAMGs and their interactions with immune cells might be therapeutic targets.PMID:38738478 | DOI:10.1080/00207454.2024.2353367
Metabolomic pattern associated with physical sequelae in patients presenting with respiratory symptoms validates the aestivation concept in dehydrated patients
Physiol Genomics. 2024 May 13. doi: 10.1152/physiolgenomics.00021.2024. Online ahead of print.ABSTRACTBACKGROUND: Hypertonic dehydration is associated with muscle wasting and synthesis of organic osmolytes. We recently showed a metabolic shift to amino acid production and urea cycle activation in COVID-19, consistent with the aestivation response. The aim of the present investigation was to validate the metabolic shift and development of long-term physical outcome in the non-COVID cohort of the Biobanque Québécoise de la COVID-19 (BQC19).METHODS: We included 824 patients from BQC19, where of 571 patients had data of dehydration in the form of estimated osmolality (eOSM = 2Na+2K+glucose+urea), and 284 patients had metabolome data and long-term follow-up. We correlated the degree of dehydration to mortality, invasive mechanical ventilation, acute kidney injury, and long-term symptoms.RESULTS: As found in the COVID cohort, higher eOSM correlated with higher proportion of urea and glucose of total eOSM and an enrichment of amino acids compared to other metabolites. Sex stratified analysis indicated that women may show a weaker aestivation response. More severe dehydration was associated with mortality, invasive mechanical ventilation, and acute kidney injury during the acute illness. Importantly, more severe dehydration was associated with physical long-term symptoms but not mental long-term symptoms after adjustment for age, sex, and disease severity.CONCLUSIONS: Patients with water deficit in the form of increased eOSM tend to have more severe disease and experience more physical symptoms after an acute episode of care. This is associated with amino acid and urea production indicating dehydration induced muscle wasting.PMID:38738317 | DOI:10.1152/physiolgenomics.00021.2024
Comparative Analysis of Circulating Metabolomic Profiles Identifies Shared Metabolic Alterations Across Distinct Multi-Stressor Military Training Operations
Physiol Genomics. 2024 May 13. doi: 10.1152/physiolgenomics.00008.2024. Online ahead of print.ABSTRACTMilitary training provides insight into metabolic responses under unique physiological demands that can be comprehensively characterized by global metabolomic profiling to identify potential strategies for improving performance. This study identified shared changes in metabolomic profiles across three distinct military training exercises varying in magnitude and types of stress. Blood samples collected before and after three real or simulated military training exercises were analyzed using the same untargeted metabolomic profiling platform. Exercises included a three-week survival school course (ST, n=36), a four-day arctic cross country ski march (AT, n=24), and a 28-day controlled diet- and exercise-induced energy deficit (CED, n=26). Log2-fold changes of >±1 in 191, 121 and 64 metabolites were identified in the ST, AT and CED datasets, respectively. Most metabolite changes were within lipid (57-63%) and amino acid metabolism (18-19%) pathways, and changes in 87 were shared across studies. The largest and most consistent increases in shared metabolites were found in acylcarnitine, fatty acid, ketone, and glutathione metabolism pathways, whereas the largest decreases were in diacylglycerol and urea cycle metabolism pathways. Multiple shared metabolites were consistently correlated with biomarkers of inflammation, tissue damage, and anabolic hormones across studies. These three studies of real and simulated military training revealed overlapping alterations in metabolomic profiles despite differences in environment and the stressors involved. Consistent changes in metabolites related to lipid metabolism, ketogenesis and oxidative stress suggest a potential common metabolomic signature associated with inflammation, tissue damage and suppression of anabolic signaling that may characterize unique physiological demands of military training.PMID:38738316 | DOI:10.1152/physiolgenomics.00008.2024
Subnormothermic <em>ex vivo</em> lung perfusion possibly protects against ischemia-reperfusion injury via the mTORC-HIF-1α pathway
J Thorac Dis. 2024 Apr 30;16(4):2365-2378. doi: 10.21037/jtd-23-1809. Epub 2024 Apr 24.ABSTRACTBACKGROUND: Ex vivo lung perfusion (EVLP) is a useful technique for evaluating and repairing donor lungs for transplantation. However, studies examining the effects of perfusate temperature on graft function are limited. Thus, this study aimed to examine these effects during EVLP on ischemic-reperfusion injury in the donor lung.METHODS: Twenty-four male Sprague-Dawley rats were randomly divided into three groups, as follows: no treatment (sham group, n=5), normothermic EVLP (37 °C, n=5), and subnormothermic EVLP (30 °C, n=5). Lung function analyses, including oxygen capacity (OC), compliance, and pulmonary vascular resistance (PVR), were performed hourly during EVLP. Further, after 4 h of EVLP, histological evaluation of the right lobe was performed using the lung injury severity (LIS) scale. The expression levels of inflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-18 were evaluated. Metabolomic analysis of left lung tissues was conducted using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS) after 4 h of EVLP in the EVLP groups and after 1 h of cold preservation in the sham group.RESULTS: Compared with those in the normothermic group, in the subnormothermic group, functional parameters during EVLP and subsequent histologic results were significantly superior, expression levels of inflammatory cytokines such as TNF-α, IL-1β, IL-6, and IL-18 were significantly lower, and glycolytic activity was significantly decreased. Furthermore, expression levels of mammalian target of rapamycin complex (mTORC), hypoxia-inducible factor (HIF) 1α, and nucleotide-binding domain, leucine-rich-containing family pyrin domain containing 3 (NLRP3) and its effector caspase-1 were significantly lower in the subnormothermic group than in the normothermic group.CONCLUSIONS: EVLP with subnormothermic perfusion improves lung graft function by reducing the expression of pro-inflammatory cytokines and glycolytic activity during EVLP. Additionally, EVLP can be a useful target for the improvement of graft function after transplantation.PMID:38738245 | PMC:PMC11087601 | DOI:10.21037/jtd-23-1809
Integrated proteomic, transcriptomic, and metabolomic profiling reveals that the gibberellin-abscisic acid hub runs flower development in the Chinese orchid Cymbidium sinense
Hortic Res. 2024 Mar 12;11(5):uhae073. doi: 10.1093/hr/uhae073. eCollection 2024 May.ABSTRACTThe seasonal flowering Chinese Cymbidium produce an axillary floral meristem and require a dormancy period during cold conditions for flower development. However, the bud activation mechanism remains elusive. This study evaluates the multi-omics across six stages of flower development, along with functional analysis of core genes to decipher the innate mechanism of floral bud initiation and outgrowth in the Chinese orchid Cymbidium sinense. Transcriptome and proteome analyses identified 10 modules with essential roles in floral bud dormancy and activation. Gene clusters in the early stages of flower development were mainly related to flowering time regulation and meristem determination, while the late stages were correlated with hormone signaling pathways. The metabolome identified 69 potential hormones in which gibberellin (GA) and abscisic acid (ABA) were the main regulatory hubs, and GA4 and GA53 exhibited a reciprocal loop. Extraneous GA application caused rapid elongation of flower buds and promoted the expression of flower development genes. Contrarily, exogenous ABA application extended the dormancy process and ABA inhibitors induced dormancy release. Moreover, CsAPETALA1 (CsAP1) was identified as the potential target of ABA for floral bud activation. Transformation of CsAP1 in Arabidopsis and its transient overexpression in C. sinense protoplasts not only affected flowering time and floral organ morphogenesis in Arabidopsis but also orchestrated the expression of flowering and hormone regulatory genes. The presence of ABA response elements in the CsAP1 promoter, rapid downregulation of CsAP1 after exogenous ABA application, and the activation of the floral bud after ABA inhibitor treatment suggest that ABA can control bud outgrowth through CsAP1.PMID:38738212 | PMC:PMC11088716 | DOI:10.1093/hr/uhae073
Non-targeted metabolomics revealed novel links between serum metabolites and primary ovarian insufficiency: a Mendelian randomization study
Front Endocrinol (Lausanne). 2024 Apr 26;15:1307944. doi: 10.3389/fendo.2024.1307944. eCollection 2024.ABSTRACTBACKGROUND: Primary ovarian insufficiency (POI) is a common clinical endocrine disorder with a high heterogeneity in both endocrine hormones and etiological phenotypes. However, the etiology of POI remains unclear. Herein, we unraveled the causality of genetically determined metabolites (GDMs) on POI through Mendelian randomization (MR) study with the overarching goal of disclosing underlying mechanisms.METHODS: Genetic links with 486 metabolites were retrieved from GWAS data of 7824 European participants as exposures, while GWAS data concerning POI were utilized as the outcome. Via MR analysis, we selected inverse-variance weighted (IVW) method for primary analysis and several additional MR methods (MR-Egger, weighted median, and MR-PRESSO) for sensitivity analyses. MR-Egger intercept and Cochran's Q statistical analysis were conducted to assess potential heterogeneity and pleiotropy. In addition, genetic variations in the key target metabolite were scrutinized further. We conducted replication, meta-analysis, and linkage disequilibrium score regression (LDSC) to reinforce our findings. The MR Steiger test and reverse MR analysis were utilized to assess the robustness of genetic directionality. Furthermore, to deeply explore causality, we performed colocalization analysis and metabolic pathway analysis.RESULTS: Via IVW methods, our study identified 33 metabolites that might exert a causal effect on POI development. X-11437 showed a robustly significant relationship with POI in four MR analysis methods (P IVW=0.0119; P weighted-median =0.0145; PMR-Egger =0.0499; PMR-PRESSO =0.0248). Among the identified metabolites, N-acetylalanine emerged as the most significant in the primary MR analysis using IVW method, reinforcing its pivotal status as a serum biomarker indicative of an elevated POI risk with the most notable P-value (P IVW=0.0007; PMR-PRESSO =0.0022). Multiple analyses were implemented to further demonstrate the reliability and stability of our deduction of causality. Reverse MR analysis did not provide evidence for the causal effects of POI on 33 metabolites. Colocalization analysis revealed that some causal associations between metabolites and POI might be driven by shared genetic variants.CONCLUSION: By incorporating genomics with metabolomics, this study sought to offer a comprehensive analysis in causal impact of serum metabolome phenotypes on risks of POI with implications for underlying mechanisms, disease screening and prevention.PMID:38737546 | PMC:PMC11082646 | DOI:10.3389/fendo.2024.1307944
Streamlining Protein Fractional Synthesis Rates Using SP3 Beads and Stable Isotope Mass Spectrometry: A Case Study on the Plant Ribosome
Bio Protoc. 2024 May 5;14(9):e4981. doi: 10.21769/BioProtoc.4981. eCollection 2024 May 5.ABSTRACTRibosomes are an archetypal ribonucleoprotein assembly. Due to ribosomal evolution and function, r-proteins share specific physicochemical similarities, making the riboproteome particularly suited for tailored proteome profiling methods. Moreover, the structural proteome of ribonucleoprotein assemblies reflects context-dependent functional features. Thus, characterizing the state of riboproteomes provides insights to uncover the context-dependent functionality of r-protein rearrangements, as they relate to what has been termed the ribosomal code, a concept that parallels that of the histone code, in which chromatin rearrangements influence gene expression. Compared to high-resolution ribosomal structures, omics methods lag when it comes to offering customized solutions to close the knowledge gap between structure and function that currently exists in riboproteomes. Purifying the riboproteome and subsequent shot-gun proteomics typically involves protein denaturation and digestion with proteases. The results are relative abundances of r-proteins at the ribosome population level. We have previously shown that, to gain insight into the stoichiometry of individual proteins, it is necessary to measure by proteomics bound r-proteins and normalize their intensities by the sum of r-protein abundances per ribosomal complex, i.e., 40S or 60S subunits. These calculations ensure that individual r-protein stoichiometries represent the fraction of each family/paralog relative to the complex, effectively revealing which r-proteins become substoichiometric in specific physiological scenarios. Here, we present an optimized method to profile the riboproteome of any organism as well as the synthesis rates of r-proteins determined by stable isotope-assisted mass spectrometry. Our method purifies the r-proteins in a reversibly denatured state, which offers the possibility for combined top-down and bottom-up proteomics. Our method offers a milder native denaturation of the r-proteome via a chaotropic GuHCl solution as compared with previous studies that use irreversible denaturation under highly acidic conditions to dissociate rRNA and r-proteins. As such, our method is better suited to conserve post-translational modifications (PTMs). Subsequently, our method carefully considers the amino acid composition of r-proteins to select an appropriate protease for digestion. We avoid non-specific protease cleavage by increasing the pH of our standardized r-proteome dilutions that enter the digestion pipeline and by using a digestion buffer that ensures an optimal pH for a reliable protease digestion process. Finally, we provide the R package ProtSynthesis to study the fractional synthesis rates of r-proteins. The package uses physiological parameters as input to determine peptide or protein fractional synthesis rates. Once the physiological parameters are measured, our equations allow a fair comparison between treatments that alter the biological equilibrium state of the system under study. Our equations correct peptide enrichment using enrichments in soluble amino acids, growth rates, and total protein accumulation. As a means of validation, our pipeline fails to find "false" enrichments in non-labeled samples while also filtering out proteins with multiple unique peptides that have different enrichment values, which are rare in our datasets. These two aspects reflect the accuracy of our tool. Our method offers the possibility of elucidating individual r-protein family/paralog abundances, PTM status, fractional synthesis rates, and dynamic assembly into ribosomal complexes if top-down and bottom-up proteomic approaches are used concomitantly, taking one step further into mapping the native and dynamic status of the r-proteome onto high-resolution ribosome structures. In addition, our method can be used to study the proteomes of all macromolecular assemblies that can be purified, although purification is the limiting step, and the efficacy and accuracy of the proteases may be limited depending on the digestion requirements. Key features • Efficient purification of the ribosomal proteome: streamlined procedure for the specific purification of the ribosomal proteome or complex Ome. • Accurate calculation of fractional synthesis rates: robust method for calculating fractional protein synthesis rates in macromolecular complexes under different physiological steady states. • Holistic ribosome methodology focused on plants: comprehensive approach that provides insights into the ribosomes and translational control of plants, demonstrated using cold acclimation [1]. • Tailored strategies for stable isotope labeling in plants: methodology focusing on materials and labeling considerations specific to free and proteinogenic amino acid analysis [2].PMID:38737506 | PMC:PMC11082790 | DOI:10.21769/BioProtoc.4981