Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Metabolomics analysis reveals the effects of Salvia Miltiorrhiza Bunge extract on ameliorating acute myocardial ischemia in rats induced by isoproterenol

Mon, 13/05/2024 - 12:00
Heliyon. 2024 Apr 30;10(9):e30488. doi: 10.1016/j.heliyon.2024.e30488. eCollection 2024 May 15.ABSTRACTSalvia miltiorrhiza Bunge (SM) is a widespread herbal therapy for myocardial ischemia (MI). Nevertheless, the therapeutic signaling networks of SM extract on MI is yet unknown. Emerging evidences suggested that alterations in cardiac metabolite influences host metabolism and accelerates MI progression. Herein, we employed an isoproterenol (ISO)-induced acute myocardial ischemia (AMI) rat model to confirm the pharmacological effects of SM extract (0.8, 0.9, 1.8 g/kg/day) via assessment of the histopathological alterations that occur within the heart tissue and associated cytokines; we also examined the underlying SM extract-mediated signaling networks using untargeted metabolomics. The results indicated that 25 compounds with a relative content higher than 1 % in SM aqueous extract were identified using LC-MS/MS analysis, which included salvianolic acid B, lithospermic acid, salvianolic acid A, and caffeic acid as main components. An in vivo experiment showed that pretreatment with SM extract attenuated ISO-induced myocardial injury, shown as decreased myocardial ischemic size, transformed electrocardiographic, histopathological, and serum biochemical aberrations, reduced levels of proinflammatory cytokines, inhibited oxidative stress (OS), and reversed the trepidations of the cardiac tissue metabolic profiles. Metabolomics analysis shows that the levels of 24 differential metabolites (DMs) approached the same value as controls after SM extract therapy, which were primarily involved in histidine; alanine, aspartate, and glutamate; glycerophospholipid; and glycine, serine, and threonine metabolisms through metabolic pathway analysis. Correlation analysis demonstrated that the levels of modulatory effects of SM extract on the inflammation and OS were related to alterations in endogenous metabolites. Overall, SM extract demonstrated significant cardioprotective effects in an ISO-induced AMI rat model, alleviating myocardial injury, inflammation and oxidative stress, with metabolomics analysis indicating potential therapeutic pathways for myocardial ischemia.PMID:38737264 | PMC:PMC11088323 | DOI:10.1016/j.heliyon.2024.e30488

NMR-based metabolomic analysis of plasma from elderly patients with CVD before and after using contrast media

Mon, 13/05/2024 - 12:00
Heliyon. 2024 Apr 29;10(9):e30434. doi: 10.1016/j.heliyon.2024.e30434. eCollection 2024 May 15.ABSTRACTContrast-induced acute kidney injury (CI-AKI) is a growingly common kidney problem caused by medical procedures involving contrast media (CM), especially in older patients with existing health issues. It is crucial to pinpoint potential biomarkers for the early detection of CI-AKI. Previously, we observed that iodixanol affects glucose, choline, and glutathione metabolism in endothelial cells under laboratory conditions. In this study, we used 1H NMR-based metabolomics to examine the metabolic changes in the blood plasma of elderly patients with cardiovascular disease (CVD) before and after receiving iodixanol. We identified altered metabolites in plasma 24 and 48 h after iodixanol injection compared to levels before injection. Notably, metabolites such as glucose, unsaturated fatty acids (UFA), low-density lipoprotein (LDL)/very low-density lipoprotein (VLDL), pyruvate, choline, and glycine showed potential as biomarkers at 24 h post-injection compared to levels before injection. Similarly, glucose, pyruvate, lactate, choline, and glycine in plasma could serve as potential biomarkers at 48 h post-injection. Iodixanol notably affected pathways related to glycolysis, fatty acid breakdown, and amino acid metabolism according to our metabolic pathway analysis. The altered levels of specific metabolites in plasma could be indicative of CM-induced kidney injury. Overall, this research aids in understanding the physiological mechanisms involved and in identifying early biomarkers and prevention strategies for CI-AKI.PMID:38737248 | PMC:PMC11088330 | DOI:10.1016/j.heliyon.2024.e30434

LC-ESI-MS/MS-Based Comparative Metabolomic Study, Antioxidant and Antidiabetic Activities of Three Lobelia Species: Molecular Modeling and ADMET Study

Mon, 13/05/2024 - 12:00
ACS Omega. 2024 Apr 26;9(18):20477-20487. doi: 10.1021/acsomega.4c01587. eCollection 2024 May 7.ABSTRACTThe hydroethanol (70%) extracts of three Lobelia species (L. nicotianifolia, L. sessilifolia, and L. chinensis) were analyzed using LC-ESI-MS/MS. Forty-five metabolites were identified, including different flavonoids, coumarin, polyacetylenes, and alkaloids, which were the most abundant class. By applying Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) based on LC-ESI-MS/MS analysis, the three species were completely segregated from each other. In addition, the three Lobelia extracts were tested for their antioxidant activities using a DPPH assay and as antidiabetic agents against α-glycosidase and α-amylase enzymes. L. chinensis extract demonstrated significant antioxidant activity with an IC50 value of 1.111 mg/mL, while L. nicotianifolia showed mild suppressing activity on the α-glycosidase activity with an IC50 value of 270.8 μg/mL. A molecular simulation study was performed on the main compounds to predict their potential antidiabetic activity and pharmacokinetic properties. The molecular docking results confirmed the α-glycosidase inhibitory activity of the tested compounds, as seen in their binding mode to the key amino acid residues at the binding site compared to that of the standard drug acarbose. Furthermore, the predictive ADMET results revealed good pharmacokinetic properties of almost all of the tested compounds. The biological evaluation results demonstrated the promising activity of the tested compounds, aligned with the in silico results.PMID:38737064 | PMC:PMC11079896 | DOI:10.1021/acsomega.4c01587

Multiomics Analysis Unravels Alteration in Molecule and Pathways Involved in Nondiabetic Chronic Wounds

Mon, 13/05/2024 - 12:00
ACS Omega. 2024 Apr 25;9(18):20425-20436. doi: 10.1021/acsomega.4c01335. eCollection 2024 May 7.ABSTRACTThe prevalence of chronic wounds (CW) continues to grow. A thorough knowledge of the mechanism of CW formation remains elusive due to a lack of relevant studies. Furthermore, most previous studies concentrated on diabetic ulcers with relatively few investigations on other types. We performed this multiomics study to investigate the proteomic and metabolomic changes in wound and surrounding tissue from a cohort containing 13 patients with nondiabetic CW. Differentially expressed proteins (DEPs) and metabolites (DEMs) were filtered out and analyzed through multiomic profiling. The DEPs were further confirmed with the use of parallel reaction monitoring. Compared with the surrounding tissue, there were 82 proteins and 214 metabolites altered significantly in wound tissue. The DEPs were mainly enriched in focal adhesion (FA), extracellular matrix-receptor interaction (ERI), and the PI3K-Akt (PA) signaling pathway. Moreover, the DEMs were significantly enriched in amino sugar and nucleotide sugar metabolism and biosynthesis of nucleotide sugar pathways. In correlation analysis, we discovered that the PA signaling pathway, as well as its upstream and downstream pathways, coenriched some DEPs and DEMs. Additionally, we found that FBLN1, FBLN5, and EFEMP1 (FBLN3) proteins dramatically elevated in wound tissue and connected with the above signaling pathways. This multiomics study found that changes in FA, ERI, and PA signaling pathways had an impact on the cellular activities and functions of wound tissue cells. Additionally, increased expression of those proteins in wound tissue may inhibit vascular and skin cell proliferation and degrade the extracellular matrix, which may be one of the causes of CW formation.PMID:38737053 | PMC:PMC11080021 | DOI:10.1021/acsomega.4c01335

Muesli Intake May Protect Against Coronary Artery Disease: Mendelian Randomization on 13 Dietary Traits

Mon, 13/05/2024 - 12:00
JACC Adv. 2024 Apr;3(4):100888. doi: 10.1016/j.jacadv.2024.100888. Epub 2024 Mar 6.ABSTRACTBACKGROUND: Diet is a key modifiable risk factor of coronary artery disease (CAD). However, the causal effects of specific dietary traits on CAD risk remain unclear. With the expansion of dietary data in population biobanks, Mendelian randomization (MR) could help enable the efficient estimation of causality in diet-disease associations.OBJECTIVES: The primary goal was to test causality for 13 common dietary traits on CAD risk using a systematic 2-sample MR framework. A secondary goal was to identify plasma metabolites mediating diet-CAD associations suspected to be causal.METHODS: Cross-sectional genetic and dietary data on up to 420,531 UK Biobank and 184,305 CARDIoGRAMplusC4D individuals of European ancestry were used in 2-sample MR. The primary analysis used fixed effect inverse-variance weighted regression, while sensitivity analyses used weighted median estimation, MR-Egger regression, and MR-Pleiotropy Residual Sum and Outlier.RESULTS: Genetic variants serving as proxies for muesli intake were negatively associated with CAD risk (OR: 0.74; 95% CI: 0.65-0.84; P = 5.385 × 10-4). Sensitivity analyses using weighted median estimation supported this with a significant association in the same direction. Additionally, we identified higher plasma acetate levels as a potential mediator (OR: 0.03; 95% CI: 0.01-0.12; P = 1.15 × 10-4).CONCLUSIONS: Muesli, a mixture of oats, seeds, nuts, dried fruit, and milk, may causally reduce CAD risk. Circulating levels of acetate, a gut microbiota-derived short-chain fatty acid, could be mediating its cardioprotective effects. These findings highlight the role of gut flora in cardiovascular health and help prioritize randomized trials on dietary interventions for CAD.PMID:38737007 | PMC:PMC11087059 | DOI:10.1016/j.jacadv.2024.100888

Tryptophan metabolic pathway plays a key role in the stress-induced emotional eating

Mon, 13/05/2024 - 12:00
Curr Res Food Sci. 2024 Apr 26;8:100754. doi: 10.1016/j.crfs.2024.100754. eCollection 2024.ABSTRACTChronic stress disrupts the emotional and energetic balance, which may lead to abnormal behaviors such as binge eating. This overeating behavior alleviating the negative emotions is called emotional eating, which may exacerbate emotional instability and lead to obesity. It is a complex and multifaceted process that has not yet been fully understood. In this study, we constructed an animal model of chronic mild stress (CMS)-induced emotional eating. The emotional eating mice were treated with tryptophan for 21 days to reveal the key role of tryptophan. Furthermore, serum-targeted metabolomics, immunohistochemical staining, qPCR and ELISA were performed. The results showed that CMS led to the binge eating behavior, accompanied by the disturbed intestinal tryptophan-derived serotonin (5-hydroxytryptamine; 5-HT) metabolic pathways. Then we found that tryptophan supplementation improved depression and anxiety-like behaviors as well as abnormal eating behaviors. Tryptophan supplementation improved the abnormal expression of appetite regulators (e.g., AgRP, OX1R, MC4R), and tryptophan supplementation also increased the tryptophan hydroxylase 2 (tph2) and 5-HT receptors in the hypothalamus of CMS mice, which indicates that the 5-HT metabolic pathway influences feeding behavior. In vitro experiments confirmed that 5-HT supplementation ameliorated corticosterone-induced aberrant expression of appetite regulators, such as AgRP and OX1R, in the hypothalamic cell line. In conclusion, our findings revealed that the tryptophan-derived 5-HT pathway plays an important role in emotional eating, especially in providing targeted therapy for stress-induced obesity.PMID:38736909 | PMC:PMC11087915 | DOI:10.1016/j.crfs.2024.100754

Oral ribose supplementation in dystroglycanopathy: A single case study

Mon, 13/05/2024 - 12:00
JIMD Rep. 2024 Mar 4;65(3):171-181. doi: 10.1002/jmd2.12394. eCollection 2024 May.ABSTRACTThree forms of muscular dystrophy-dystroglycanopathies are linked to the ribitol pathway. These include mutations in the isoprenoid synthase domain-containing protein (ISPD), fukutin-related protein (FKRP), and fukutin (FKTN) genes. The aforementioned enzymes are required for generation of the ribitol phosphate linkage in the O-glycan of alpha-dystroglycan. Mild cases of dystroglycanopathy present with slowly progressive muscle weakness, while in severe cases the eyes and brain are also involved. Previous research showed that ribose increased the intracellular concentrations of cytidine diphosphate-ribitol (CDP-ribitol) and had a therapeutic effect. Here, we report the safety and effects of oral ribose supplementation during 6 months in a patient with limb girdle muscular dystrophy type 2I (LGMD2I) due to a homozygous FKRP mutation. Ribose was well tolerated in doses of 9 g or 18 g/day. Supplementation with 18 g of ribose resulted in a decrease of creatine kinase levels of 70%. Moreover, metabolomics showed a significant increase in CDP-ribitol levels with 18 g of ribose supplementation (p < 0.001). Although objective improvement in clinical and patient-reported outcome measures was not observed, the patient reported subjective improvement of muscle strength, fatigue, and pain. This case study indicates that ribose supplementation in patients with dystroglycanopathy is safe and highlights the importance for future studies regarding its potential effects.PMID:38736632 | PMC:PMC11078721 | DOI:10.1002/jmd2.12394

Comparative metabolomics combined with genome sequencing provides insights into novel wolfberry-specific metabolites and their formation mechanisms

Mon, 13/05/2024 - 12:00
Front Plant Sci. 2024 Apr 26;15:1392175. doi: 10.3389/fpls.2024.1392175. eCollection 2024.ABSTRACTWolfberry (Lycium, of the family Solanaceae) has special nutritional benefits due to its valuable metabolites. Here, 16 wolfberry-specific metabolites were identified by comparing the metabolome of wolfberry with those of six species, including maize, rice, wheat, soybean, tomato and grape. The copy numbers of the riboflavin and phenyllactate degradation genes riboflavin kinase (RFK) and phenyllactate UDP-glycosyltransferase (UGT1) were lower in wolfberry than in other species, while the copy number of the phenyllactate synthesis gene hydroxyphenyl-pyruvate reductase (HPPR) was higher in wolfberry, suggesting that the copy number variation of these genes among species may be the main reason for the specific accumulation of riboflavin and phenyllactate in wolfberry. Moreover, the metabolome-based neighbor-joining tree revealed distinct clustering of monocots and dicots, suggesting that metabolites could reflect the evolutionary relationship among those species. Taken together, we identified 16 specific metabolites in wolfberry and provided new insight into the accumulation mechanism of species-specific metabolites at the genomic level.PMID:38736439 | PMC:PMC11082402 | DOI:10.3389/fpls.2024.1392175

Cyclin-dependent kinase 12 deficiency reprogrammes cellular metabolism to alleviate ferroptosis potential and promote the progression of castration-resistant prostate cancer

Mon, 13/05/2024 - 12:00
Clin Transl Med. 2024 May;14(5):e1678. doi: 10.1002/ctm2.1678.ABSTRACTBACKGROUND: Cyclin-dependent kinase 12 (CDK12)-deficient prostate cancer defines a subtype of castration-resistant prostate cancer (CRPC) with a poor prognosis. Current therapy, including PARP inhibitors, shows minimal treatment efficacy for this subtype of CRPC, and the underlying mechanism remains elusive.METHODS: Based on bioinformatics analysis, we evaluated the relationship between CDK12 deficiency and prostate cancer patient's prognosis and treatment resistance. Furthermore, we used CRISPR-Cas9 technology and mass spectrometry-based metabolomic profiling to reveal the metabolic characteristics of CDK12-deficient CRPC. To elucidate the specific mechanisms of CDK12 deficiency-mediated CRPC metabolic reprogramming, we utilized cell RNA-seq profiling and other molecular biology techniques, including cellular reactive oxygen species probes, mitochondrial function assays, ChIP-qPCR and RNA stability analyses, to clarify the role of CDK12 in regulating mitochondrial function and its contribution to ferroptosis. Finally, through in vitro drug sensitivity testing and in vivo experiments in mice, we identified the therapeutic effects of the electron transport chain (ETC) inhibitor IACS-010759 on CDK12-deficient CRPC.RESULTS: CDK12-deficient prostate cancers reprogramme cellular energy metabolism to support their aggressive progression. In particular, CDK12 deficiency enhanced the mitochondrial respiratory chain for electronic transfer and ATP synthesis to create a ferroptosis potential in CRPC cells. However, CDK12 deficiency downregulated ACSL4 expression, which counteracts the lipid oxidation stress, leading to the escape of CRPC cells from ferroptosis. Furthermore, targeting the ETC substantially inhibited the proliferation of CDK12-deficient CRPC cells in vitro and in vivo, suggesting a potential new target for the therapy of CDK12-deficient prostate cancer.CONCLUSIONS: Our findings show that energy and lipid metabolism in CDK12-deficient CRPC work together to drive CRPC progression and provide a metabolic insight into the worse prognosis of CDK12-deficient prostate cancer patients.KEY POINTS: CDK12 deficiency promotes castration-resistant prostate cancer (CRPC) progression by reprogramming cellular metabolism. CDK12 deficiency in CRPC leads to a more active mitochondrial electron transport chain (ETC), ensuring efficient cell energy supply. CDK12 phosphorylates RNA Pol II to ensure the transcription of ACSL4 to regulate ferroptosis. Mitochondrial ETC inhibitors exhibit better selectivity for CDK12-deficient CRPC cells, offering a promising new therapeutic approach for this subtype of CRPC patients.PMID:38736108 | DOI:10.1002/ctm2.1678

Insights into the role of adipose-derived stem cells and secretome: potential biology and clinical applications in hypertrophic scarring

Sun, 12/05/2024 - 12:00
Stem Cell Res Ther. 2024 May 12;15(1):137. doi: 10.1186/s13287-024-03749-6.ABSTRACTScar tissue is the inevitable result of repairing human skin after it has been subjected to external destructive stimuli. It leads to localized damage to the appearance of the skin, accompanied by symptoms such as itching and pain, which reduces the quality of life of the patient and causes serious medical burdens. With the continuous development of economy and society, there is an increasing demand for beauty. People are looking forward to a safer and more effective method to eliminate pathological scarring. In recent years, adipose-derived stem cells (ADSCs) have received increasing attention from researchers. It can effectively improve pathological scarring by mediating inflammation, regulating fibroblast proliferation and activation, and vascular reconstruction. This review focuses on the pathophysiological mechanisms of hypertrophic scarring, summarizing the therapeutic effects of in vitro, in vivo, and clinical studies on the therapeutic effects of ADSCs in the field of hypertrophic scarring prevention and treatment, the latest application techniques, such as cell-free therapies utilizing ADSCs, and discussing the advantages and limitations of ADSCs. Through this review, we hope to further understand the characterization of ADSC and clarify the effectiveness of its application in hypertrophic scarring treatment, so as to provide clinical guidance.PMID:38735979 | DOI:10.1186/s13287-024-03749-6

Amelioration of melittin on adjuvant-induced rheumatoid arthritis: Integrated transcriptome and metabolome

Sun, 12/05/2024 - 12:00
Int J Biol Macromol. 2024 May 10:132293. doi: 10.1016/j.ijbiomac.2024.132293. Online ahead of print.ABSTRACTBACKGROUND: Rheumatoid arthritis (RA) is a chronic autoimmune disease lacking a definitive cure. Although conventional treatments such as dexamethasone and methotrexate are prevalent, their usage is constrained by potential adverse effects. Melittin (MLT) has emerged as a promising natural anti-rheumatic drug; however, studies focusing on the role of MLT in modulating the expression and metabolism of RA-related genes are scarce.METHOD: Arthritis was induced in rats using Complete Freund's Adjuvant (CFA), followed by MLT injections for treatment. Post-treatment, the inflammatory status of each group was assessed, and the mechanistic underpinnings of MLT's ameliorative effects on RA were elucidated through transcriptomic and metabolomic analyses. Additionally, this study conducted qRT-PCR validation of key therapeutic genes and characterized the molecular docking interactions of MLT with key receptor proteins (TNF-α and IL-1β) using the AutoDock Vina software.RESULT: MLT significantly diminished redness and swelling in affected joints, ameliorated inflammatory cell infiltration, and mitigated joint damage. Integration of transcriptomic and metabolomic data revealed that MLT predominantly regulated the transcription levels of pathways and genes related to cytokines and immune responses, and the metabolic biomarkers of Sphingomyelin, fatty acid, and flavonoid. qRT-PCR confirmed MLT's downregulation of inflammation-related genes such as Il6, Jak2, Stat3, and Ptx3. Molecular docking simulations demonstrated the stable binding of MLT to TNF-α and IL-1β.CONCLUSION: MLT demonstrated significant efficacy in alleviating RA. This study provides a comprehensive summary of MLT's impact on gene expression and metabolic processes associated with RA.PMID:38735618 | DOI:10.1016/j.ijbiomac.2024.132293

Lipid metabolism mediates the association between body mass index change and bone mineral density: The Taizhou imaging study

Sun, 12/05/2024 - 12:00
Prev Med. 2024 May 10:107999. doi: 10.1016/j.ypmed.2024.107999. Online ahead of print.ABSTRACTBACKGROUND: Limited research explores the impact of body mass index (BMI) change on osteoporosis, regarding the role of lipid metabolism. We aimed to cross-sectionally investigate these relationships in 820 Chinese participants aged 55-65 from the Taizhou Imaging Study.METHODS: We used the baseline data collected between 2013 and 2018. T-score was calculated by standardizing bone mineral density and was used for osteoporosis and osteopenia diagnosis. Multinomial logistic regression was used to examine the effect of BMI change on bone health status. Multivariable linear regression was employed to identify the metabolites corrected with BMI change and T-score. Exploratory factor analysis (EFA) and mediation analysis were conducted to ascertain the involvement of the metabolites.RESULTS: BMI increase served as a protective factor against osteoporosis (OR = 0.79[0.71-0.88], P-value<0.001) and osteopenia (OR = 0.88[0.82-0.95], P-value<0.001). Eighteen serum metabolites were associated with both BMI change and T-score. Specifically, high-density lipoprotein (HDL) substructures demonstrated negative correlations (β = -0.08 to -0.06 and - 0.12 to -0.08, respectively), while very low-density lipoprotein (VLDL) substructions showed positive correlations (β = 0.09 to 0.10 and 0.10 to 0.11, respectively). The two lipid factors (HDL and VLDL) extracted by EFA acted as mediators between BMI change and T-score (Prop. Mediated = 8.16% and 10.51%, all P-value<0.01).CONCLUSION: BMI gain among Chinese aged 55-65 is beneficial for reducing the risk of osteoporosis. The metabolism of HDL and VLDL partially mediates the effect of BMI change on bone loss. Our research offers novel insights into the prevention of osteoporosis, approached from the perspective of weight management and lipid metabolomics.PMID:38735587 | DOI:10.1016/j.ypmed.2024.107999

Integration of multi-omics analysis reveals metabolic alterations of B lymphocytes in systemic lupus erythematosus

Sun, 12/05/2024 - 12:00
Clin Immunol. 2024 May 10:110243. doi: 10.1016/j.clim.2024.110243. Online ahead of print.ABSTRACTOBJECTIVE: To link changes in the B-cell transcriptome from systemic lupus erythematosus (SLE) patients with those in their macroenvironment, including cellular and fluidic components.METHODS: Analysis was performed on 363 patients and 508 controls, encompassing transcriptomics, metabolomics, and clinical data. B-cell and whole-blood transcriptomes were analysed using DESeq and GSEA. Plasma and urine metabolomics peak changes were quantified and annotated using Ceu Mass Mediator database. Common sources of variation were identified using MOFA integration analysis.RESULTS: Cellular macroenvironment was enriched in cytokines, stress responses, lipidic synthesis/mobility pathways and nucleotide degradation. B cells shared these pathways, except nucleotide degradation diverted to nucleotide salvage pathway, and distinct glycosylation, LPA receptors and Schlafen proteins.CONCLUSIONS: B cells showed metabolic changes shared with their macroenvironment and unique changes directly or indirectly induced by IFN-α signalling. This study underscores the importance of understanding the interplay between B cells and their macroenvironment in SLE pathology.PMID:38735509 | DOI:10.1016/j.clim.2024.110243

A Direct Link Implicating Loss of SLC26A6 to Gut Microbial Dysbiosis, Compromised Barrier Integrity and Inflammation

Sun, 12/05/2024 - 12:00
Gastroenterology. 2024 May 10:S0016-5085(24)04913-8. doi: 10.1053/j.gastro.2024.05.002. Online ahead of print.ABSTRACTBACKGROUND: Putative anion transporter-1 (PAT1, SLC26A6) plays a key role in intestinal oxalate and bicarbonate secretion. PAT1 knockout (PKO) mice exhibit hyperoxaluria and nephrolithiasis. Notably, diseases such as inflammatory bowel diseases (IBD) are also associated with higher risk of hyperoxaluria and nephrolithiasis. However, the potential role of PAT1 deficiency in gut barrier integrity and susceptibility to colitis is currently elusive.METHODS: Age-matched PKO and wild-type (WT) littermates were administered 3.5%-DSS in drinking water for 6 days. Ileum and colon of control and treated mice were harvested. mRNA and protein expression of tight junction (TJ) proteins were determined by RT-PCR and western blotting. Severity of inflammation was assessed by measuring diarrheal phenotype, cytokine expression and H&E staining. Gut microbiome and associated metabolome were analyzed by 16S rRNA sequencing and mass spectrometry, respectively.RESULTS: PKO mice exhibited significantly higher loss of body weight, gut permeability, colonic inflammation, and diarrhea in response to DSS treatment. Additionally, PKO mice showed microbial dysbiosis and significantly reduced levels of butyrate and butyrate-producing microbes compared to controls. Cohousing WT and PKO mice for 4 weeks resulted in PKO-like signatures on the expression of TJ proteins in the colon of WT mice.CONCLUSION: Our data demonstrate that loss of PAT1 disrupts gut microbiome and related metabolites, decreases gut barrier integrity, and increases host susceptibility to intestinal inflammation. These findings, thus, highlight a novel role of the oxalate transporter PAT1 in promoting gut barrier integrity and its deficiency appears to contribute to the pathogenesis of IBD.PMID:38735402 | DOI:10.1053/j.gastro.2024.05.002

Metabolic perturbations in zebrafish (Danio rerio) larvae exposed to sulfentrazone and imidacloprid

Sun, 12/05/2024 - 12:00
Sci Total Environ. 2024 May 10:173150. doi: 10.1016/j.scitotenv.2024.173150. Online ahead of print.ABSTRACTThe intensive and widespread application of pesticides in agroecosystems can lead to the simultaneous exposure of non-target aquatic organisms to insecticides and herbicides. However, the underlying mechanisms through which aquatic organisms undergo metabolic reprogramming to withstand the combined effects of the insecticide imidacloprid (IMI) and herbicide sulfentrazone (SUL) remain poorly elucidated. This study employs metabolomics to investigate the effects of individual and combined exposures to IMI and SUL on zebrafish (Danio rerio), aiming to simulate complex environmental conditions. Metabolomics analysis revealed extensive metabolic reprogramming in larvae induced by the selected agrochemicals. Both individual and combined exposures disrupted nucleotide metabolism, inhibited glycolysis, and led to the accumulation of acetylcholine through the shared modulation of differential metabolites. Notably, individual exposure exhibited a unique mode of action. Larvae exposed to IMI alone showed mitochondrial dysfunction, potentially stemming from interference with the electron transport chain, while SUL-induced disruptions were associated with glycerophospholipid accumulation, marking it as a critical target. Additionally, calculations of the metabolic effect level index indicated antagonistic interactions between SUL and IMI mixtures at an overall metabolic level. The results obtained through investigating the lethal and sub-lethal effects also revealed that the simultaneous application of SUL and IMI may have the potential to diminish acute and developmental toxicity in zebrafish. This study underscores the significance of metabolomics as a valuable and effective strategy for deciphering the toxicity and interactions of agrochemical mixtures.PMID:38735312 | DOI:10.1016/j.scitotenv.2024.173150

Comparison of the effects of Amomum tsaoko and its adulterants on functional dyspepsia rats based on metabolomics analysis

Sun, 12/05/2024 - 12:00
J Pharm Biomed Anal. 2024 May 8;246:116208. doi: 10.1016/j.jpba.2024.116208. Online ahead of print.ABSTRACTAmomum tsaoko (AT) is commonly used in clinical practice to treat abdominal distension and pain. It is also a seasoning for cooking, with the functions of appetizing, invigorating the spleen, and being digestive-promoting. Amomum tsaoko (AT) has three adulterants, Amomum paratsaoko (AP), Amomum koenigii (AK), and Alpinia katsumadai Hayata, because of the confusion in historical classics regarding recorded sources as well as the near geographic distribution and fruit morphological similarities. In this study, we established a functional dyspepsia (FD) rat model and then treated it with the corresponding medicinal solutions AT, AP, AK, and AKH. The gastric emptying rate, intestinal propulsion rate, serum biochemical indicators, histopathological changes, and fecal metabolism were measured. The efficacy and mechanism of AT, AP, AK, and AKH in the treatment of FD were compared. Fecal metabolomics revealed that 20 potential biomarkers were involved in seven significant metabolic pathways in FD rats. These pathways include ubiquinone and other terpenoid-quinone biosynthesis, glycerophospholipid metabolism, tyrosine metabolism, primary bile acid biosynthesis, purine metabolism, folate biosynthesis, and amino sugar and nucleotide sugar metabolism. AP regulates 6 metabolic pathways, 5 metabolic pathways affected by AT, 4 metabolic pathways affected by AK, and 2 metabolic pathways affected by AKH.The above results suggest that the different effects of AT, AP, AK, and AKH on FD rats may be due to their different regulatory effects on the metabolome.PMID:38735210 | DOI:10.1016/j.jpba.2024.116208

Effects of perfluorooctanoic acid on the nutritional quality of Mytilus edulis

Sun, 12/05/2024 - 12:00
Mar Pollut Bull. 2024 May 11;203:116427. doi: 10.1016/j.marpolbul.2024.116427. Online ahead of print.ABSTRACTPerfluorooctanoic acid (PFOA), which widely presents in marine environment, may produce some adverse effects to aquatic organism. Mytilus edulis are popular due to their high protein and low fat content in China. However, few studies have investigated the effects of PFOA on the quality of aquatic products. Here, PFOA effects on basic nutritional indices in M. edulis were measured, and possible mechanisms were explored. PFOA caused clear variation in physiological and biochemical indices of M. edulis. The contents of some important proteins, nutrients, and amino acids etc. dropped. Integrating metabolomics data, we speculate PFOA exposure triggered inflammation and oxidative stress in mussels, interfered with the metabolic pathways related to the quality and the transport and absorption pathways of metal ions, and affected the levels of some important elements and metabolites, thus decreasing the nutritional quality of M. edulis. The study provides new insights into PFOA adverse effects to marine organism, and may offer some references for some researchers to assess food quality and ecological risk to pollutants.PMID:38735169 | DOI:10.1016/j.marpolbul.2024.116427

Comparative metabolomics profiling reveals the unique bioactive compounds and astringent taste formation of rosehips

Sun, 12/05/2024 - 12:00
Food Chem. 2024 May 7;452:139584. doi: 10.1016/j.foodchem.2024.139584. Online ahead of print.ABSTRACTRosehips are a prominent source of numerous bioactive compounds. However, despite their extensive potential, the metabolic profiles among different rosehip species have not been fully elucidated. In this study, 523 secondary metabolites from rosehips of 12 Rosa species were identified using ultra-high-performance liquid chromatography-tandem mass spectrometry. They were primarily composed of flavonoids and phenolic acids. A K-means analysis revealed the characteristic metabolites in different rosehips. For example, R. persica contained a more abundant supply of phenolic acids, while R. roxburghii harbored a richer array of terpenoids. A total of 73 key active ingredients were screened from traditional Chinese medicine databases, and they indicated that R. persica is more promising for use in functional foods or health supplements compared with the other fruits. Moreover, a differential analysis identified 47 compounds as potential contributors to the astringent taste of rosehips, including ellagic acid 4-O-glucoside and cadaverine. This study provides valuable information to develop new functional foods of rosehips and improve the quality of their fruits.PMID:38735110 | DOI:10.1016/j.foodchem.2024.139584

Sulfonamide-induced DNA hypomethylation disturbed sugar metabolism in rice (Oryza sativa L.)

Sun, 12/05/2024 - 12:00
Environ Int. 2024 May 10;187:108737. doi: 10.1016/j.envint.2024.108737. Online ahead of print.ABSTRACTDNA methylation is well-accepted as a bridge to unravel the complex interplay between genome and environmental exposures, and its alteration regulated the cellular metabolic responses towards pollutants. However, the mechanism underlying site-specific aberrant DNA methylation and metabolic disorders under pollutant stresses remained elusive. Herein, the multilevel omics interferences of sulfonamides (i.e., sulfadiazine and sulfamerazine), a group of antibiotics pervasive in farmland soils, towards rice in 14 days of 1 mg/L hydroponic exposure were systematically evaluated. Metabolome and transcriptome analyses showed that 57.1-71.4 % of mono- and disaccharides were accumulated, and the differentially expressed genes were involved in the promotion of sugar hydrolysis, as well as the detoxification of sulfonamides. Most differentially methylated regions (DMRs) were hypomethylated ones (accounting for 87-95 %), and 92 % of which were located in the CHH context (H = A, C, or T base). KEGG enrichment analysis revealed that CHH-DMRs in the promoter regions were enriched in sugar metabolism. To reveal the significant hypomethylation of CHH, multi-spectroscopic and thermodynamic approaches, combined with molecular simulation were conducted to investigate the molecular interaction between sulfonamides and DNA in different sequence contexts, and the result demonstrated that sulfonamides would insert into the minor grooves of DNA, and exhibited a stronger affinity with the CHH contexts of DNA compared to CG or CHG contexts. Computational modeling of DNA 3D structures further confirmed that the binding led to a pitch increase of 0.1 Å and a 3.8° decrease in the twist angle of DNA in the CHH context. This specific interaction and the downregulation of methyltransferase CMT2 (log2FC = -4.04) inhibited the DNA methylation. These results indicated that DNA methylation-based assessment was useful for metabolic toxicity prediction and health risk assessment.PMID:38735075 | DOI:10.1016/j.envint.2024.108737

Metabolic landscape of head and neck squamous cell carcinoma informs a novel kynurenine/Siglec-15 axis in immune escape

Sun, 12/05/2024 - 12:00
Cancer Commun (Lond). 2024 May 12. doi: 10.1002/cac2.12545. Online ahead of print.ABSTRACTBACKGROUND: Metabolic reprograming and immune escape are two hallmarks of cancer. However, how metabolic disorders drive immune escape in head and neck squamous cell carcinoma (HNSCC) remains unclear. Therefore, the aim of the present study was to investigate the metabolic landscape of HNSCC and its mechanism of driving immune escape.METHODS: Analysis of paired tumor tissues and adjacent normal tissues from 69 HNSCC patients was performed using liquid/gas chromatography-mass spectrometry and RNA-sequencing. The tumor-promoting function of kynurenine (Kyn) was explored in vitro and in vivo. The downstream target of Kyn was investigated in CD8+ T cells. The regulation of CD8+ T cells was investigated after Siglec-15 overexpression in vivo. An engineering nanoparticle was established to deliver Siglec-15 small interfering RNA (siS15), and its association with immunotherapy response were investigated. The association between Siglec-15 and CD8+ programmed cell death 1 (PD-1)+ T cells was analyzed in a HNSCC patient cohort.RESULTS: A total of 178 metabolites showed significant dysregulation in HNSCC, including carbohydrates, lipids and lipid-like molecules, and amino acids. Among these, amino acid metabolism was the most significantly altered, especially Kyn, which promoted tumor proliferation and metastasis. In addition, most immune checkpoint molecules were upregulated in Kyn-high patients based on RNA-sequencing. Furthermore, tumor-derived Kyn was transferred into CD8+ T cells and induced T cell functional exhaustion, and blocking Kyn transporters restored its killing activity. Accroding to the results, mechanistically, Kyn transcriptionally regulated the expression of Siglec-15 via aryl hydrocarbon receptor (AhR), and overexpression of Siglec-15 promoted immune escape by suppressing T cell infiltration and activation. Targeting AhR in vivo reduced Kyn-mediated Siglec-15 expression and promoted intratumoral CD8+ T cell infiltration and killing capacity. Finally, a NH2-modified mesoporous silica nanoparticle was designed to deliver siS15, which restored CD8+ T cell function status and enhanced anti-PD-1 efficacy in tumor-bearing immunocompetent mice. Clinically, Siglec-15 was positively correlated with AhR expression and CD8+PD-1+ T cell infiltration in HNSCC tissues.CONCLUSIONS: The findings describe the metabolic landscape of HNSCC comprehensively and reveal that the Kyn/Siglec-15 axis may be a novel potential immunometabolism mechanism, providing a promising therapeutic strategy for cancers.PMID:38734931 | DOI:10.1002/cac2.12545

Pages