Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Metabolomic and antioxidant analyses of <em>Salvia miltiorrhiza</em> Bunge and <em>Salvia prattii</em> Hemsl. seeds

Mon, 16/10/2023 - 12:00
Nat Prod Res. 2023 Oct 16:1-8. doi: 10.1080/14786419.2023.2269459. Online ahead of print.ABSTRACTSalvia miltiorrhiza and Salvia prattii seeds are rich in metabolites that are beneficial to human health and can be utilised as nutritional supplements. In this study, UPLC-MS and GC-MS based on extensively focused metabolomics were used to compare the seed metabolomics of the two species. LC-MS detected 118 metabolites, primarily Lipids and phenylpropanoids. GC- MS detected a total of 188 metabolites, mainly organic acids and their derivatives, of which Salvia prattii seeds contain high levels of nutrients. In addition, we experimentally determined antioxidant activity of two Salvia species, and the results showed that the antioxidant activity of Salvia prattii seeds was about twice as high as that of Salvia miltiorrhiza seeds. We used WGCNA to group the metabolites, and found the central metabolites in the focal modules including flavonoids and terpenoids. Our study contributes valuable knowledge for future research on the chemical makeup of Salvia prattii seeds.PMID:37842784 | DOI:10.1080/14786419.2023.2269459

Rapid metabolic fingerprinting with the aid of chemometric models to identify authenticity of natural medicines: Turmeric, <em>Ocimum</em>, and <em>Withania somnifera</em> study

Mon, 16/10/2023 - 12:00
J Pharm Anal. 2023 Sep;13(9):1041-1057. doi: 10.1016/j.jpha.2023.04.018. Epub 2023 Apr 28.ABSTRACTHerbal medicines are popular natural medicines that have been used for decades. The use of alternative medicines continues to expand rapidly across the world. The World Health Organization suggests that quality assessment of natural medicines is essential for any therapeutic or health care applications, as their therapeutic potential varies between different geographic origins, plant species, and varieties. Classification of herbal medicines based on a limited number of secondary metabolites is not an ideal approach. Their quality should be considered based on a complete metabolic profile, as their pharmacological activity is not due to a few specific secondary metabolites but rather a larger group of bioactive compounds. A holistic and integrative approach using rapid and nondestructive analytical strategies for the screening of herbal medicines is required for robust characterization. In this study, a rapid and effective quality assessment system for geographical traceability, species, and variety-specific authenticity of the widely used natural medicines turmeric, Ocimum, and Withania somnifera was investigated using Fourier transform near-infrared (FT-NIR) spectroscopy-based metabolic fingerprinting. Four different geographical origins of turmeric, five different Ocimum species, and three different varieties of roots and leaves of Withania somnifera were studied with the aid of machine learning approaches. Extremely good discrimination (R2 > 0.98, Q2 > 0.97, and accuracy = 1.0) with sensitivity and specificity of 100% was achieved using this metabolic fingerprinting strategy. Our study demonstrated that FT-NIR-based rapid metabolic fingerprinting can be used as a robust analytical method to authenticate several important medicinal herbs.PMID:37842663 | PMC:PMC10568180 | DOI:10.1016/j.jpha.2023.04.018

Targeted bile acids metabolomics in cholesterol gallbladder polyps and gallstones: From analytical method development towards application to clinical samples

Mon, 16/10/2023 - 12:00
J Pharm Anal. 2023 Sep;13(9):1080-1087. doi: 10.1016/j.jpha.2023.06.003. Epub 2023 Jun 7.ABSTRACTBile acids (BAs) are synthesized by the liver from cholesterol through several complementary pathways and aberrant cholesterol metabolism plays pivotal roles in the pathogeneses of cholesterol gallbladder polyps (CGP) and cholesterol gallstones (CGS). To date, there is neither systematic study on BAs profile of CGP or CGS, nor the relationship between them. To explore the metabolomics profile of plasma BAs in healthy volunteers, CGP and CGS patients, an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for simultaneous determination of 42 free and conjugated BAs in human plasma. The developed method was sensitive and reproducible to be applied for the quantification of BAs in the investigation of plasma samples. The results show that, compared to healthy volunteers, CGP and CGS were both characterized by the significant decrease in plasma BAs pool size, furthermore CGP and CGS shared aberrant BAs metabolic characteristics. Chenodeoxycholic acid, glycochenodeoxycholic acid, λ-muricholic acid, deoxycholic acid, and 7-ketolithocholic acid were shared potential markers of these two cholesterol gallbladder diseases. Subsequent analysis showed that clinical characteristics including cysteine, ornithine and body mass index might be closely related to metabolisms of certain BA modules. This work provides metabolomic information for the study of gallbladder diseases and analytical methodologies for clinical target analysis and efficacy evaluation related to BAs in medical institutions.PMID:37842658 | PMC:PMC10568091 | DOI:10.1016/j.jpha.2023.06.003

Metabolomics: A useful tool for ischemic stroke research

Mon, 16/10/2023 - 12:00
J Pharm Anal. 2023 Sep;13(9):968-983. doi: 10.1016/j.jpha.2023.05.015. Epub 2023 Jun 3.ABSTRACTIschemic stroke (IS) is a multifactorial and heterogeneous disease. Despite years of studies, effective strategies for the diagnosis, management and treatment of stroke are still lacking in clinical practice. Metabolomics is a growing field in systems biology. It is starting to show promise in the identification of biomarkers and in the use of pharmacometabolomics to help patients with certain disorders choose their course of treatment. The development of metabolomics has enabled further and more biological applications. Particularly, metabolomics is increasingly being used to diagnose diseases, discover new drug targets, elucidate mechanisms, and monitor therapeutic outcomes and its potential effect on precision medicine. In this review, we reviewed some recent advances in the study of metabolomics as well as how metabolomics might be used to identify novel biomarkers and understand the mechanisms of IS. Then, the use of metabolomics approaches to investigate the molecular processes and active ingredients of Chinese herbal formulations with anti-IS capabilities is summarized. We finally summarized recent developments in single cell metabolomics for exploring the metabolic profiles of single cells. Although the field is relatively young, the development of single cell metabolomics promises to provide a powerful tool for unraveling the pathogenesis of IS.PMID:37842657 | PMC:PMC10568109 | DOI:10.1016/j.jpha.2023.05.015

Natural Deep Eutectic Solvent based Ultrasound-assisted extraction: A green approach for extraction of sulfhydryl and mimosine from <em>Leucaena leucocephala</em> (Lam) de Wit seeds

Mon, 16/10/2023 - 12:00
Heliyon. 2023 Oct 6;9(10):e20480. doi: 10.1016/j.heliyon.2023.e20480. eCollection 2023 Oct.ABSTRACTLeucaena leucocephala (Lam.) de Wit seeds, also known as river tamarind, contain sulfhydryl compounds that exhibit antioxidant effects. However, these seeds also possess a toxic effect from mimosine. In this study, the river tamarind seeds were extracted using a natural deep eutectic solvent (NADES) based UAE. Among six NADES compositions screened, choline chloride-glycerol (ChCl-Gly) and choline chloride-sucrose (ChCl-Suc) were selected to be further optimized using a Box-Behnken Design in the RSM. The optimization of total sulfhydryl content was performed in 17 runs using three variables, namely water content in NADES (39%, 41%, and 43%), extraction time (5, 10, and 15 min), and the liquid-solid ratio (3, 5, and 7 mL/g). The highest concentration of sulfhydryls was obtained from ChCl-Gly-UAE (0.89 mg/g sample) under the conditions of a water content in NADES of 41% (v/v) and a liquid-solid ratio of 3 mL/g for 15 min, followed by that of from ChCl-Suc-UAE extract under the conditions of water content in NADES of 43% (v/v) and the liquid-solid ratio of 3 mL/g for 10 min with total sulfhydryl level was 0.67 mg/g sample. The maceration method using 30% ethanol resulted in the lowest level of sulfhydryls with a value of 0.52 mg/g. The mimosine compounds obtained in the NADES-based UAE (ChCl-Suc and ChCl-Gly) extracts were 4.95 and 7.67 mg/g, respectively, while 12.56 mg/g in the 30% ethanol-maceration extract. The surface morphology of L. leucocephala seed before and after extraction was analyzed using scanning electron microscopy. Therefore, it can be concluded that the use of ChCl-Suc and ChCl-Gly in NADES-based UAE is more selective in attracting sulfhydryl compounds than that of 30% ethanol-maceration extraction.PMID:37842627 | PMC:PMC10570601 | DOI:10.1016/j.heliyon.2023.e20480

Metabolomic identification of biochemical changes induced by fluoxetine in an insulinoma cell line (MIN6)

Mon, 16/10/2023 - 12:00
Res Pharm Sci. 2023 Aug 20;18(5):517-527. doi: 10.4103/1735-5362.383707. eCollection 2023 Sep-Oct.ABSTRACTBACKGROUND AND PURPOSE: The use of fluoxetine raises the risk of pancreatic beta-cell dysfunction. However, the specific mechanism behind its mechanism of action in beta cells is unknown. This study investigated the cellular response of MIN6 cells to fluoxetine using untargeted cell-based metabolomics.EXPERIMENTAL APPROACH: Metabolic profiling of MIN6 cells was performed using liquid chromatography-high resolution mass spectrometry (LC-HRMS) analysis on samples prepared under optimized conditions, followed by principal component analysis, partial least squares-discriminant analysis, and pair-wise orthogonal projections to latent structures discriminant analyses.FINDINGS/RESULTS: Sixty-six metabolites that had been differentially expressed between the control and fluoxetine-treated groups demonstrated that the citric acid cycle is mainly perturbed by fluoxetine treatment.CONCLUSION AND IMPLICATIONS: The current study provides insights into the molecular mechanisms of fluoxetine effects in MIN6 cells.PMID:37842516 | PMC:PMC10568956 | DOI:10.4103/1735-5362.383707

ELIXIR and Toxicology: a community in development

Mon, 16/10/2023 - 12:00
F1000Res. 2023 Oct 3;10:ELIXIR-1129. doi: 10.12688/f1000research.74502.2. eCollection 2021.ABSTRACTToxicology has been an active research field for many decades, with academic, industrial and government involvement. Modern omics and computational approaches are changing the field, from merely disease-specific observational models into target-specific predictive models. Traditionally, toxicology has strong links with other fields such as biology, chemistry, pharmacology and medicine. With the rise of synthetic and new engineered materials, alongside ongoing prioritisation needs in chemical risk assessment for existing chemicals, early predictive evaluations are becoming of utmost importance to both scientific and regulatory purposes. ELIXIR is an intergovernmental organisation that brings together life science resources from across Europe. To coordinate the linkage of various life science efforts around modern predictive toxicology, the establishment of a new ELIXIR Community is seen as instrumental. In the past few years, joint efforts, building on incidental overlap, have been piloted in the context of ELIXIR. For example, the EU-ToxRisk, diXa, HeCaToS, transQST, and the nanotoxicology community have worked with the ELIXIR TeSS, Bioschemas, and Compute Platforms and activities. In 2018, a core group of interested parties wrote a proposal, outlining a sketch of what this new ELIXIR Toxicology Community would look like. A recent workshop (held September 30th to October 1st, 2020) extended this into an ELIXIR Toxicology roadmap and a shortlist of limited investment-high gain collaborations to give body to this new community. This Whitepaper outlines the results of these efforts and defines our vision of the ELIXIR Toxicology Community and how it complements other ELIXIR activities.PMID:37842337 | PMC:PMC10568213 | DOI:10.12688/f1000research.74502.2

Formate Might Be a Novel Potential Serum Metabolic Biomarker for Type 2 Diabetic Peripheral Neuropathy

Mon, 16/10/2023 - 12:00
Diabetes Metab Syndr Obes. 2023 Oct 10;16:3147-3160. doi: 10.2147/DMSO.S428933. eCollection 2023.ABSTRACTBACKGROUND: As one of the most frequent complications of type 2 diabetes mellitus (T2DM), diabetic peripheral neuropathy (DPN) shows a profound impact on 50% of patients with symptoms of neuropathic pain, numbness and other paresthesia. No valid serum biomarkers for the prediction of DPN have been identified in the clinic so far. This study is to investigate the potential serum biomarkers for DPN firstly based on 1H-Nuclear Magnetic Resonance (1H-NMR)-based metabolomics technique.METHODS: Thirty-six patients enrolled in this study were divided into two groups: 18 T2DM patients without DPN (T2DM group) and 18 T2DM patients with DPN (DPN group). Serum metabolites were measured via 1H-NMR spectroscopy. Bioinformatic approaches including principal component analysis (PCA), orthogonal partial least squares-discriminant analysis (OPLS-DA), independent sample t-test, Fisher's test, Pearson and Spearman correlation analysis, Stepwise multiple linear regression analysis and receiver operating characteristic (ROC) curve analysis were used to identify the potential altered serum biomarkers.RESULTS: A total of 20 metabolites were obtained and further analyzed. Formate was identified as the only potential biomarker that decreased in the DPN group with statistical significance after multiple comparisons (p<0.05). Formate also displayed a negative relationship with some elevated clinical markers in DPN. ROC curve analysis showed a good discriminative ability for formate in DPN with an area under the curve (AUC) value of 0.981.CONCLUSION: Formate could be considered a potential serum metabolic biomarker for DPN. The reduced level of formate in DPN may be associated with mitochondrial dysfunction and gut microbiota alteration. Monitoring the level of serum formate would be an important strategy for the early diagnosis of DPN and a supplement of formate may be a promising treatment for DPN in the future.PMID:37842336 | PMC:PMC10576463 | DOI:10.2147/DMSO.S428933

Longitudinal Microbial and Molecular Dynamics in the Cystic Fibrosis Lung after Elexacaftor-Tezacaftor-Ivacaftor therapy

Mon, 16/10/2023 - 12:00
Res Sq. 2023 Sep 25:rs.3.rs-3356170. doi: 10.21203/rs.3.rs-3356170/v1. Preprint.ABSTRACTBackground Cystic fibrosis (CF) is a genetic disorder causing poor mucociliary clearance in the airways and subsequent respiratory infection. The recently approved triple therapy Elexacaftor-Tezacaftor-Ivacaftor (ETI) has significantly improved the lung function and decreased airway infection of persons with CF (pwCF). This improvement has been shown to occur rapidly, within the first few weeks of treatment. The effects of longer term ETI therapy on lung infection dynamics, however, remains mostly unknown. Results Here, we applied 16S rRNA gene amplicon sequencing, untargeted metabolomics, and neutral models to high-resolution, longitudinally collected sputum samples from pwCF on ETI therapy (162 samples, 7 patients) and compared to similarly collected data set of CF subjects not taking ETI (630 samples, 9 patients). Because ETI reduces sputum production, samples were collected in freezers provided in the subject's homes at least 3 months after first taking ETI, with those on ETI collecting a sample approximately weekly. The lung function (%ppFEV1) of those in our longitudinal cohort significantly improved after ETI (6.91, SD = 7.74), indicating our study cohort was responsive to ETI. The daily variation of alpha- and beta-diversity of both the microbiome and metabolome was higher for those on ETI, reflecting a more dynamic microbial community and chemical environment during treatment. Four of the seven subjects on ETI were persistently infected with Pseudomonas or Burkholderia in their sputum throughout the sampling period. The microbiome and metabolome dynamics on ETI were personalized, where some subjects had a progressive change with time on therapy, whereas others had no association with time on treatment. To further classify the augmented variance of the CF microbiome under therapy, we fit the microbiome data to a Hubbell neutral dynamics model in a patient-stratified manner and found that the subjects on ETI had better fit to a neutral model. Conclusion This study shows that the longitudinal microbiology and chemistry in airway secretions from subjects on ETI has become more dynamic and neutral, and that after the initial improvement in lung function, many are still persistently infected with CF pathogens.PMID:37841851 | PMC:PMC10571617 | DOI:10.21203/rs.3.rs-3356170/v1

New insights of metabolite abnormalities in the thalamus of rats with iminodiproprionitrile-induced tic disorders

Mon, 16/10/2023 - 12:00
Front Neurosci. 2023 Sep 29;17:1201294. doi: 10.3389/fnins.2023.1201294. eCollection 2023.ABSTRACTINTRODUCTION: This study aimed to investigate pathological changes in the "Glutamate (Glu)-γ-aminobutyric acid (GABA)" loop and apply widely targeted metabolomic analysis technology to comprehensively explore metabolite abnormalities/ in the thalamus of rats with tic disorders (TD).METHODS: Wistar rats were randomized into control, TD, and tiapride (Tia) groups. Iminodipropionitrile (IDPN) was used to induce TD in rats. The Tia group was administered tiapride. Neurotransmitter levels in the thalamus of rats in the three groups were measured using UPLC-3Q MS. And, the protein expression levels of Glu decarboxylase (GAD65/67) and GABA transporter protein (GAD-T) were measured using western blotting. The mRNA expression levels of these genes were evaluated using real-time polymerase chain reaction. Lastly, other metabolites in the thalamus were detected by widely targeted metabolomic analysis between TD and Control group rats.RESULTS: The Glu level, Glu/GABA ratio, and Asp level in the TD group were significantly higher (all p < 0.001) than those of the Control group, whereas the GABA and Gly levels were lower (p < 0.001 and p = 0.009, respectively). The Tia group exhibited a significant reduction in the Glu level (p = 0.001) compared with the TD group. The protein expression level of GAD67 in TD group was higher (p = 0.009) and the mRNA expression levels of GAD65, GAD67, and GAT-1 were lower (p < 0.05) than those of the Control group. The Tia group did not display any differences in GAD65, GAD67, or GAT-1 expression. Widely targeted metabolomic analysis revealed that 34 substances were abnornal between the TD and Control groups (9 upregulated and 25 downregulated). Neurosteroids (progesterone, corticosterone) exhibited distinct differences. Metabolite analysis using the Kyoto encyclopedia for genes and genomes indicated that the steroid hormone biosynthesis pathway may be involved in TD pathogenesis.CONCLUSION: This study revealed metabolic abnormalities in the thalamus of rats with TD. The interaction between neurotransmitters and neurosteroid biosynthesis represents a new direction for future studies.PMID:37841690 | PMC:PMC10570423 | DOI:10.3389/fnins.2023.1201294

Authenticating the geographic origins of <em>Atractylodes lancea</em> rhizome chemotypes in China through metabolite marker identification

Mon, 16/10/2023 - 12:00
Front Plant Sci. 2023 Sep 28;14:1237800. doi: 10.3389/fpls.2023.1237800. eCollection 2023.ABSTRACTINTRODUCTION: Atractylodes lancea is widely distributed in East Asia, ranging from Amur to south-central China. The rhizome of A. lancea is commonly used in traditional Chinese medicine, however, the quality of products varies across different regions with different geochemical characteristics.METHOD: This study aimed to identify the chemotypes of A. lancea from different areas and screen for chemical markers by quantifying volatile organic compounds (VOCs) using a targeted metabolomics approach based on GC-MS/MS.RESULTS: The A. lancea distributed in Hubei, Anhui, Shaanxi, and a region west of Henan province was classified as the Hubei Chemotype (HBA). HBA is characterized by high content of β-eudesmol and hinesol with lower levels of atractylodin and atractylon. In contrast, the Maoshan Chemotype (MA) from Jiangsu, Shandong, Shanxi, Hebei, Inner Mongolia, and other northern regions, exhibited high levels of atractylodin and atractylon. A total of 15 categories of VOCs metabolites were detected and identified, revealing significant differences in the profiles of terpenoid, heterocyclic compound, ester, and ketone among different areas. Multivariate statistics indicated that 6 compounds and 455 metabolites could serve as candidate markers for differentiating A. lancea obtained from the southern, northern, and Maoshan areas.DISCUSSION: This comprehensive analysis provides a chemical fingerprint of selected A. lancea. Our results highlight the potential of metabolite profiling combined with chemometrics for authenticating the geographical origin of A. lancea.PMID:37841605 | PMC:PMC10569125 | DOI:10.3389/fpls.2023.1237800

A comparative metabolomics analysis of domestic yak (<em>Bos grunniens</em>) milk with human breast milk

Mon, 16/10/2023 - 12:00
Front Vet Sci. 2023 Sep 29;10:1207950. doi: 10.3389/fvets.2023.1207950. eCollection 2023.ABSTRACTYaks are tough animals living in Tibet's hypoxic stress environment. However, the metabolite composition of yak milk and its role in hypoxic stress tolerance remains largely unexplored. The similarities and differences between yak and human milk in hypoxic stress tolerance are also unclear. This study explored yak colostrum (YC) and yak mature milk (YMM) using GC-MS, and 354 metabolites were identified in yak milk. A comparative metabolomic analysis of yak and human milk metabolites showed that over 70% of metabolites were species-specific. Yak milk relies mainly on essential amino acids- arginine and essential branched-chain amino acids (BCAAs): L-isoleucine, L-leucine, and L-valine tolerate hypoxic stress. To slow hypoxic stress, human breast milk relies primarily on the neuroprotective effects of non-essential amino acids or derivates, such as citrulline, sarcosine, and creatine. In addition, metabolites related to hypoxic stress were significantly enriched in YC than in YMM. These results reveal the unique metabolite composition of yak and human milk and provide practical information for applying yak and human milk to hypoxic stress tolerance.PMID:37841471 | PMC:PMC10570732 | DOI:10.3389/fvets.2023.1207950

Metabolomic analysis for disclosing nutritional and therapeutic prospective of traditional rice cultivars of Cauvery deltaic region, India

Mon, 16/10/2023 - 12:00
Front Nutr. 2023 Sep 28;10:1254624. doi: 10.3389/fnut.2023.1254624. eCollection 2023.ABSTRACTTraditional rice is gaining popularity worldwide due to its high nutritional and pharmaceutical value, as well as its high resistance to abiotic and biotic stresses. This has attracted significant attention from breeders, nutritionists, and plant protection scientists in recent years. Hence, it is critical to investigate the grain metabolome to reveal germination and nutritional importance. This research aimed to explore non-targeted metabolites of five traditional rice varieties, viz., Chinnar, Chithiraikar, Karunguruvai, Kichili samba, and Thooyamalli, for their nutritional and therapeutic properties. Approximately 149 metabolites were identified using the National Institute of Standards and Technology (NIST) library and Human Metabolome Database (HMDB) and were grouped into 34 chemical classes. Major classes include fatty acids (31.1-56.3%), steroids and their derivatives (1.80-22.4%), dihydrofurans (8.98-11.6%), prenol lipids (0.66-4.44%), organooxygen compounds (0.12-6.45%), benzene and substituted derivatives (0.53-3.73%), glycerolipids (0.36-2.28%), and hydroxy acids and derivatives (0.03-2.70%). Significant variations in metabolite composition among the rice varieties were also observed through the combination of univariate and multivariate statistical analyses. Principal component analysis (PCA) reduced the dimensionality of 149 metabolites into five principle components (PCs), which explained 96% of the total variance. Two clusters were revealed by hierarchical cluster analysis, indicating the distinctiveness of the traditional varieties. Additionally, a partial least squares-discriminant analysis (PLS-DA) found 17 variables important in the projection (VIP) scores of metabolites. The findings of this study reveal the biochemical intricate and distinctive metabolomes of the traditional therapeutic rice varieties. This will serve as the foundation for future research on developing new rice varieties with traditional rice grain metabolisms to increase grain quality and production with various nutritional and therapeutic benefits.PMID:37841397 | PMC:PMC10568072 | DOI:10.3389/fnut.2023.1254624

Mass spectrometry-based analysis of gut microbial metabolites of aromatic amino acids

Mon, 16/10/2023 - 12:00
Comput Struct Biotechnol J. 2023 Sep 26;21:4777-4789. doi: 10.1016/j.csbj.2023.09.032. eCollection 2023.ABSTRACTSmall molecules derived from gut microbiota have been increasingly investigated to better understand the functional roles of the human gut microbiome. Microbial metabolites of aromatic amino acids (AAA) have been linked to many diseases, such as metabolic disorders, chronic kidney diseases, inflammatory bowel disease, diabetes, and cancer. Important microbial AAA metabolites are often discovered via global metabolite profiling of biological specimens collected from humans or animal models. Subsequent metabolite identity confirmation and absolute quantification using targeted analysis enable comparisons across different studies, which can lead to the establishment of threshold concentrations of potential metabolite biomarkers. Owing to their excellent selectivity and sensitivity, hyphenated mass spectrometry (MS) techniques are often employed to identify and quantify AAA metabolites in various biological matrices. Here, we summarize the developments over the past five years in MS-based methodology for analyzing gut microbiota-derived AAA. Sample preparation, method validation, analytical performance, and statistical methods for correlation analysis are discussed, along with future perspectives.PMID:37841334 | PMC:PMC10570628 | DOI:10.1016/j.csbj.2023.09.032

Heat hardening enhances metabolite-driven thermoprotection in the Mediterranean mussel <em>Mytilus galloprovincialis</em>

Mon, 16/10/2023 - 12:00
Front Physiol. 2023 Sep 29;14:1244314. doi: 10.3389/fphys.2023.1244314. eCollection 2023.ABSTRACTIntroduction: Temperature affects organisms' metabolism and ecological performance. Owing to climate change, sea warming constituting a severe source of environmental stress for marine organisms, since it increases at alarming rates. Rapid warming can exceed resilience of marine organisms leading to fitness loss and mortality. However, organisms can improve their thermal tolerance when briefly exposed to sublethal thermal stress (heat hardening), thus generating heat tolerant phenotypes. Methods: We investigated the "stress memory" effect caused by heat hardening on M. galloprovincialis metabolite profile of in order to identify the underlying biochemical mechanisms, which enhance mussels' thermal tolerance. Results: The heat hardening led to accumulation of amino acids (e.g., leucine, isoleucine and valine), including osmolytes and cytoprotective agents with antioxidant and anti-inflammatory properties that can contribute to thermal protection of the mussels. Moreover, proteolysis was inhibited and protein turnover regulated by the heat hardening. Heat stress alters the metabolic profile of heat stressed mussels, benefiting the heat-hardened individuals in increasing their heat tolerance compared to the non-heat-hardened ones. Discussion: These findings provide new insights in the metabolic mechanisms that may reinforce mussels' tolerance against thermal stress providing both natural protection and potential manipulative tools (e.g., in aquaculture) against the devastating climate change effects on marine organisms.PMID:37841313 | PMC:PMC10570847 | DOI:10.3389/fphys.2023.1244314

Specific IgG glycosylation differences precede relapse in PR3-ANCA associated vasculitis patients with and without ANCA rise

Mon, 16/10/2023 - 12:00
Front Immunol. 2023 Sep 29;14:1214945. doi: 10.3389/fimmu.2023.1214945. eCollection 2023.ABSTRACTINTRODUCTION: Immunoglobulin G (IgG) contains a conserved N-glycan in the fragment crystallizable (Fc), modulating its structure and effector functions. In anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) alterations of IgG Fc-glycosylation have been observed to correlate with the disease course. Here, we examined longitudinal changes in N-linked Fc glycans of IgG in an AAV patient cohort and their relationship with disease flares.METHODS: Using liquid chromatography coupled with mass spectrometry, we analysed IgG Fc-glycosylation in 410 longitudinal samples from 96 individuals with AAV.RESULTS: Analysis of the cross-sectional differences as well as longitudinal changes demonstrated that IgGs of relapsing PR3-ANCA patients have higher ΔFc-bisection at diagnosis (P = 0.004) and exhibit a decrease in Fc-sialylation prior to the relapse (P = 0.0004), discriminating them from non-relapsing patients. Most importantly, PR3-ANCA patients who experienced an ANCA rise and relapsed shortly thereafter, exhibit lower IgG Fc-fucosylation levels compared to non-relapsing patients already 9 months before relapse (P = 0.02).DISCUSSION: Our data indicate that IgG Fc-bisection correlates with long-term treatment outcome, while lower IgG Fc-fucosylation and sialylation associate with impending relapse. Overall, our study replicated the previously published reduction in total IgG Fc-sialylation at the time of relapse, but showed additionally that its onset precedes relapse. Furthermore, our findings on IgG fucosylation and bisection are entirely new. All these IgG Fc-glycosylation features may have the potential to predict a relapse either independently or in combination with known risk factors, such as a rise in ANCA titre.PMID:37841251 | PMC:PMC10570725 | DOI:10.3389/fimmu.2023.1214945

Preliminary Findings on the Salivary Metabolome of Hookah and Cigarette Smokers

Mon, 16/10/2023 - 12:00
ACS Omega. 2023 Sep 30;8(40):36845-36855. doi: 10.1021/acsomega.3c03683. eCollection 2023 Oct 10.ABSTRACTThe aim of the study was to evaluate the salivary metabolomic profile of patients who habitually smoke hookah and cigarettes. The groups consisted of 33 regular and exclusive hookah smokers, 26 regular and exclusive cigarette smokers, and 30 nonsmokers. Unstimulated whole saliva was collected for the measurement of salivary metabolites by gas chromatography coupled with tandem mass spectrometry (GC-MS/MS). The MetaboAnalyst software was used for statistical analysis and evaluation of biomarkers. 11 smoking salivary biomarkers were identified using the area under receiving-operator curver criterion and threshold of 0.9. Xylitol and octadecanol were higher in cigarette smokers compared to controls; arabitol and maltose were higher in controls compared to cigarette smokers; octadecanol and tyramine were higher in hookah smokers compared to controls; phenylalanine was higher in controls compared to hookah smokers; and fructose, isocitric acid, glucuronic acid, tryptamine, maltose, tyramine, and 3-hydroxyisolvaleric acid were higher in hookah smokers compared to cigarettes smokers. Conclusions: The evaluation of the salivary metabolome of hookah smokers, showing separation between the groups, especially between the control versus hookah groups and cigarette versus hookah groups, and it seems to demonstrate that the use of hookah tobacco is more damaging to health.PMID:37841134 | PMC:PMC10569005 | DOI:10.1021/acsomega.3c03683

Novel paradigms for the gut-brain axis during alcohol withdrawal, withdrawal-associated depression, and craving in patients with alcohol use disorder

Mon, 16/10/2023 - 12:00
Front Psychiatry. 2023 Sep 29;14:1203362. doi: 10.3389/fpsyt.2023.1203362. eCollection 2023.ABSTRACTINTRODUCTION: Patients with alcohol use disorder (AUD) exhibit symptoms such as alcohol withdrawal, depression, and cravings. The gut-immune response may play a significant role in manifesting these specific symptoms associated with AUD. This study examined the role of gut dysfunction, proinflammatory cytokines, and hormones in characterizing AUD symptoms.METHODS: Forty-eight AUD patients [men (n = 34) and women (n = 14)] aged 23-63 years were grouped using the Clinical Institute Withdrawal Assessment of Alcohol Scale (CIWA) as clinically significant (CS-CIWA [score > 10] [n = 22]) and a clinically not-significant group (NCS-CIWA [score ≤ 10] [n = 26]). Clinical data (CIWA, 90-day timeline followback [TLFB90], and lifetime drinking history [LTDH]) and blood samples (for testing proinflammatory cytokines, hormones, and markers of intestinal permeability) were analyzed. A subset of 16 AUD patients was assessed upon admission for their craving tendencies related to drug-seeking behavior using the Penn-Alcohol Craving Score (PACS).RESULTS: CS-CIWA group patients exhibited unique and significantly higher levels of adiponectin and interleukin (IL)-6 compared to NCS-CIWA. In the CS group, there were significant and high effects of association for the withdrawal score with gut-immune markers (lipopolysaccharide [LPS], adiponectin, IL-6, and IL-8) and for withdrawal-associated depression with gut-immune markers (scored using MADRS with LPS, soluble cells of differentiation type 14 [sCD14], IL-6, and IL-8). Craving (assessed by PACS, the Penn-Alcohol Craving Scale) was significantly characterized by what could be described as gut dysregulation (LBP [lipopolysaccharide binding protein] and leptin) and candidate proinflammatory (IL-1β and TNF-α) markers. Such a pathway model describes the heavy drinking phenotype, HDD90 (heavy drinking days past 90 days), with even higher effects (R2 = 0.955, p = 0.006) in the AUD patients, who had higher ratings for cravings (PACS > 5).DISCUSSION: The interaction of gut dysfunction cytokines involved in both inflammation and mediating activity constitutes a novel pathophysiological gut-brain axis for withdrawal symptoms and withdrawal-associated depression and craving symptoms in AUD. AUD patients with reported cravings show a significant characterization of the gut-brain axis response to heavy drinking.TRIAL REGISTRATION: ClinicalTrials.gov, identifier: NCT# 00106106.PMID:37840804 | PMC:PMC10570744 | DOI:10.3389/fpsyt.2023.1203362

Short-term dietary choline supplementation alters the gut microbiota and liver metabolism of finishing pigs

Mon, 16/10/2023 - 12:00
Front Microbiol. 2023 Sep 28;14:1266042. doi: 10.3389/fmicb.2023.1266042. eCollection 2023.ABSTRACTCholine is an essential nutrient for pig development and plays a role in the animal's growth performance, carcass characteristics, and reproduction aspects in weaned pigs and sows. However, the effect of choline on finishing pigs and its potential regulatory mechanism remains unclear. Here, we feed finishing pigs with 1% of the hydrochloride salt of choline, such as choline chloride (CHC), under a basic diet condition for a short period of time (14 days). A 14-day supplementation of CHC significantly increased final weight and carcass weight while having no effect on carcass length, average backfat, or eye muscle area compared with control pigs. Mechanically, CHC resulted in a significant alteration of gut microbiota composition in finishing pigs and a remarkably increased relative abundance of bacteria contributing to growth performance and health, including Prevotella, Ruminococcaceae, and Eubacterium. In addition, untargeted metabolomics analysis identified 84 differently abundant metabolites in the liver between CHC pigs and control pigs, of which most metabolites were mainly enriched in signaling pathways related to the improvement of growth, development, and health. Notably, there was no significant difference in the ability of oxidative stress resistance between the two groups, although increased bacteria and metabolites keeping balance in reactive oxygen species showed in finishing pigs after CHC supplementation. Taken together, our results suggest that a short-term supplementation of CHC contributes to increased body weight gain and carcass weight of finishing pigs, which may be involved in the regulation of gut microbiota and alterations of liver metabolism, providing new insights into the potential of choline-mediated gut microbiota/metabolites in improving growth performance, carcass characteristics, and health.PMID:37840732 | PMC:PMC10569418 | DOI:10.3389/fmicb.2023.1266042

Functional metagenomic and metabolomics analysis of gut dysbiosis induced by hyperoxia

Mon, 16/10/2023 - 12:00
Front Microbiol. 2023 Sep 28;14:1197970. doi: 10.3389/fmicb.2023.1197970. eCollection 2023.ABSTRACTBACKGROUND: Inhaled oxygen is the first-line therapeutic approach for maintaining tissue oxygenation in critically ill patients, but usually exposes patients to damaging hyperoxia. Hyperoxia adversely increases the oxygen tension in the gut lumen which harbors the trillions of microorganisms playing an important role in host metabolism and immunity. Nevertheless, the effects of hyperoxia on gut microbiome and metabolome remain unclear, and metagenomic and metabolomics analysis were performed in this mouse study.METHODS: C57BL/6 mice were randomly divided into a control (CON) group exposed to room air with fractional inspired oxygen (FiO2) of 21% and a hyperoxia (OXY) group exposed to FiO2 of 80% for 7 days, respectively. Fecal pellets were collected on day 7 and subjected to metagenomic sequencing. Another experiment with the same design was performed to explore the impact of hyperoxia on gut and serum metabolome. Fecal pellets and blood were collected and high-performance liquid chromatography with mass spectrometric analysis was carried out.RESULTS: At the phylum level, hyperoxia increased the ratio of Firmicutes/Bacteroidetes (p = 0.049). At the species level, hyperoxia reduced the abundance of Muribaculaceae bacterium Isolate-037 (p = 0.007), Isolate-114 (p = 0.010), and Isolate-043 (p = 0.011) etc. Linear discriminant analysis effect size (LEfSe) revealed that Muribaculaceae and Muribaculaceae bacterium Isolate-037, both belonging to Bacteroidetes, were the marker microbes of the CON group, while Firmicutes was the marker microbes of the OXY group. Metagenomic analysis using Kyoto Encyclopedia of Genes and Genomes (KEGG) and Carbohydrate-Active enZYmes (CAZy) revealed that hyperoxia provoked disturbances in carbohydrate and lipid metabolism. Fecal metabolomics analysis showed hyperoxia reduced 11-dehydro Thromboxane B2-d4 biosynthesis (p = 1.10 × 10-11). Hyperoxia blunted fecal linoleic acid metabolism (p = 0.008) and alpha-linolenic acid metabolism (p = 0.014). We showed that 1-docosanoyl-glycer-3-phosphate (p = 1.58 × 10-10) was the most significant differential serum metabolite inhibited by hyperoxia. In addition, hyperoxia suppressed serum hypoxia-inducible factor-1 (HIF-1, p = 0.007) and glucagon signaling pathways (p = 0.007).CONCLUSION: Hyperoxia leads to gut dysbiosis by eliminating beneficial and oxygen strictly intolerant Muribaculaceae with genomic dysfunction of carbohydrate and lipid metabolism. In addition, hyperoxia suppresses unsaturated fatty acid metabolism in the gut and inhibits the HIF-1 and glucagon signaling pathways in the serum.PMID:37840730 | PMC:PMC10569423 | DOI:10.3389/fmicb.2023.1197970

Pages