PubMed
Relaxation Editing in NMR Using a New Two-Dimensional Long-Lived Coherence Method for Mixture Analysis
Anal Chem. 2024 May 10. doi: 10.1021/acs.analchem.3c05574. Online ahead of print.ABSTRACTThe exploration of metabolomics and targeted segments of proteins stands as a pivotal facet of Nuclear Magnetic Resonance (NMR) analysis, furnishing valuable insights into molecular architectures and potential therapeutic applications. The issue of spectral congestion frequently presents challenges in ascribing distinct peaks within the confines of both one-dimensional (1D) and two-dimensional (2D) NMR spectra. Numerous strategies have been proposed to resolve specific resonances in NMR spectra differentially. Among these approaches, relaxation editing emerges as a viable solution. In the realm of relaxation phenomena within NMR, Long-Lived States (LLS) and Long-Lived Coherences (LLC) manifest as promising phenomena, offering enhanced relaxation lifetimes in comparison to the traditional longitudinal (T1) and transverse (T2) relaxation times for coupled nuclear spins. Notably, LLC presents a pathway to attenuate uncoupled high-intensity peaks, effectively diminishing their impact. The foundation of this technique rests upon the premise that the relaxation lifetime in the rotating frame (T1ρ) remains smaller than TLLC. In pursuit of refining spectral assignments within complex mixtures, we introduce a new pulse sequence tailored for LLC Total Correlation Spectroscopy (LLC-TOCSY). This demonstrates efficacy in extracting LLC signals within configurations involving multiple coupled spins, thereby decluttering the spectrum and enhancing the accuracy of peak assignments. To validate the effectiveness of this method, a collection of samples was subjected to scrutiny, yielding compelling results.PMID:38727639 | DOI:10.1021/acs.analchem.3c05574
Metabolomic pathways in food allergy
Pediatr Allergy Immunol. 2024 May;35(5):e14133. doi: 10.1111/pai.14133.ABSTRACTFood allergy (FA) is a widespread issue, affecting as many as 10% of the population. Over the past two to three decades, the prevalence of FA has been on the rise, particularly in industrialized and westernized countries. FA is a complex, multifactorial disease mediated by type 2 immune responses and involving environmental and genetic factors. However, the precise mechanisms remain inadequately understood. Metabolomics has the potential to identify disease endotypes, which could beneficially promote personalized prevention and treatment. A metabolome approach would facilitate the identification of surrogate metabolite markers reflecting the disease activity and prognosis. Here, we present a literature overview of recent metabolomic studies conducted on children with FA.PMID:38727629 | DOI:10.1111/pai.14133
Selenium Nanomaterials Enhance Sheath Blight Resistance and Nutritional Quality of Rice: Mechanisms of Action and Human Health Benefit
ACS Nano. 2024 May 10. doi: 10.1021/acsnano.4c01835. Online ahead of print.ABSTRACTIn the current work, the foliar application of selenium nanomaterials (Se0 NMs) suppressed sheath blight in rice (Oryza sativa). The beneficial effects were nanoscale specific and concentration dependent. Specifically, foliar amendment of 5 mg/L Se0 NMs decreased the disease severity by 68.8% in Rhizoctonia solani-infected rice; this level of control was 1.57- and 2.20-fold greater than that of the Se ions with equivalent Se mass and a commercially available pesticide (Thifluzamide). Mechanistically, (1) the controlled release ability of Se0 NMs enabled a wider safe concentration range and greater bioavailability to Se0 NMs, and (2) transcriptomic and metabolomic analyses demonstrated that Se0 NMs simultaneously promoted the salicylic acid- and jasmonic-acid-dependent acquired disease resistance pathways, antioxidative system, and flavonoid biosynthesis. Additionally, Se0 NMs improved rice yield by 31.1%, increased the nutritional quality by 6.4-7.2%, enhanced organic Se content by 44.8%, and decreased arsenic and cadmium contents by 38.7 and 42.1%, respectively, in grains as compared with infected controls. Human simulated gastrointestinal tract model results showed that the application of Se0 NMs enhanced the bioaccessibility of Se in grains by 22.0% and decreased the bioaccessibility of As and Cd in grains by 20.3 and 13.4%, respectively. These findings demonstrate that Se0 NMs can serve as an effective and sustainable strategy to increase food quality and security.PMID:38727520 | DOI:10.1021/acsnano.4c01835
JAK/STAT Inhibition Normalizes Lipid Composition in 3D Human Epidermal Equivalents Challenged with Th2 Cytokines
Cells. 2024 Apr 29;13(9):760. doi: 10.3390/cells13090760.ABSTRACTDerangement of the epidermal barrier lipids and dysregulated immune responses are key pathogenic features of atopic dermatitis (AD). The Th2-type cytokines interleukin IL-4 and IL-13 play a prominent role in AD by activating the Janus Kinase/Signal Transduction and Activator of Transcription (JAK/STAT) intracellular signaling axis. This study aimed to investigate the role of JAK/STAT in the lipid perturbations induced by Th2 signaling in 3D epidermal equivalents. Tofacitinib, a low-molecular-mass JAK inhibitor, was used to screen for JAK/STAT-mediated deregulation of lipid metabolism. Th2 cytokines decreased the expression of elongases 1, 3, and 4 and serine-palmitoyl-transferase and increased that of sphingolipid delta(4)-desaturase and carbonic anhydrase 2. Th2 cytokines inhibited the synthesis of palmitoleic acid and caused depletion of triglycerides, in association with altered phosphatidylcholine profiles and fatty acid (FA) metabolism. Overall, the ceramide profiles were minimally affected. Except for most sphingolipids and very-long-chain FAs, the effects of Th2 on lipid pathways were reversed by co-treatment with tofacitinib. An increase in the mRNA levels of CPT1A and ACAT1, reduced by tofacitinib, suggests that Th2 cytokines promote FA beta-oxidation. In conclusion, pharmacological inhibition of JAK/STAT activation prevents the lipid disruption caused by the halted homeostasis of FA metabolism.PMID:38727296 | DOI:10.3390/cells13090760
Valproic Acid Treatment after Traumatic Brain Injury in Mice Alleviates Neuronal Death and Inflammation in Association with Increased Plasma Lysophosphatidylcholines
Cells. 2024 Apr 23;13(9):734. doi: 10.3390/cells13090734.ABSTRACTThe histone deacetylase inhibitor (HDACi) valproic acid (VPA) has neuroprotective and anti-inflammatory effects in experimental traumatic brain injury (TBI), which have been partially attributed to the epigenetic disinhibition of the transcription repressor RE1-Silencing Transcription Factor/Neuron-Restrictive Silencer Factor (REST/NRSF). Additionally, VPA changes post-traumatic brain injury (TBI) brain metabolism to create a neuroprotective environment. To address the interconnection of neuroprotection, metabolism, inflammation and REST/NRSF after TBI, we subjected C57BL/6N mice to experimental TBI and intraperitoneal VPA administration or vehicle solution at 15 min, 1, 2, and 3 days post-injury (dpi). At 7 dpi, TBI-induced an up-regulation of REST/NRSF gene expression and HDACi function of VPA on histone H3 acetylation were confirmed. Neurological deficits, brain lesion size, blood-brain barrier permeability, or astrogliosis were not affected, and REST/NRSF target genes were only marginally influenced by VPA. However, VPA attenuated structural damage in the hippocampus, microgliosis and expression of the pro-inflammatory marker genes. Analyses of plasma lipidomic and polar metabolomic patterns revealed that VPA treatment increased lysophosphatidylcholines (LPCs), which were inversely associated with interleukin 1 beta (Il1b) and tumor necrosis factor (Tnf) gene expression in the brain. The results show that VPA has mild neuroprotective and anti-inflammatory effects likely originating from favorable systemic metabolic changes resulting in increased plasma LPCs that are known to be actively taken up by the brain and function as carriers for neuroprotective polyunsaturated fatty acids.PMID:38727269 | DOI:10.3390/cells13090734
(1)H NMR-metabolomics studies on acute toxicity effect of lead in adult zebrafish (Danio rerio) model
Drug Chem Toxicol. 2024 May 10:1-14. doi: 10.1080/01480545.2024.2346751. Online ahead of print.ABSTRACTZebrafish (Danio rerio) is ideal for studying the effects of toxins like lead or plumbum (Pb) which persist in the environment and harm body systems when absorbed. Increasing Pb concentration could result in a higher mortality rate and alteration of behavior and metabolism. The present study evaluates the acute toxicity effect of Pb on metabolome and behavior in adult zebrafish. The zebrafish were exposed to various Pb concentrations ranging from 0 to 30 mg/L for different periods (24, 48, and 72 h) before the fish samples were subjected to Nuclear Magnetic Resonance (NMR)-multivariate data analysis (MVDA) with additional support from behavioral assessment. The behavior of zebrafish was significantly altered after Pb inducement and the differential metabolites increased in low (5 mg/L) while decreased in high (10 mg/L) Pb concentrations. An ideal Pb induction could be achieved by 5 mg/L concentration in 24 h, which induced significant metabolite changes without irreversible damage. Continuing research on the effects of lead toxicity is crucial to develop effective prevention and treatment strategies.PMID:38726945 | DOI:10.1080/01480545.2024.2346751
Mechanism of Jinteng Qingbi granules in the treatment of rheumatoid arthritis using metabolomics analysis
Biomed Chromatogr. 2024 May 10:e5886. doi: 10.1002/bmc.5886. Online ahead of print.ABSTRACTThis study investigated the differential metabolites after rheumatoid arthritis (RA) rats were treated with Jinteng Qingbi granules. Collagen-induced arthritis rats were divided into three groups, namely normal group, model group, and Jinteng Qingbi granules group. Serum compounds were identified, annotated, and classified using metabolomics to explain the physicochemical properties and biological functions. The metabolites were screened using univariate and multivariate statistical analyses. There were differences in serum metabolites between RA and normal rats; Jinteng Qingbi granules improved RA and recovered the metabolite levels to normal. Compared to the normal group, 51 differential ions were screened, and 108 ions were changed in the Jinteng Qingbi granules group compared to the RA model. Eight metabolites were upregulated in the RA model group compared to the normal group, whereas 10 metabolites were downregulated. Treatment with Jinteng Qingbi granules increased the levels of 12 metabolites such as cinnamate and decreased the levels of 16 metabolites such as allamandin in the RA model. Differential ion enrichment was mainly related to the histidine metabolic pathway in amino acid metabolism. Jinteng Qingbi granules resulted in improvements in the RA model, which were mainly associated with lipids and lipid-like molecules, organic acids, and derivatives, providing a new possibility and basis for screening biomarkers for the diagnosis and treatment of RA.PMID:38726863 | DOI:10.1002/bmc.5886
Novel carbamodithioate regulates cellular hypoxia through chemical activation of prolyl hydroxylase-2 for breast cancer chemoprevention
Chem Biol Drug Des. 2024 May;103(5):e14531. doi: 10.1111/cbdd.14531.ABSTRACTInhibition of prolylhydroxylase-2 (PHD-2) in both normoxic and hypoxic cells is a critical component of solid tumours. The present study aimed to identify small molecules with PHD-2 activation potential. Virtually screening 4342 chemical compounds for structural similarity to R59949 and docking with PHD-2. To find the best drug candidate, hits were assessed for drug likeliness, antihypoxic and antineoplastic potential. The selected drug candidate's PHD-2 activation, cytotoxic and apoptotic potentials were assessed using 2-oxoglutarate, MTT, AO/EtBr and JC-1 staining. The drug candidate was also tested for its in-vivo chemopreventive efficacy against DMBA-induced mammary gland cancer alone and in combination with Tirapazamine (TPZ). Virtual screening and 2-oxoglutarate assay showed BBAP-6 as lead compound. BBAP-6 exhibited cytotoxic and apoptotic activity against ER+ MCF-7. In carmine staining and histology, BBAP-6 alone or in combination with TPZ restored normal surface morphology of the mammary gland after DMBA produced malignant alterations. Immunoblotting revealed that BBAP-6 reduced NF-κB expression, activated PHD-2 and induced intrinsic apoptotic pathway. Serum metabolomics conducted with 1H NMR confirmed that BBAP-6 prevented HIF-1α and NF-κB-induced metabolic changes in DMBA mammary gland cancer model. In a nutshell, it can be concluded that BBAP-6 activates PHD-2 and exhibits anticancer potential.PMID:38726798 | DOI:10.1111/cbdd.14531
Intercropping with maize and sorghum-induced saikosaponin accumulation in Bupleurum chinense DC. by liquid chromatography-mass spectrometry-based metabolomics
J Mass Spectrom. 2024 Jun;59(6):e5035. doi: 10.1002/jms.5035.ABSTRACTBupleuri Radix is an important medicinal plant, which has been used in China and other Asian countries for thousands of years. Cultivated Bupleurum chinense DC. (B. chinense) is the main commodity of Bupleuri Radix. The benefits of intercropping with various crops for B. chinense have been recognized; however, the influence of intercropping on the chemical composition of B. chinense is still unclear yet. In this study, intercropping with sorghum and maize exhibited little effect on the root length, root diameter, and single root mass of B. chinense. Only the intercropping with sorghum increased the root length of B. chinense slightly compared to the monocropping. In addition, 200 compounds were identified by UHPLC-Q-TOF-MS, and metabolomic combined with the Venn diagram and heatmap analysis showed apparent separation between the intercropped and monocropped B. chinense samples. Intercropping with sorghum and maize could both increase the saikosaponins, fatty acyls, and organic acids in B. chinense while decreasing the phospholipids. The influence of intercropping on the saikosaponin biosynthesis was probably related with the light intensity and hormone levels in B. chinense. Moreover, we found intercropping increased the anti-inflammatory activity of B. chinense. This study provides a scientific reference for the beneficial effect of intercropping mode of B. chinense.PMID:38726730 | DOI:10.1002/jms.5035
Attitudes towards snakebite health education and associated factors among residents in China: A national cross-sectional study
J Glob Health. 2024 May 10;14:04096. doi: 10.7189/jogh.14.04096.ABSTRACTBACKGROUND: This study aimed to investigate attitudes towards health education on snakebites and to identify the influencing factors among Chinese residents. Additionally, we proposed effective health education strategies for snakebite management.METHODS: Between May 2022 and February 2023, we conducted a nationwide cross-sectional questionnaire survey using a multistage sampling method with supplementary snowball sampling. We used descriptive analysis, χ2 tests, and univariable and multivariable binary logistic regression models to analyse the data.RESULTS: We included 56 669 respondents in the analysis. The average score for snakebite knowledge was 12.13 ± 5.26 points, with a maximum score of 28. Among the respondents, 72.66 and 63.03% of the residents believed that it was necessary to disseminate knowledge about snakebites and expressed a willingness to receive snakebite training, respectively. Respondents from the northeast region, respondents with a higher education level, and respondents with higher scores for snakebite knowledge, health knowledge, health skills, and social-psychological adjustment skills exhibited more positive attitudes towards snakebite knowledge dissemination and training. Conversely, respondents from eastern or southern China, respondents older than 60, and respondents who lived in rudimentary housing conditions showed a lower perception of the need for snakebite knowledge dissemination and were less willing to participate in snakebite knowledge and skill training.CONCLUSIONS: Generally, Chinese residents have positive attitudes towards snakebite knowledge dissemination and training. However, the public lacks sufficient knowledge about snakebites. Therefore, we should pay close attention to areas south of the Yangtze River to strengthen snakebite health education using engaging formats that align with residents' interests, such as short videos or television programmes, in an attempt to and ultimately improve health literacy and prevention awareness.PMID:38726547 | DOI:10.7189/jogh.14.04096
Behavior, antioxidant, and metabolomics effects of Allium tuncelianum
Food Sci Nutr. 2024 Feb 22;12(5):3538-3551. doi: 10.1002/fsn3.4022. eCollection 2024 May.ABSTRACTAllium species are consumed extensively as folkloric medicine and dietary elements, but limited studies have been conducted on them. In this study, the effects of an ethanol-water extract obtained from the underground bulb of Allium tuncelianum (Kollmann) Özhatay, B. Mathew & Şiraneci (AT) on the behavioral, antioxidant, and metabolite parameters in rats were evaluated. AT was administered orally once a day at doses of 100 and 400 mg/kg to male Wistar albino rats for 10 consecutive days. The elevated plus maze, rotarod, and hotplate tests were used to examine anxiety-like behaviors, locomotor activities, and pain perception in the rats, respectively. Additionally, untargeted metabolomic analyses were performed on plasma samples and AT extracts using two orthogonal analytical platforms. The phenolic components, mainly fumaric acid, malic acid, vanillic acid, quercetin-3-arabinoside, hydrocinnamic acid, and gallocatechin, were determined in the extract. In addition, arbutin, salicylic acid, trehalose, and nicotinic acid were analyzed in the extract for the first time. The AT extract did not decrease the catalase, glutathione peroxidase, or superoxide dismutase levels; however, diazepam decreased some of those parameters significantly in the brain, liver, and kidney. Although both the AT and diazepam treatments resulted in an increase in anxiolytic-like effects compared to the control group, no significant differences were observed (p > .05). In the metabolomic analysis, significant changes were observed in the rats treated with AT and diazepam, and they caused significant changes in some metabolic pathways, including amino acid and fatty acid metabolism, compared to the control.PMID:38726412 | PMC:PMC11077190 | DOI:10.1002/fsn3.4022
Physiological and metabolic analyses reveal the proline-mediated flowering delay mechanism in <em>Prunus persica</em>
Front Plant Sci. 2024 Apr 25;15:1302975. doi: 10.3389/fpls.2024.1302975. eCollection 2024.ABSTRACTPeaches are susceptible to various environmental stresses. Particularly in late spring, freezing temperatures can damage peaches and consequently, affect their productivity. Therefore, flowering delay is a prominent strategy for avoiding spring frost damage. Our previous study confirmed that treatment with 5% sodium alginate and 100 mM CaCl2 (5AG) to avoid frost damage during the blooming stage delays flowering. To reveal the flowering delay mechanism of peaches, this study systematically analyzed the modification of amino acid profiles in control and 5AG-treated peach plants at different day intervals. Our findings indicate that arginine (Arg), glutamate (Glu), and proline (Pro) levels differed between the control and 5AG-treated peach shoots throughout the phenological development of flower buds. Furthermore, two amino acids (Arg and Glu) are involved in the Pro pathway. Thus, using a computational metabolomics method, Pro biosynthesis and its characteristics, gene ontology, gene synteny, cis-regulatory elements, and gene organizations were examined to decipher the involvement of Pro metabolism in peach flowering delay. In addition, qRT-PCR analysis revealed the transcriptional regulation of Pro-related and flowering-responsive genes and their role in flowering delay. Overall, this pilot study provides new insights into the role of Pro in the flowering delay mechanisms in Prunus persica through 5AG treatment.PMID:38726296 | PMC:PMC11079198 | DOI:10.3389/fpls.2024.1302975
Mechano-induced cell metabolism disrupts the oxidative stress homeostasis of SAOS-2 osteosarcoma cells
Front Mol Biosci. 2024 Apr 25;10:1297826. doi: 10.3389/fmolb.2023.1297826. eCollection 2023.ABSTRACTThere has been an increasing focus on cancer mechanobiology, determining the underlying-induced changes to unlock new avenues in the modulation of cell malignancy. Our study used LC-MS untargeted metabolomic approaches and real-time polymerase chain reaction (PCR) to characterize the molecular changes induced by a specific moderate uniaxial stretch regimen (i.e., 24 h-1 Hz, cyclic stretch 0,5% elongation) on SAOS-2 osteosarcoma cells. Differential metabolic pathway analysis revealed that the mechanical stimulation induces a downregulation of both glycolysis and the tricarboxylic acid (TCA) cycle. At the same time, the amino acid metabolism was found to be dysregulated, with the mechanical stimulation enhancing glutaminolysis and reducing the methionine cycle. Our findings showed that cell metabolism and oxidative defense are tightly intertwined in mechanically stimulated cells. On the one hand, the mechano-induced disruption of the energy cell metabolism was found correlated with an antioxidant glutathione (GSH) depletion and an accumulation of reactive oxygen species (ROS). On the other hand, we showed that a moderate stretch regimen could disrupt the cytoprotective gene transcription by altering the expression levels of manganese superoxide dismutase (SOD1), Sirtuin 1 (SIRT1), and NF-E2-related factor 2 (Nrf2) genes. Interestingly, the cyclic applied strain could induce a cytotoxic sensitization (to the doxorubicin-induced cell death), suggesting that mechanical signals are integral regulators of cell cytoprotection. Hence, focusing on the mechanosensitive system as a therapeutic approach could potentially result in more effective treatments for osteosarcoma in the future.PMID:38726050 | PMC:PMC11079223 | DOI:10.3389/fmolb.2023.1297826
Human Milk Composition Is Associated with Maternal Body Mass Index in a Cross-Sectional, Untargeted Metabolomics Analysis of Human Milk from Guatemalan Mothers
Curr Dev Nutr. 2024 Apr 10;8(5):102144. doi: 10.1016/j.cdnut.2024.102144. eCollection 2024 May.ABSTRACTBACKGROUND: Maternal overweight and obesity has been associated with poor lactation performance including delayed lactogenesis and reduced duration. However, the effect on human milk composition is less well understood.OBJECTIVES: We evaluated the relationship of maternal BMI on the human milk metabolome among Guatemalan mothers.METHODS: We used data from 75 Guatemalan mothers who participated in the Household Air Pollution Intervention Network trial. Maternal BMI was measured between 9 and <20 weeks of gestation. Milk samples were collected at a single time point using aseptic collection from one breast at 6 mo postpartum and analyzed using high-resolution mass spectrometry. A cross-sectional untargeted high-resolution metabolomics analysis was performed by coupling hydrophilic interaction liquid chromatography (HILIC) and reverse phase C18 chromatography with mass spectrometry. Metabolic features associated with maternal BMI were determined by a metabolome-wide association study (MWAS), adjusting for baseline maternal age, education, and dietary diversity, and perturbations in metabolic pathways were identified by pathway enrichment analysis.RESULTS: The mean age of participants at baseline was 23.62 ± 3.81 y, and mean BMI was 24.27 ± 4.22 kg/m2. Of the total metabolic features detected by HILIC column (19,199 features) and by C18 column (11,594 features), BMI was associated with 1026 HILIC and 500 C18 features. Enriched pathways represented amino acid metabolism, galactose metabolism, and xenobiotic metabolic metabolism. However, no significant features were identified after adjusting for multiple comparisons using the Benjamini-Hochberg false discovery rate procedure (FDRBH < 0.2).CONCLUSIONS: Findings from this untargeted MWAS indicate that maternal BMI is associated with metabolic perturbations of galactose metabolism, xenobiotic metabolism, and xenobiotic metabolism by cytochrome p450 and biosynthesis of amino acid pathways. Significant metabolic pathway alterations detected in human milk were associated with energy metabolism-related pathways including carbohydrate and amino acid metabolism.This trial was registered at clinicaltrials.gov as NCT02944682.PMID:38726027 | PMC:PMC11079463 | DOI:10.1016/j.cdnut.2024.102144
Exploring disease-specific metabolite signatures in hereditary angioedema patients
Front Immunol. 2024 Apr 25;15:1324671. doi: 10.3389/fimmu.2024.1324671. eCollection 2024.ABSTRACTINTRODUCTION: Hereditary angioedema (HAE) is a rare, life-threatening autosomal dominant genetic disorder caused by a deficient and/or dysfunctional C1 esterase inhibitor (C1-INH) (type 1 and type 2) leading to recurrent episodes of edema. This study aims to explore HAE patients' metabolomic profiles and identify novel potential diagnostic biomarkers for HAE. The study also examined distinguishing HAE from idiopathic angioedema (AE).METHODS: Blood plasma samples from 10 HAE (types 1/2) patients, 15 patients with idiopathic AE, and 20 healthy controls were collected in Latvia and analyzed using LC-MS based targeted metabolomics workflow. T-test and fold change calculation were used to identify metabolites with significant differences between diseases and control groups. ROC analysis was performed to evaluate metabolite based classification model.RESULTS: A total of 33 metabolites were detected and quantified. The results showed that isovalerylcarnitine, cystine, and hydroxyproline were the most significantly altered metabolites between the disease and control groups. Aspartic acid was identified as a significant metabolite that could differentiate between HAE and idiopathic AE. The mathematical combination of metabolites (hydroxyproline * cystine)/(creatinine * isovalerylcarnitine) was identified as the diagnosis signature for HAE. Furthermore, glycine/asparagine ratio could differentiate between HAE and idiopathic AE.CONCLUSION: Our study identified isovalerylcarnitine, cystine, and hydroxyproline as potential biomarkers for HAE diagnosis. Identifying new biomarkers may offer enhanced prospects for accurate, timely, and economical diagnosis of HAE, as well as tailored treatment selection for optimal patient care.PMID:38726011 | PMC:PMC11080650 | DOI:10.3389/fimmu.2024.1324671
Applying GC-MS based serum metabolomic profiling to characterize two traditional Chinese medicine subtypes of diabetic foot gangrene
Front Mol Biosci. 2024 Apr 25;11:1384307. doi: 10.3389/fmolb.2024.1384307. eCollection 2024.ABSTRACTTraditional Chinese medicine (TCM) has a long history and particular advantages in the diagnosis and treatment of diabetic foot gangrene (DFG). Patients with DFG are mainly divided into two subtypes, tendon lesion with edema (GT) and ischemic lesion without edema (GI), which are suitable for different medical strategies. Metabolomics has special significance in unravelling the complexities of multifactorial and multisystemic disorders. This study acquired the serum metabolomic profiles of two traditional Chinese medicine subtypes of DFG to explore potential molecular evidence for subtype characterization, which may contribute to the personalized treatment of DFG. A total of 70 participants were recruited, including 20 with DM and 50 with DFG (20 with GI and 30 with GT). Conventional gas chromatography-mass spectrometry (GC-MS) followed by orthogonal partial least-squares discriminant analysis (OPLS-DA) were used as untargeted metabolomics approaches to explore the serum metabolomic profiles. Kyoto encyclopedia of genes and genomes (KEGG) and MetaboAnalyst were used to identify the related metabolic pathways. Compared with DM patients, the levels of 14 metabolites were altered in the DFG group, which were also belonged to the differential metabolites of GI (13) and GT (7) subtypes, respectively. Among these, urea, α-D-mannose, cadaverine, glutamine, L-asparagine, D-gluconic acid, and indole could be regarded as specific potential metabolic markers for GI, as well as L-leucine for GT. In the GI subtype, D-gluconic acid and L-asparagine are positively correlated with activated partial thromboplastin time (APTT) and fibrinogen (FIB). In the GT subtype, L-leucine is positively correlated with the inflammatory marker C-reactive protein (CRP). Arginine and proline metabolism, glycine, serine and threonine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis are the most important metabolic pathways associated with GI. The main metabolic pathways related to GT include pyrimidine metabolism, glutathione metabolism, biosynthesis of valine, leucine, and isoleucine, as well as valine, serine, and isoleucine with metabolites. The results of this study indicate that patients with different DFG subtypes have distinct metabolic profiles, which reflect the pathological characteristics of each subtype respectively. These findings will help us explore therapeutic targets for DFG and develop precise treatment strategies.PMID:38725871 | PMC:PMC11079259 | DOI:10.3389/fmolb.2024.1384307
First insight about the ability of specific glycerophospholipids to discriminate non-small cell lung cancer subtypes
Front Mol Biosci. 2024 Apr 25;11:1379631. doi: 10.3389/fmolb.2024.1379631. eCollection 2024.ABSTRACTIntroduction: Discrimination between adenocarcinoma (ADC) and squamous cell carcinoma (SCC) subtypes in non-small cell lung cancer (NSCLC) patients is a significant challenge in oncology. Lipidomics analysis provides a promising approach for this differentiation. Methods: In an accompanying paper, we explored oxPCs levels in a cohort of 200 NSCLC patients. In this research, we utilized liquid chromatography coupled with mass spectrometry (LC-MS) to analyze the lipidomics profile of matching tissue and plasma samples from 25 NSCLC patients, comprising 11 ADC and 14 SCC cases. This study builds upon our previous findings, which highlighted the elevation of oxidised phosphatidylcholines (oxPCs) in NSCLC patients. Results: We identified eight lipid biomarkers that effectively differentiate between ADC and SCC subtypes using an untargeted approach. Notably, we observed a significant increase in plasma LPA 20:4, LPA 18:1, and LPA 18:2 levels in the ADC group compared to the SCC group. Conversely, tumour PC 16:0/18:2, PC 16:0/4:0; CHO, and plasma PC 16:0/18:2; OH, PC 18:0/20:4; OH, PC 16:0/20:4; OOH levels were significantly higher in the ADC group. Discussion: Our study is the first to report that plasma LPA levels can distinguish between ADC and SCC patients in NSCLC, suggesting a potential role for LPAs in NSCLC subtyping. This finding warrants further investigation into the mechanisms underlying these differences and their clinical implications.PMID:38725870 | PMC:PMC11079276 | DOI:10.3389/fmolb.2024.1379631
TAZ deficiency impairs the autophagy-lysosomal pathway through NRF2 dysregulation and lysosomal dysfunction
Int J Biol Sci. 2024 Apr 22;20(7):2592-2606. doi: 10.7150/ijbs.88897. eCollection 2024.ABSTRACTTranscriptional coactivator with a PDZ-binding motif (TAZ) plays a key role in normal tissue homeostasis and tumorigenesis through interaction with several transcription factors. In particular, TAZ deficiency causes abnormal alveolarization and emphysema, and persistent TAZ overexpression contributes to lung cancer and pulmonary fibrosis, suggesting the possibility of a complex mechanism of TAZ function. Recent studies suggest that nuclear factor erythroid 2-related factor 2 (NRF2), an antioxidant defense system, induces TAZ expression during tumorigenesis and that TAZ also activates the NRF2-mediated antioxidant pathway. We thus thought to elucidate the cross-regulation of TAZ and NRF2 and the underlying molecular mechanisms and functions. TAZ directly interacted with NRF2 through the N-terminal domain and suppressed the transcriptional activity of NRF2 by preventing NRF2 from binding to DNA. In addition, the return of NRF2 to basal levels after signaling was inhibited in TAZ deficiency, resulting in sustained nuclear NRF2 levels and aberrantly increased expression of NRF2 targets. TAZ deficiency failed to modulate optimal NRF2 signaling and concomitantly impaired lysosomal acidification and lysosomal enzyme function, accumulating the abnormal autophagy vesicles and reactive oxygen species and causing protein oxidation and cellular damage in the lungs. TAZ restoration to TAZ deficiency normalized dysregulated NRF2 signaling and aberrant lysosomal function and triggered the normal autophagy-lysosomal pathway. Therefore, TAZ is indispensable for the optimal regulation of NRF2-mediated autophagy-lysosomal pathways and for preventing pulmonary damage caused by oxidative stress and oxidized proteins.PMID:38725855 | PMC:PMC11077375 | DOI:10.7150/ijbs.88897
Association analysis of transcriptome and quasi-targeted metabolomics reveals the regulation mechanism underlying broiler muscle tissue development at different levels of dietary guanidinoacetic acid
Front Vet Sci. 2024 Apr 25;11:1384028. doi: 10.3389/fvets.2024.1384028. eCollection 2024.ABSTRACTThe development and characteristics of muscle fibers in broilers are critical determinants that influence their growth performance, as well as serve as essential prerequisites for the production of high-quality chicken meat. Guanidinoacetic acid (GAA) is a crucial endogenous substance in animal creatine synthesis, and its utilization as a feed additive has been demonstrated the capabilities to enhance animal performance, optimize muscle yield, and augment carcass quality. The objective of this study was to investigate the regulation and molecular mechanism underlying muscle development in broilers at different levels of GAA via multiple omics analysis. The 90 Cobb broilers, aged 1 day, were randomly allocated into three treatments consisting of five replicates of six chickens each. The control group was provided with a basal diet, while the Normal GAA and High GAA groups received a basal diet supplemented with 1.2 g/kg and 3.6 g/kg of GAA, respectively. After a feeding period of 42 days, the pectoralis muscles were collected for histomorphological observation, transcriptome and metabolomic analysis. The results demonstrated that the addition of 1.2 g/kg GAA in the diet led to an augmentation in muscle fiber diameter and up-regulation of IGF1, IHH, ASB2, and ANKRD2 gene expression. However, a high dose of 3.6 g/kg GAA in the diet potentially reversed the beneficial effects on chicken breast development by excessively activating the TGF-β signaling pathway and reducing nucleotide metabolite content. These findings would provide a theoretical foundation for enhancing the performance and meat quality of broilers by incorporating GAA as a feed additive.PMID:38725583 | PMC:PMC11080945 | DOI:10.3389/fvets.2024.1384028
Metabolomics reveals early pregnancy biomarkers in sows: a non-invasive diagnostic approach
Front Vet Sci. 2024 Apr 25;11:1396492. doi: 10.3389/fvets.2024.1396492. eCollection 2024.ABSTRACTIn an effort to enhance reproductive management and reduce non-productive periods in swine breeding, this study presents a novel, non-invasive metabolomics approach for the identification of early pregnancy biomarkers in sows. Utilizing an untargeted metabolomics approach with mass spectrometry analysis, we examined saliva samples from pregnant (n = 6) and non-pregnant control sows (n = 6, artificially inseminated with non-viable sperm). Our analysis revealed 286 differentially expressed metabolites, with 152 being up-regulated and 134 down-regulated in the pregnant group. Among these, three metabolites, namely Hyodeoxycholic acid, 2'-deoxyguanosine, and Thymidine, emerged as potential early pregnancy biomarkers. These biomarkers were further evaluated using targeted LC-MS/MS quantification and qualification, accompanied by ROC curve analysis. The study confirmed Hyodeoxycholic acid and 2'-deoxyguanosine as promising biomarkers for early pregnancy detection, offering potential for future implementation in swine production environments. This research establishes a robust theoretical foundation for the development of innovative molecular diagnostic techniques and explores new avenues for molecular genetic breeding and non-invasive diagnostics, ultimately enhancing fertility and productivity in sow herds.PMID:38725582 | PMC:PMC11079122 | DOI:10.3389/fvets.2024.1396492