Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Metabolomic screening of radioiodine refractory thyroid cancer patients and the underlying chemical mechanism of iodine resistance

Wed, 08/05/2024 - 12:00
Sci Rep. 2024 May 8;14(1):10546. doi: 10.1038/s41598-024-61067-6.ABSTRACTRadioiodine refractory (RAIR) patients do not benefit from iodine-131 therapy. Thus, timely identification of RAIR patients is critical for avoiding ineffective radioactive iodine therapy. In addition, determining the causes of iodine resistance will facilitate the development of novel treatment strategies. This study was comprised of 20 RAIR and 14 non-radioiodine refractory (non-RAIR) thyroid cancer patients. Liquid chromatography-mass spectrometry was used to identify differences in the serum metabolites of RAIR and non-RAIR patients. In addition, chemical assays were performed to determine the effects of the differential metabolites on iodine uptake. Metabolic pathway enrichment analysis of the differential metabolites revealed significant differences in the phenylalanine and tyrosine metabolic pathways. Notably, quinate and shikimic acid, metabolites of the tyrosine pathway, were significantly increased in the RAIR group. In contrast, the phenylalanine pathway metabolites, hippuric acid and 2-phenylacetamide, were markedly decreased in the RAIR group. Thyroid peroxidase plays an important role in catalyzing the iodination of tyrosine residues, while the ionic state of iodine promotes the iodination reaction. Quinate, shikimic acid, hippuric acid, and 2-phenylacetamide were found to be involved in the iodination of tyrosine, which is a key step in thyroid hormone synthesis. Specifically, quinate and shikimic acid were found to inhibit iodination, while hippuric acid and 2-phenylacetamide promoted iodination. Abnormalities in phenylalanine and tyrosine metabolic pathways are closely associated with iodine resistance. Tyrosine is required for thyroid hormone synthesis and could be a potential cause of iodine resistance.PMID:38719979 | DOI:10.1038/s41598-024-61067-6

Itaconate protects ferroptotic neurons by alkylating GPx4 post stroke

Wed, 08/05/2024 - 12:00
Cell Death Differ. 2024 May 8. doi: 10.1038/s41418-024-01303-8. Online ahead of print.ABSTRACTNeuronal ferroptosis plays a key role in neurologic deficits post intracerebral hemorrhage (ICH). However, the endogenous regulation of rescuing ferroptotic neurons is largely unexplored. Here, we analyzed the integrated alteration of metabolomic landscape after ICH using LC-MS and MALDI-TOF/TOF MS, and demonstrated that aconitate decarboxylase 1 (Irg1) and its product itaconate, a derivative of the tricarboxylic acid cycle, were protectively upregulated. Deficiency of Irg1 or depletion of neuronal Irg1 in striatal neurons was shown to exaggerate neuronal loss and behavioral dysfunction in an ICH mouse model using transgenic mice. Administration of 4-Octyl itaconate (4-OI), a cell-permeable itaconate derivative, and neuronal Irg1 overexpression protected neurons in vivo. In addition, itaconate inhibited ferroptosis in cortical neurons derived from mouse and human induced pluripotent stem cells in vitro. Mechanistically, we demonstrated that itaconate alkylated glutathione peroxidase 4 (GPx4) on its cysteine 66 and the modification allosterically enhanced GPx4's enzymatic activity by using a bioorthogonal probe, itaconate-alkyne (ITalk), and a GPx4 activity assay using phosphatidylcholine hydroperoxide. Altogether, our research suggested that Irg1/itaconate-GPx4 axis may be a future therapeutic strategy for protecting neurons from ferroptosis post ICH.PMID:38719928 | DOI:10.1038/s41418-024-01303-8

A new framework for exploratory network mediator analysis in omics data

Wed, 08/05/2024 - 12:00
Genome Res. 2024 May 7. doi: 10.1101/gr.278684.123. Online ahead of print.ABSTRACTOmics methods are widely used in basic biology and translational medicine research. More and more omics data are collected to explain the impact of certain risk factors on clinical outcomes. To explain the mechanism of the risk factors, a core question is how to find the genes/proteins/metabolites that mediate their effects on the clinical outcome. Mediation analysis is a modeling framework to study the relationship between risk factors and pathological outcomes, via mediator variables. However, high-dimensional omics data are far more challenging than traditional data: (1) From tens of thousands of genes, can we overcome the curse of dimensionality to reliably select a set of mediators? (2) How do we ensure that the selected mediators are functionally consistent? (3) Many biological mechanisms contain nonlinear effects. How do we include nonlinear effects in the high-dimensional mediation analysis? (4) How do we consider multiple risk factors at the same time? To meet these challenges, we propose a new exploratory mediation analysis framework, medNet, which focuses on finding mediators through predictive modeling. We propose new definitions for predictive exposure, predictive mediator, and predictive network mediator, using a statistical hypothesis testing framework to identify predictive exposures and mediators. Additionally, two heuristic search algorithms are proposed to identify network mediators, essentially subnetworks in the genome-scale biological network that mediate the effects of single or multiple exposures. We applied medNet on a breast cancer data set and a metabolomics data set combined with food intake questionnaire data. It identified functionally consistent network mediators for the exposures' impact on the outcome, facilitating data interpretation.PMID:38719472 | DOI:10.1101/gr.278684.123

An untargeted analytical workflow based on Kendrick mass defect filtering reveals dysregulations in acylcarnitines in prostate cancer tissue

Wed, 08/05/2024 - 12:00
Anal Chim Acta. 2024 Jun 8;1307:342574. doi: 10.1016/j.aca.2024.342574. Epub 2024 Apr 13.ABSTRACTBACKGROUND: Metabolomics is nowadays considered one the most powerful analytical for the discovery of metabolic dysregulations associated with the insurgence of cancer, given the reprogramming of the cell metabolism to meet the bioenergetic and biosynthetic demands of the malignant cell. Notwithstanding, several challenges still exist regarding quality control, method standardization, data processing, and compound identification. Therefore, there is a need for effective and straightforward approaches for the untargeted analysis of structurally related classes of compounds, such as acylcarnitines, that have been widely investigated in prostate cancer research for their role in energy metabolism and transport and β-oxidation of fatty acids.RESULTS: In the present study, an innovative analytical platform was developed for the straightforward albeit comprehensive characterization of acylcarnitines based on high-resolution mass spectrometry, Kendrick mass defect filtering, and confirmation by prediction of their retention time in reversed-phase chromatography. In particular, a customized data processing workflow was set up on Compound Discoverer software to enable the Kendrick mass defect filtering, which allowed filtering out more than 90 % of the initial features resulting from the processing of 25 tumoral and adjacent non-malignant prostate tissues collected from patients undergoing radical prostatectomy. Later, a partial least square-discriminant analysis model validated by repeated double cross-validation was built on the dataset of 74 annotated acylcarnitines, with classification rates higher than 93 % for both groups, and univariate statistical analysis helped elucidate the individual role of the annotated metabolites.SIGNIFICANCE: Hydroxylation of short- and medium-chain minor acylcarnitines appeared to be a significant variable in describing tissue differences, suggesting the hypothesis that the neoplastic growth is linked to oxidation phenomena on selected metabolites and reinforcing the need for effective methods for the annotation of minor metabolites.PMID:38719419 | DOI:10.1016/j.aca.2024.342574

Broadening the horizon of immune thrombocytopenia through Omics approaches

Wed, 08/05/2024 - 12:00
Br J Haematol. 2024 May 8. doi: 10.1111/bjh.19514. Online ahead of print.ABSTRACTImmune thrombocytopenia (ITP) is a highly heterogeneous autoimmune bleeding disorder characterized by low platelet counts due to an immune-mediated platelet destruction and impaired platelet production. The pathophysiology is multifactorial and remains to be fully unravelled. Consequently, disease trajectories and responses to therapeutics, despite the availability of multiple agents, can be unpredictable and differing between patients. There is an urgent need for the identification of diagnostic and therapeutic biomarkers, but this has proven to be challenging to achieve. To shed light on this, two studies in this issue of the British Journal of Haematology have recognized the opportunity of using high-throughput Omics technologies in ITP. Sun et al. performed proteomics, and Li et al. metabolomics, on bone marrow biopsy samples of patients with ITP. This was conducted using mass spectrometry and, due to the generation of large datasets, in combination with machine learning. These studies set the stage for further investigations exploring the high potential of multi-omics technologies in order to shed light on the heterogeneity in ITP, accelerating the path towards a much needed personalized medicine approach. Commentary on: Li et al. Metabolomics profile and machine learning prediction of treatment responses in immune thrombocytopenia: A prospective cohort study. Br J Haematol 2024 (Online ahead of print). doi: 10.1111/bjh.19391 Commentary on: Sun et al. Proteomics landscape and machine learning prediction of long-term response to splenectomy in primary immune thrombocytopenia. Br J Haematol 2024 (Online ahead of print). doi: 10.1111/bjh.19420.PMID:38719342 | DOI:10.1111/bjh.19514

Unbiased Insights into the Multiplicity of the CYP46A1 Brain Effects in 5XFAD Mice Treated with Low Dose Efavirenz

Wed, 08/05/2024 - 12:00
J Lipid Res. 2024 May 6:100555. doi: 10.1016/j.jlr.2024.100555. Online ahead of print.ABSTRACTCYP46A1 is the CNS-specific cholesterol 24-hydroxylase that controls cholesterol elimination and turnover in the brain. In mouse models, pharmacologic CYP46A1 activation with low dose efavirenz (EFV) or by gene therapy mitigates the manifestations of various brain disorders, neurologic and non-neurologic, by affecting numerous, apparently unliked biological processes. Accordingly, CYP46A1 is emerging as a promising therapeutic target; however, the mechanisms underlying the multiplicity of the brain CYP46A1 activity effects are currently not understood. We proposed the chain reaction hypothesis, according to which CYP46A1 is important for the three primary (unifying) processes in the brain (sterol flux through the plasma membranes, acetyl-CoA and isoprenoid production), which in turn affect a variety of secondary processes. We already identified several processes secondary to changes in sterol flux and herein undertook a multiomics approach to compare the brain proteome, acetylproteome, and metabolome of 5XFAD mice (an Alzheimer's disease model), control and treated with low dose EFV. We found that the latter had increased production of phospholipids from the corresponding lysophospholipids and a globally increased protein acetylation (including histone acetylation). Apparently, these effects were secondary to increased acetyl-CoA production. Signaling of small GTPases due to their altered abundance or abundance of their regulators could be affected as well, potentially via isoprenoid biosynthesis. In addition, the omics data related differentially abundant molecules to other biological processes either reported previously or new. Thus, we obtained unbiased mechanistic insights and identified potential players mediating the multiplicity of the CYP46A1 brain effects and further detailed our chain reaction hypothesis.PMID:38719151 | DOI:10.1016/j.jlr.2024.100555

Evaluation of quercetin in alleviating the negative effects of high soybean meal diet on spotted sea bass Lateolabrax maculatus

Wed, 08/05/2024 - 12:00
Fish Shellfish Immunol. 2024 May 6:109607. doi: 10.1016/j.fsi.2024.109607. Online ahead of print.ABSTRACTThe aim of this study was to investigate the effects of quercetin (QUE) on alleviating the negative effects of high soybean meal diet for spotted sea bass Lateolabrax maculatus. A healthy control group fed a 44% fishmeal diet was used, while the induction control group replaced 50% fishmeal with soybean meal. Subsequently, QUE was added at concentrations of 0.25, 0.50, 0.75, and 1.00 g/kg in the experimental groups. A total of 540 tailed spotted sea bass were randomly divided into 6 groups and fed the corresponding diet for 56 days. The results showed that 40% soybean meal significantly decreased the growth performance and immunity, increased the intestinal mucosal permeability, and caused damage to the intestinal tissue morphology; moreover, there were alterations observed in the composition of the intestinal microbiota, accompanied by detectable levels of saponins in the metabolites. However, the addition of QUE did not yield significant changes in growth performance; instead, it notably reduced the permeability of the intestinal mucosa, improved the body's immunity and the structural integrity of the intestinal tissue, increased the proportion of Proteobacteria, and enhanced the richness and diversity of intestinal microorganisms to a certain extent. In addition, QUE up-regulate the metabolism of amino acids and their derivatives and energy-related metabolites such as uridine and guanosine; furthermore, it appears to regulate transporters through the ABC transporters pathway to promote the absorption and utilization of QUE by enterocytes.PMID:38719096 | DOI:10.1016/j.fsi.2024.109607

Exposure to resorcinol bis (diphenyl phosphate) induces colonization of alien microorganisms with potential impacts on the gut microbiota and metabolic disruption in male zebrafish

Wed, 08/05/2024 - 12:00
Sci Total Environ. 2024 May 6:172892. doi: 10.1016/j.scitotenv.2024.172892. Online ahead of print.ABSTRACTOrganophosphate esters (OPEs) have been demonstrated to induce various forms of toxicity in aquatic organisms. However, a scarcity of evidence impedes the conclusive determination of whether OPEs manifest sex-dependent toxic effects. Here, we investigated the effects of tris (1-chloro-2-propyl) phosphate (TCPP) and resorcinol bis (diphenyl phosphate) (RDP) on the intestines of both female and male zebrafish. The results indicated that, in comparison to TCPP, RDP induced more pronounced intestinal microstructural damage and oxidative stress, particularly in male zebrafish. 16S rRNA sequencing and metabolomics revealed significant alterations in the species richness and oxidative stress-related metabolites in the intestinal microbiota of zebrafish under exposure to both TCPP and RDP, manifesting gender-specific effects. Based on differential species analysis, we defined invasive species and applied invasion theory to analyze the reasons for changes in the male fish intestinal community. Correlation analysis demonstrated that alien species may have potential effects on metabolism. Overall, this study reveals a pronounced gender-dependent impact on both the intestinal microbiota and metabolic disruptions of zebrafish due to OPEs exposure and offers a novel perspective on the influence of pollutants on intestinal microbial communities and metabolism.PMID:38719053 | DOI:10.1016/j.scitotenv.2024.172892

A metabolomics perspective on the effect of environmental micro and nanoplastics on living organisms: A review

Wed, 08/05/2024 - 12:00
Sci Total Environ. 2024 May 6:172915. doi: 10.1016/j.scitotenv.2024.172915. Online ahead of print.ABSTRACTThe increasing trend regarding the use of plastics has arisen an exponential concern on the fate of their derived products to the environment. Among these derivatives, microplastics and nanoplastics (MNPs) have been featured for their associated environmental impact due to their low molecular size and high surface area, which has prompted their ubiquitous transference among all environmental interfaces. Due to the heterogenous chemical composition of MNPs, the study of these particles has focused a high number of studies, as a result of the myriad of associated physicochemical properties that contribute to the co-transference of a wide range of contaminants, thus becoming a major challenge for the scientific community. In this sense, both primary and secondary MNPs are well-known to be adscribed to industrial and urbanized areas, from which they are massively released to the environment through a multiscale level, involving the atmosphere, hydrosphere, and lithosphere. Consequently, much research has been conducted on the understanding of the interconnection between those interfaces, that motivate the spread of these contaminants to biological systems, being mostly represented by the biosphere, especially phytosphere and, finally, the anthroposphere. These findings have highlighted the potential hazardous risk for human health through different mechanisms from the environment, requiring a much deeper approach to define the real risk of MNPs exposure. As a result, there is a gap of knowledge regarding the environmental impact of MNPs from a high-throughput perspective. In this review, a metabolomics-based overview on the impact of MNPs to all environmental interfaces was proposed, considering this technology a highly valuable tool to decipher the real impact of MNPs on biological systems, thus opening a novel perspective on the study of these contaminants.PMID:38719035 | DOI:10.1016/j.scitotenv.2024.172915

A chromosome-scale genome provides new insights into the typical carotenoid biosynthesis in the important red yeast Rhodotorula glutinis QYH-2023 with anti-inflammatory effects

Wed, 08/05/2024 - 12:00
Int J Biol Macromol. 2024 May 6:132103. doi: 10.1016/j.ijbiomac.2024.132103. Online ahead of print.ABSTRACTRhodotorula spp. has been studied as one powerful source for a novel cell factory with fast growth and its high added-value biomolecules. However, its inadequate genome and genomic annotation have hindered its widespread use in cosmetics and food industries. Rhodotorula glutinis QYH-2023, was isolated from rice rhizosphere soil, and the highest quality of the genome of the strain was obtained at chromosome level (18 chromosomes) than ever before in red yeast in this study. Comparative genomics analysis revealed that there are more key gene copies of carotenoids biosynthesis in R. glutinis QYH-2023 than other species of Rhodotorula spp. Integrated transcriptome and metabolome analysis revealed that lipids and carotenoids biosynthesis was significantly enriched during fermentation. Subsequent investigation revealed that the over-expression of the strain three genes related to carotenoids biosynthesis in Komagataella phaffii significantly promoted the carotenoid production. Furthermore, in vitro tests initially confirmed that the longer the fermentation period, the synthesized metabolites controlled by R. glutinis QYH-2023 genome had the stronger anti-inflammatory properties. All of the findings revealed a high-quality reference genome which highlight the potential of R. glutinis strains to be employed as chassis cells for biosynthesizing carotenoids and other active chemicals.PMID:38719011 | DOI:10.1016/j.ijbiomac.2024.132103

Effects of polyethylene and biodegradable microplastics on the physiology and metabolic profiles of dandelion

Wed, 08/05/2024 - 12:00
Environ Pollut. 2024 May 6:124116. doi: 10.1016/j.envpol.2024.124116. Online ahead of print.ABSTRACTBiodegradable plastics, such as poly(butylene adipate terephthalate) (PBAT) and polylactic acid (PLA), are potential alternatives to conventional polyethylene (PE), both of which are associated with the production of microplastics (MPs). However, the toxicity of these compounds on medicinal plants and their differential effects on plant morphophysiology remain unclear. This study supplemented soils with MPs sized at 200 μm at a rate of 1% w/w and incubated them for 50 days to investigate the impact of MPs on the growth and metabolites of dandelion (Taraxacum mongolicum Hand.-Mazz.). The results demonstrated that the investigated MPs decreased the growth of dandelion seedlings, induced oxidative stress, and altered the activity of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase). Based on the comprehensive toxicity assessment results, the ecological toxicity was in the following order: PE MPs > PBAT MPs > PLA MPs. Metabolomics analyses revealed metabolic reprogramming in dandelion plants, leading to the enrichment of numerous differentially accumulated metabolites (DAMs) in the leaves. These pathways include carbohydrate metabolism, energy metabolism, and biosynthesis of secondary metabolites, suggesting that dandelions respond to MP stress by enhancing the activity of sugar, organic acid, and amino acid metabolic pathways. In addition, phenolic acids and flavonoids are critical for maintaining the balance in the antioxidant defense system. Our results provide substantial insights into the toxicity of biodegradable MPs to plants and shed light on plant defense and adaptation strategies. Further assessment of the safety of biodegradable MPs in terrestrial ecosystems is essential to provide guidance for environmentally friendly management.PMID:38718962 | DOI:10.1016/j.envpol.2024.124116

Single-Cell and Spatial Transcriptomics Analysis of Human Adrenal Aging

Wed, 08/05/2024 - 12:00
Mol Metab. 2024 May 6:101954. doi: 10.1016/j.molmet.2024.101954. Online ahead of print.ABSTRACTOBJECTIVE: The human adrenal cortex comprises three functionally and structurally distinct layers that produce layer-specific steroid hormones. With aging, the human adrenal cortex undergoes functional and structural alteration or "adrenal aging", leading to the unbalanced production of steroid hormones. Given the marked species differences in adrenal biology, the underlying mechanisms of human adrenal aging have not been sufficiently studied. This study was designed to elucidate the mechanisms linking the functional and structural alterations of the human adrenal cortex.METHODS: We conducted single-cell RNA sequencing and spatial transcriptomics analysis of the aged human adrenal cortex.RESULTS: The data of this study suggest that the layer-specific alterations of multiple signaling pathways underlie the abnormal layered structure and layer-specific changes in steroidogenic cells. We also highlighted that macrophages mediate age-related adrenocortical cell inflammation and senescence.CONCLUSIONS: This study is the first detailed analysis of the aged human adrenal cortex at single-cell resolution and helps to elucidate the mechanism of human adrenal aging, thereby leading to a better understanding of the pathophysiology of age-related disorders associated with adrenal aging.PMID:38718896 | DOI:10.1016/j.molmet.2024.101954

A 5:2 intermittent fasting regimen ameliorates NASH and fibrosis and blunts HCC development via hepatic PPARα and PCK1

Wed, 08/05/2024 - 12:00
Cell Metab. 2024 May 2:S1550-4131(24)00135-9. doi: 10.1016/j.cmet.2024.04.015. Online ahead of print.ABSTRACTThe role and molecular mechanisms of intermittent fasting (IF) in non-alcoholic steatohepatitis (NASH) and its transition to hepatocellular carcinoma (HCC) are unknown. Here, we identified that an IF 5:2 regimen prevents NASH development as well as ameliorates established NASH and fibrosis without affecting total calorie intake. Furthermore, the IF 5:2 regimen blunted NASH-HCC transition when applied therapeutically. The timing, length, and number of fasting cycles as well as the type of NASH diet were critical parameters determining the benefits of fasting. Combined proteome, transcriptome, and metabolome analyses identified that peroxisome-proliferator-activated receptor alpha (PPARα) and glucocorticoid-signaling-induced PCK1 act co-operatively as hepatic executors of the fasting response. In line with this, PPARα targets and PCK1 were reduced in human NASH. Notably, only fasting initiated during the active phase of mice robustly induced glucocorticoid signaling and free-fatty-acid-induced PPARα signaling. However, hepatocyte-specific glucocorticoid receptor deletion only partially abrogated the hepatic fasting response. In contrast, the combined knockdown of Ppara and Pck1 in vivo abolished the beneficial outcomes of fasting against inflammation and fibrosis. Moreover, overexpression of Pck1 alone or together with Ppara in vivo lowered hepatic triglycerides and steatosis. Our data support the notion that the IF 5:2 regimen is a promising intervention against NASH and subsequent liver cancer.PMID:38718791 | DOI:10.1016/j.cmet.2024.04.015

Peripheral 5-HT mediates GnIH-induced feeding behavior and energy metabolism disorder in chickens via the 5-HT2C receptor

Wed, 08/05/2024 - 12:00
Neuroendocrinology. 2024 May 8. doi: 10.1159/000539238. Online ahead of print.ABSTRACTGonadotropin-inhibitory hormone (GnIH) plays a critical role of reproduction in vertebrate since its discovery. Recently, a regulatory role of GnIH in appetite and the energy metabolism has emerged, despite its precise physiological mechanisms remain unknown. Thus, the present study evaluated the effects of a single or long-term GnIH treatments (administered via intraperitoneal injection) on the food intake, weight and glucolipid metabolism of chickens, while investigated the possible neuroendocrinology factors and its mechanism that involved in GnIH-induced obesity and glucolipid metabolism disorder. Our results showed that the intraperitoneal administration of GnIH to chickens resulted in marked body mass increased, hyperlipidemia, hyperglycemia and glucose intolerance. Subsequently, the results of metabolomics and pharmacological inhibition of 5-HT2C receptor studies revealed that blocked 5-HT2C receptor reinforced the effects of GnIH on food intake, body weight and the levels of blood glucose and lipid, resulted in GnIH-induced hyperglycaemia, hyperlipidemia and hepatic lipid deposition even worse, suggesting that peripheral 5-HT via 5-HT2C receptor may act as a negative feedback regulator to interplay with GnIH and jointly homeostatic control of energy balance in chickens. Our present study provide evidence of the cross-talk between GnIH and 5-HT in food intake and energy metabolism at the in vivo pharmacological level and to propose a molecular basis for these interactions, suggesting that functional interaction between GnIH and 5-HT may open new avenues to understand the mechanism of neuroendocrine network involved in appetite and energy metabolism as well as provide a new therapeutic strategy to prevent obesity, diabetes and metabolic disorders.PMID:38718758 | DOI:10.1159/000539238

Metabolomics and microbiome co-analysis reveals altered innate immune responses in Charybdis japonica following Aeromonas hydrophila infection

Wed, 08/05/2024 - 12:00
Comp Biochem Physiol Part D Genomics Proteomics. 2024 May 4;50:101240. doi: 10.1016/j.cbd.2024.101240. Online ahead of print.ABSTRACTA comprehensive bioinformatics analysis was conducted to elucidate the innate immune response of Charybdis japonica following exposure to Aeromonas hydrophila. This study integrated metabolomics, 16S rRNA sequencing, and enzymatic activity data to dissect the immune mechanisms activated in response to infection. Infection with A. hydrophila resulted in an increased abundance of beneficial intestinal genera such as Photobacterium spp., Rhodobacter spp., Polaribacter spp., Psychrilyobacter spp., and Mesoflavibacter spp. These probiotics appear to suppress A. hydrophila colonization by competitively dominating the intestinal microbiota. Key metabolic pathways affected included fatty acid biosynthesis, galactose metabolism, and nitrogen metabolism, highlighting their role in the crab's intestinal response. Enzymatic analysis revealed a decrease in activities of hexokinase, phosphofructokinase, and pyruvate kinase, which are essential for energy homeostasis and ATP production necessary for stress responses. Additionally, reductions were observed in the activities of acetyl-CoA carboxylase and fatty acid synthase. Gene expression analysis showed downregulation in Peroxiredoxin 1 (PRDX1), Peroxiredoxin 2 (PRDX2), glutathione-S-transferase (GST), catalase (CAT), and glutathione (GSH), with concurrent increases in malondialdehyde (MDA) levels, indicating severe oxidative stress. This study provides insights into the molecular strategies employed by marine crabs to counteract bacterial invasions in their natural habitat.PMID:38718732 | DOI:10.1016/j.cbd.2024.101240

Mechanistic insights into cardiovascular effects of ultrafine particle exposure: A longitudinal panel study

Wed, 08/05/2024 - 12:00
Environ Int. 2024 May 3;187:108714. doi: 10.1016/j.envint.2024.108714. Online ahead of print.ABSTRACTBACKGROUND: Ultrafine particle (UFP) has been linked with higher risks of cardiovascular diseases; however, the biological mechanisms remain to be fully elucidated.OBJECTIVES: This study aims to investigate the cardiovascular responses to short-term UFP exposure and the biological pathways involved.METHODS: A longitudinal panel study was conducted among 32 healthy, non-smoking young adults in Shanghai, China, who were engaged in five rounds of follow-ups between December 2020 and November 2021. Individual exposures were calculated based on the indoor and outdoor real-time measurements. Blood pressure, arterial stiffness, targeted biomarkers, and untargeted proteomics and metabolomics were examined during each follow-up. Linear mixed-effect models were applied to analyze the exposure and health data. The differential proteins and metabolites were used for pathway enrichment analyses.RESULTS: Short-term UFP exposure was associated with significant increases in blood pressure and arterial stiffness. For example, systolic blood pressure increased by 2.10 % (95 % confidence interval: 0.63 %, 3.59 %) corresponding to each interquartile increase in UFP concentrations at lag 0-3 h, while pulse wave velocity increased by 2.26 % (95 % confidence interval: 0.52 %, 4.04 %) at lag 7-12 h. In addition, dozens of molecular biomarkers altered significantly. These effects were generally present within 24 h after UFP exposure, and were robust to the adjustment of co-pollutants. Molecular changes detected in proteomics and metabolomics analyses were mainly involved in systemic inflammation, oxidative stress, endothelial dysfunction, coagulation, and disturbance in lipid transport and metabolism.DISCUSSION: This study provides novel and compelling evidence on the detrimental subclinical cardiovascular effects in response to short-term UFP exposure. The multi-omics profiling further offers holistic insights into the underlying biological pathways.PMID:38718674 | DOI:10.1016/j.envint.2024.108714

A longitudinal study of the blood and urine metabolome of Vipera berus envenomated dogs

Wed, 08/05/2024 - 12:00
Res Vet Sci. 2024 May 6;173:105287. doi: 10.1016/j.rvsc.2024.105287. Online ahead of print.ABSTRACTEnvenomation of dogs by the common European adder (Vipera berus) is associated with high morbidity. The cytotoxic venom of Vipera berus contains enzymes with the potential to cause acute kidney injury, among other insults, however robust biomarkers for such effects are lacking. A prospective observational follow-up study of naturally envenomated dogs and controls was conducted to fill knowledge gaps regarding canine Vipera berus envenomation, attempt to identify novel biomarkers of envenomation and related kidney injury, and elucidate potential long-term effects. Blood and urine samples were analyzed with a global metabolomics approach using liquid chromatography-mass spectrometry, uncovering numerous features significantly different between cases and controls. After data processing and feature annotation, eight features in blood and 24 features in urine were investigated in order to elucidate their biological relevance. Several of these are associated with AKI, while some may also originate from disturbed fatty acid β-oxidation and soft tissue damage. A metabolite found in both blood and a venom reference sample may represent identification of a venom component in case dogs. Our findings suggest that envenomated dogs treated according to current best practice are unlikely to suffer permanent injury.PMID:38718545 | DOI:10.1016/j.rvsc.2024.105287

Skeletal muscle cystathionine γ-lyase deficiency promotes obesity and insulin resistance and results in hyperglycemia and skeletal muscle injury upon HFD in mice

Wed, 08/05/2024 - 12:00
Redox Rep. 2024 Dec;29(1):2347139. doi: 10.1080/13510002.2024.2347139. Epub 2024 May 8.ABSTRACTOBJECTIVES: The objective of this study was to investigate whether skeletal muscle cystathionine γ-lyase (CTH) contributes to high-fat diet (HFD)-induced metabolic disorders using skeletal muscle Cth knockout (CthΔskm) mice.METHODS: The CthΔskm mice and littermate Cth-floxed (Cthf/f) mice were fed with either HFD or chow diet for 13 weeks. Metabolomics and transcriptome analysis were used to assess the impact of CTH deficiency in skeletal muscle.RESULTS: Metabolomics coupled with transcriptome showed that CthΔskm mice displayed impaired energy metabolism and some signaling pathways linked to insulin resistance (IR) in skeletal muscle although the mice had normal insulin sensitivity. HFD led to reduced CTH expression and impaired energy metabolism in skeletal muscle in Cthf/f mice. CTH deficiency and HFD had some common pathways enriched in the aspects of amino acid metabolism, carbon metabolism, and fatty acid metabolism. CthΔskm+HFD mice exhibited increased body weight gain, fasting blood glucose, plasma insulin, and IR, and reduced glucose transporter 4 and CD36 expression in skeletal muscle compared to Cthf/f+HFD mice. Impaired mitochondria and irregular arrangement in myofilament occurred in CthΔskm+HFD mice. Omics analysis showed differential pathways enriched between CthΔskm mice and Cthf/f mice upon HFD. More severity in impaired energy metabolism, reduced AMPK signaling, and increased oxidative stress and ferroptosis occurred in CthΔskm+HFD mice compared to Cthf/f+HFD mice.DISCUSSION: Our results indicate that skeletal muscle CTH expression dysregulation contributes to metabolism disorders upon HFD.PMID:38718286 | DOI:10.1080/13510002.2024.2347139

Proline metabolic reprogramming modulates cardiac remodeling induced by pressure overload in the heart

Wed, 08/05/2024 - 12:00
Sci Adv. 2024 May 10;10(19):eadl3549. doi: 10.1126/sciadv.adl3549. Epub 2024 May 8.ABSTRACTMetabolic reprogramming is critical in the onset of pressure overload-induced cardiac remodeling. Our study reveals that proline dehydrogenase (PRODH), the key enzyme in proline metabolism, reprograms cardiomyocyte metabolism to protect against cardiac remodeling. We induced cardiac remodeling using transverse aortic constriction (TAC) in both cardiac-specific PRODH knockout and overexpression mice. Our results indicate that PRODH expression is suppressed after TAC. Cardiac-specific PRODH knockout mice exhibited worsened cardiac dysfunction, while mice with PRODH overexpression demonstrated a protective effect. In addition, we simulated cardiomyocyte hypertrophy in vitro using neonatal rat ventricular myocytes treated with phenylephrine. Through RNA sequencing, metabolomics, and metabolic flux analysis, we elucidated that PRODH overexpression in cardiomyocytes redirects proline catabolism to replenish tricarboxylic acid cycle intermediates, enhance energy production, and restore glutathione redox balance. Our findings suggest PRODH as a modulator of cardiac bioenergetics and redox homeostasis during cardiac remodeling induced by pressure overload. This highlights the potential of PRODH as a therapeutic target for cardiac remodeling.PMID:38718121 | DOI:10.1126/sciadv.adl3549

Effect of an eight-week high-intensity interval training programme on circulating sphingolipid levels in middle-aged adults at elevated cardiometabolic risk (SphingoFIT)-Protocol for a randomised controlled exercise trial

Wed, 08/05/2024 - 12:00
PLoS One. 2024 May 8;19(5):e0302477. doi: 10.1371/journal.pone.0302477. eCollection 2024.ABSTRACTINTRODUCTION: Evidence indicates that sphingolipid accumulation drives complex molecular alterations promoting cardiometabolic diseases. Clinically, it was shown that sphingolipids predict cardiometabolic risk independently of and beyond traditional biomarkers such as low-density lipoprotein cholesterol. To date, little is known about therapeutic modalities to lower sphingolipid levels. Exercise, a powerful means to prevent and treat cardiometabolic diseases, is a promising modality to mitigate sphingolipid levels in a cost-effective, safe, and patient-empowering manner.METHODS: This randomised controlled trial will explore whether and to what extent an 8-week fitness-enhancing training programme can lower serum sphingolipid levels of middle-aged adults at elevated cardiometabolic risk (n = 98, 50% females). The exercise intervention will consist of supervised high-intensity interval training (three sessions weekly), while the control group will receive physical activity counselling based on current guidelines. Blood will be sampled early in the morning in a fasted state before and after the 8-week programme. Participants will be provided with individualised, pre-packaged meals for the two days preceding blood sampling to minimise potential confounding. An 'omic-scale sphingolipid profiling, using high-coverage reversed-phase liquid chromatography coupled to tandem mass spectrometry, will be applied to capture the circulating sphingolipidome. Maximal cardiopulmonary exercise tests will be performed before and after the 8-week programme to assess patient fitness changes. Cholesterol, triglycerides, glycated haemoglobin, the homeostatic model assessment for insulin resistance, static retinal vessel analysis, flow-mediated dilatation, and strain analysis of the heart cavities will also be assessed pre- and post-intervention. This study shall inform whether and to what extent exercise can be used as an evidence-based treatment to lower circulating sphingolipid levels.TRIAL REGISTRATION: The trial was registered on www.clinicaltrials.gov (NCT06024291) on August 28, 2023.PMID:38717997 | DOI:10.1371/journal.pone.0302477

Pages