PubMed
Pharmacokinetic and Metabolomic Studies with a Promising Radiation Countermeasure, BBT-059 (PEGylated interleukin-11), in Rhesus Nonhuman Primates
Radiat Res. 2024 May 8. doi: 10.1667/RADE-23-00194.1. Online ahead of print.ABSTRACTBBT-059, a long-acting PEGylated interleukin-11 (IL-11) analog that is believed to have hematopoietic promoting and anti-apoptotic properties, is being developed as a potential radiation medical countermeasure (MCM) for hematopoietic acute radiation syndrome (H-ARS). This agent has been shown to improve survival in lethally irradiated mice. To further evaluate the drug's toxicity and safety profile, 12 naïve nonhuman primates (NHPs, rhesus macaques) were administered one of three doses of BBT-059 subcutaneously and were monitored for the next 21 days. Blood samples were collected throughout the study to assess the pharmacokinetics (PK) and pharmacodynamics (PD) of the drug as well as its effects on complete blood counts, cytokines, vital signs, and to conduct metabolomic studies. No adverse effects were detected in any treatment group during the study. Short-term changes in metabolomic profiles were present in all groups treated with BBT-059 beginning immediately after drug administration and reverting to near normal levels by the end of the study period. Several pathways and metabolites, particularly those related to inflammation and steroid hormone biosynthesis, were activated by BBT-059 administration. Taken together, these observations suggest that BBT-059 has a good safety profile for further development as a radiation MCM for regulatory approval for human use.PMID:38714310 | DOI:10.1667/RADE-23-00194.1
Palmitic acid induces lipid droplet accumulation and senescence in nucleus pulposus cells via ER-stress pathway
Commun Biol. 2024 May 7;7(1):539. doi: 10.1038/s42003-024-06248-9.ABSTRACTIntervertebral disc degeneration (IDD) is a highly prevalent musculoskeletal disorder affecting millions of adults worldwide, but a poor understanding of its pathogenesis has limited the effectiveness of therapy. In the current study, we integrated untargeted LC/MS metabolomics and magnetic resonance spectroscopy data to investigate metabolic profile alterations during IDD. Combined with validation via a large-cohort analysis, we found excessive lipid droplet accumulation in the nucleus pulposus cells of advanced-stage IDD samples. We also found abnormal palmitic acid (PA) accumulation in IDD nucleus pulposus cells, and PA exposure resulted in lipid droplet accumulation and cell senescence in an endoplasmic reticulum stress-dependent manner. Complementary transcriptome and proteome profiles enabled us to identify solute carrier transporter (SLC) 43A3 involvement in the regulation of the intracellular PA level. SLC43A3 was expressed at low levels and negatively correlated with intracellular lipid content in IDD nucleus pulposus cells. Overexpression of SLC43A3 significantly alleviated PA-induced endoplasmic reticulum stress, lipid droplet accumulation and cell senescence by inhibiting PA uptake. This work provides novel integration analysis-based insight into the metabolic profile alterations in IDD and further reveals new therapeutic targets for IDD treatment.PMID:38714886 | DOI:10.1038/s42003-024-06248-9
Impact of extraction method on the lipids of Himalayan marmot oil with ultrahigh-performance liquid chromatography Q-Exactive Orbitrap mass spectrometry analysis
Rapid Commun Mass Spectrom. 2024 Jul 30;38(14):e9761. doi: 10.1002/rcm.9761.ABSTRACTRATIONALE: Himalayan marmot oil (SPO) has been used for pharmaceutical purposes for centuries, but its composition is still unclear. The bioactivity of SPO highly depends on the techniques used for its processing. This study focused on the comprehensive lipidomics of SPO, especially on the ones derived from dry rendering, wet rendering, cold pressing, and ultrasound-assisted solvent extraction.METHODS: We performed lipid profiling of SPO acquired by different extraction methods using ultrahigh-performance liquid chromatography Q-Exactive Orbitrap mass spectrometry, and 17 classes of lipids (2 BMPs, 12 LysoPCs, 9 LysoPEs, 41 PCs, 24 PEs, 23 Plasmenyl-PCs, 10 Plasmenyl-PEs, 10 MGs, 63 DGs, 187 TGs, 2 MGDGs, 3 Cer[NDS]s, 22 Cer[NS]s, 2 GlcCer[NS]s, 14 SMs, 14 CEs, and 6 AcylCarnitines) were characterized.RESULTS: Fifty-five lipids were differentially altered (VIP > 1.5, p < 0.05) between the extraction techniques, which can be used as potential biomarkers to differentiate SPO extracted by various methods. Additionally, the contents of oleic acid and arachidic acid were abundant in all samples that may suggest their medicinal values and are conducive to in-depth research.CONCLUSIONS: These findings reveal the alterations of lipid profile and free fatty acid composition in SPO obtained with different extraction methods, providing a theoretical foundation for investigating its important components as functional factors in medicines and cosmetics.PMID:38714820 | DOI:10.1002/rcm.9761
Prospective manipulation of the gut microbiome with microbial ecosystem therapeutic 4 (MET4) in HPV-related locoregionally-advanced oropharyngeal cancer squamous cell carcinoma (LA-OPSCC) undergoing primary chemoradiation: ROMA2 study
Br J Cancer. 2024 May 7. doi: 10.1038/s41416-024-02701-y. Online ahead of print.ABSTRACTBACKGROUND: Gut microbiome modulation to boost antitumor immune responses is under investigation.METHODS: ROMA-2 evaluated the microbial ecosystem therapeutic (MET)-4 oral consortia, a mixture of cultured human stool-derived immune-responsiveness associated bacteria, given with chemoradiation (CRT) in HPV-related oropharyngeal cancer patients. Co-primary endpoints were safety and changes in stool cumulative MET-4 taxa relative abundance (RA) by 16SRNA sequencing. Stools and plasma were collected pre/post-MET-4 intervention for microbiome and metabolome analysis.RESULTS: Twenty-nine patients received ≥1 dose of MET-4 and were evaluable for safety: drug-related adverse events (AEs) occurred in 13/29 patients: all grade 1-2 except one grade 3 (diarrhea). MET-4 was discontinued early in 7/29 patients due to CRT-induced toxicity, and in 1/29 due to MET-4 AEs. Twenty patients were evaluable for ecological endpoints: there was no increase in stool MET-4 RA post-intervention but trended to increase in stage III patients (p = 0.06). MET-4 RA was higher in stage III vs I-II patients at week 4 (p = 0.03) and 2-month follow-up (p = 0.01), which correlated with changes in plasma and stool targeted metabolomics.CONCLUSIONS: ROMA-2 did not meet its primary ecologic endpoint, as no engraftment was observed in the overall cohort. Exploratory findings of engraftment in stage III patients warrants further investigation of microbiome interventions in this subgroup.PMID:38714747 | DOI:10.1038/s41416-024-02701-y
Metabolomics to predict heart failure development: A new frontier?
Eur J Heart Fail. 2024 May 7. doi: 10.1002/ejhf.3281. Online ahead of print.NO ABSTRACTPMID:38714359 | DOI:10.1002/ejhf.3281
Applying metabolic modeling and multi-omics to elucidate the biotransformation mechanisms of marine algal toxin domoic acid (DA) in sediments
J Hazard Mater. 2024 May 4;472:134541. doi: 10.1016/j.jhazmat.2024.134541. Online ahead of print.ABSTRACTDomoic acid (DA)-producing algal blooms are a global marine environmental issue. However, there has been no previous research addressing the question regarding the fate of DA in marine benthic environments. In this work, we investigated the DA fate in the water-sediment microcosm via the integrative analysis of a top-down metabolic model, metagenome, and metabolome. Results demonstrated that biodegradation is the leading mechanism for the nonconservative attenuation of DA. Specifically, DA degradation was prominently completed by the sediment aerobic community, with a degradation rate of 0.0681 ± 0.00954 d-1. The DA degradation pathway included hydration, dehydrogenation, hydrolysis, decarboxylation, automatic ring opening of hydration, and β oxidation reactions. Moreover, the reverse ecological analysis demonstrated that the microbial community transitioned from nutrient competition to metabolic cross-feeding during DA degradation, further enhancing the cooperation between DA degraders and other taxa. Finally, we reconstructed the metabolic process of microbial communities during DA degradation and confirmed that the metabolism of amino acid and organic acid drove the degradation of DA. Overall, our work not only elucidated the fate of DA in marine environments but also provided crucial insights for applying metabolic models and multi-omics to investigate the biotransformation of other contaminants.PMID:38714055 | DOI:10.1016/j.jhazmat.2024.134541
Glucose and trehalose metabolism through the cyclic pentose phosphate pathway shapes pathogen resistance and host protection in Drosophila
PLoS Biol. 2024 May 7;22(5):e3002299. doi: 10.1371/journal.pbio.3002299. Online ahead of print.ABSTRACTActivation of immune cells requires the remodeling of cell metabolism in order to support immune function. We study these metabolic changes through the infection of Drosophila larvae by parasitoid wasp. The parasitoid egg is neutralized by differentiating lamellocytes, which encapsulate the egg. A melanization cascade is initiated, producing toxic molecules to destroy the egg while the capsule also protects the host from the toxic reaction. We combined transcriptomics and metabolomics, including 13C-labeled glucose and trehalose tracing, as well as genetic manipulation of sugar metabolism to study changes in metabolism, specifically in Drosophila hemocytes. We found that hemocytes increase the expression of several carbohydrate transporters and accordingly uptake more sugar during infection. These carbohydrates are metabolized by increased glycolysis, associated with lactate production, and cyclic pentose phosphate pathway (PPP), in which glucose-6-phosphate is re-oxidized to maximize NADPH yield. Oxidative PPP is required for lamellocyte differentiation and resistance, as is systemic trehalose metabolism. In addition, fully differentiated lamellocytes use a cytoplasmic form of trehalase to cleave trehalose to glucose and fuel cyclic PPP. Intracellular trehalose metabolism is not required for lamellocyte differentiation, but its down-regulation elevates levels of reactive oxygen species, associated with increased resistance and reduced fitness. Our results suggest that sugar metabolism, and specifically cyclic PPP, within immune cells is important not only to fight infection but also to protect the host from its own immune response and for ensuring fitness of the survivor.PMID:38713712 | DOI:10.1371/journal.pbio.3002299
Hemolymph metabolism of black soldier fly (Diptera: Stratiomyidae), response to different supplemental fungi
J Insect Sci. 2024 May 1;24(3):5. doi: 10.1093/jisesa/ieae050.ABSTRACTThe black soldier fly, Hermetia illucens L. (Diptera: Stratiomyidae), is commonly used for organic waste recycling and animal feed production. However, the often inadequate nutrients in organic waste necessitate nutritional enhancement of black soldier fly larvae, e.g., by fungal supplementation of its diet. We investigated the amino acid composition of two fungi, Candida tropicalis (Castell.) Berkhout (Saccharomycetales: Saccharomycetaceae) and Pichia kudriavzevii Boidin, Pignal & Besson (Saccharomycetales: Pichiaceae), from the black soldier fly gut, and commercial baker's yeast, Saccharomyces cerevisiae Meyen ex E.C. Hansen (Saccharomycetales: Saccharomycetaceae), and their effects on larval growth and hemolymph metabolites in fifth-instar black soldier fly larvae. Liquid chromatography-mass spectrometry was used to study the effect of fungal metabolites on black soldier fly larval metabolism. Amino acid analysis revealed significant variation among the fungi. Fungal supplementation led to increased larval body mass and differential metabolite accumulation. The three fungal species caused distinct metabolic changes, with each over-accumulating and down-accumulating various metabolites. We identified significant alteration of histidine metabolism, aminoacyl-tRNA biosynthesis, and glycerophospholipid metabolism in BSF larvae treated with C. tropicalis. Treatment with P. kudriavzevii affected histidine metabolism and citrate cycle metabolites, while both P. kudriavzevii and S. cerevisiae treatments impacted tyrosine metabolism. Treatment with S. cerevisiae resulted in down-accumulation of metabolites related to glycine, serine, and threonine metabolism. This study suggests that adding fungi to the larval diet significantly affects black soldier fly larval metabolomics. Further research is needed to understand how individual amino acids and their metabolites contributed by fungi affect black soldier fly larval physiology, growth, and development, to elucidate the interaction between fungal nutrients and black soldier fly physiology.PMID:38713543 | DOI:10.1093/jisesa/ieae050
Plasma Metabolic Profiles-Based Prediction of Induction Chemotherapy Efficacy in Nasopharyngeal Carcinoma: Results of a Bidirectional Clinical Trial
Clin Cancer Res. 2024 May 7. doi: 10.1158/1078-0432.CCR-23-3608. Online ahead of print.ABSTRACTPURPOSE: The efficacy of induction chemotherapy (IC) as a primary treatment for advanced nasopharyngeal carcinoma (NPC) remains a topic of debate, with a lack of dependable biomarkers for predicting its efficacy. This study seeks to establish a predictive classifier utilizing plasma metabolomics profiling.EXPERIMENTAL DESIGN: A total of 166 NPC patients enrolled in the clinical trial NCT05682703 and undergoing IC were included in the study. Plasma lipoprotein profiles were obtained using 1H-NMR before and after IC treatment. An AI-assisted radiomics method was developed to effectively evaluate the efficacy. Metabolic biomarkers were identified through a machine learning approach based on a discovery cohort and subsequently validated in a validation cohort that mimicked the most unfavorable scenario in real-world.RESULTS: Our research findings indicate that the effectiveness of IC varies among individual patients, with a correlation observed between efficacy and changes in metabolite profiles. Utilizing machine learning techniques, it was determined that the XGB model exhibited notable efficacy, attaining an Area Under the Curve (AUC) value of 0.792 (95% CI, 0.668-0.913). In the validation cohort, the model exhibited strong stability and generalizability with an AUC of 0.786 (95%CI, 0.533-0.922).CONCLUSION: In this study, we found that dysregulation of plasma lipoprotein may result in resistance to IC in NPC patients. The prediction model constructed based on the plasma metabolites' profile as good predictive capabilities and potential for real-world generalization. This discovery has implications for the development of treatment strategies and may offer insight into potential targets for enhancing the effectiveness of IC.PMID:38713248 | DOI:10.1158/1078-0432.CCR-23-3608
Effect of prebiotic fiber on physical function and gut microbiota in adults, mostly women, with knee osteoarthritis and obesity: a randomized controlled trial
Eur J Nutr. 2024 May 7. doi: 10.1007/s00394-024-03415-w. Online ahead of print.ABSTRACTPURPOSE: Obesity is a primary risk factor for knee osteoarthritis (OA). Prebiotics enhance beneficial gut microbes and can reduce body fat and inflammation. Our objective was to examine if a 6-month prebiotic intervention improved physical function in adults with knee osteoarthritis and obesity. We also measured knee pain, body composition, quality of life, gut microbiota, inflammatory markers, and serum metabolomics.METHODS: Adults (n = 54, mostly women) with co-morbid obesity (BMI > 30 kg/m2) and unilateral/bilateral knee OA were randomly assigned to prebiotic (oligofructose-enriched inulin; 16 g/day; n = 31) or isocaloric placebo (maltodextrin; n = 21) for 6 months. Performance based-tests, knee pain, quality of life, serum metabolomics and inflammatory markers, and fecal microbiota and short-chain fatty acids were assessed.RESULTS: Significant between group differences were detected for the change in timed-up-and-go test, 40 m fast paced walk test, and hand grip strength test from baseline that favored prebiotic over placebo. Prebiotic also reduced trunk fat mass (kg) at 6 months and trunk fat (%) at 3 months compared to placebo. There was a trend (p = 0.059) for reduced knee pain at 6 months with prebiotic versus placebo. In gut microbiota analysis, a total of 37 amplicon sequence variants differed between groups. Bifidobacterium abundance was positively correlated with distance walked in the 6-min walk test and hand grip strength. At 6 months, there was a significant separation of serum metabolites between groups with upregulation of phenylalanine and tyrosine metabolism with prebiotic.CONCLUSION: Prebiotics may hold promise for conservative management of knee osteoarthritis in adults with obesity and larger trials are warranted.CLINICAL TRIAL REGISTRATION: Clinicaltrials.gov/study/NCT04172688.PMID:38713231 | DOI:10.1007/s00394-024-03415-w
Development of Inhibitors, Probes, and PROTAC Provides a Complete Toolbox to Study PARK7 in the Living Cell
J Med Chem. 2024 May 7. doi: 10.1021/acs.jmedchem.3c02410. Online ahead of print.ABSTRACTThe integration of diverse chemical tools like small-molecule inhibitors, activity-based probes (ABPs), and proteolysis targeting chimeras (PROTACs) advances clinical drug discovery and facilitates the exploration of various biological facets of targeted proteins. Here, we report the development of such a chemical toolbox for the human Parkinson disease protein 7 (PARK7/DJ-1) implicated in Parkinson's disease and cancers. By combining structure-guided design, miniaturized library synthesis, and high-throughput screening, we identified two potent compounds, JYQ-164 and JYQ-173, inhibiting PARK7 in vitro and in cells by covalently and selectively targeting its critical residue, Cys106. Leveraging JYQ-173, we further developed a cell-permeable Bodipy probe, JYQ-196, for covalent labeling of PARK7 in living cells and a first-in-class PARK7 degrader JYQ-194 that selectively induces its proteasomal degradation in human cells. Our study provides a valuable toolbox to enhance the understanding of PARK7 biology in cellular contexts and opens new opportunities for therapeutic interventions.PMID:38713163 | DOI:10.1021/acs.jmedchem.3c02410
Lactic acid fermented microalgae and cyanobacteria as a new source of lipid reducing compounds: assessment through zebrafish Nile red fat metabolism assay and untargeted metabolomics
Food Funct. 2024 May 7. doi: 10.1039/d4fo00699b. Online ahead of print.ABSTRACTObesity is one of the most important threats to human health. Besides existing pharmacological or clinical interventions, novel effective and largely available solutions are still necessary. Among diverse natural resources, microalgae are well known for their complexity in the production of novel secondary metabolites. At the same time, lactic acid bacteria (LAB) are known for their capacity to metabolize, through fermentation, different matrices, and consequently to modify or produce new compounds with potential bioactivity. This work aimed to study the production of fermented microalgae and cyanobacteria, and to analyse their extracts in the zebrafish Nile red fat metabolism assay. Three microalgal species (Chlorella vulgaris, Chlorococcum sp. and Arthrospira platensis) were fermented with seven strains of LAB from 4 species (Lacticaseibacillus rhamnosus, Lacticaseibacillus casei, Lactobacillus delbrueckii bulgaricus and Lacticaseibacillus paracasei), derived from the UPCCO - University of Parma Culture Collection, Parma, Italy). All the selected strains were able to ferment the selected species of microalgae, and the most suitable substrate for LAB growth was Arthrospira platensis. Extracts from fermented Chlorella vulgaris and Chlorococcum sp. reduced significantly the neutral lipid reservoirs, which was not observed without fermentations. The strongest lipid reducing effect was obtained with Arthrospira platensis fermented with Lactobacillus delbrueckii bulgaricus 1932. Untargeted metabolomics identified some compound families, which could be related to the observed bioactivity, namely fatty acids, fatty amides, triterpene saponins, chlorophyll derivatives and purine nucleotides. This work opens up the possibility of developing novel functional foods or food supplements based on microalgae, since lactic acid fermentation enhanced the production of bioactive compounds with lipid reducing activities.PMID:38712867 | DOI:10.1039/d4fo00699b
Integrated Transcriptomic and Metabolomic Analysis Reveal the Dynamic Process of Bama Hemp Seed Development and the Accumulation Mechanism of alpha-Linolenic Acid and Linoleic Acid
J Agric Food Chem. 2024 May 7. doi: 10.1021/acs.jafc.3c09309. Online ahead of print.ABSTRACTBama County is a world-famous longevity county in the Guangxi Province, China. Bama hemp is a traditional seed used in hemp cultivation in the Bama County. The seeds contain abundant unsaturated fatty acids, particularly linoleic acid (LA) and linolenic acid in the golden ratio. These two substances have been proven to be related to human health and the prevention of various diseases. However, the seed development and seed oil accumulation mechanisms remain unclear. This study employed a combined analysis of physiological, transcriptomic, and metabolomic parameters to elucidate the fatty acid formation patterns in Bama hemp seeds throughout development. We found that seed oil accumulated at a late stage in embryo development, with seed oil accumulation following an "S″-shaped growth curve, and positively correlated with seed size, sugar content, protein content, and starch content. Transcriptome analysis identified genes related to the metabolism of LA, α-linolenic acid (ALA), and jasmonic acid (JA). We found that the FAD2 gene was upregulated 165.26 folds and the FAD3 gene was downregulated 6.15 folds at day 21. Metabolomic changes in LA, ALA, and JA compounds suggested a competitive relationship among these substances. Our findings indicate that the peak period of substance accumulation and nutrient accumulation in Bama hemp seeds occurs during the midstage of seed development (day 21) rather than in the late stage (day 40). The results of this research will provide a theoretical basis for local cultivation and deep processing of Bama hemp.PMID:38712687 | DOI:10.1021/acs.jafc.3c09309
Lactate transport inhibition therapeutically reprograms fibroblast metabolism in experimental pulmonary fibrosis
bioRxiv [Preprint]. 2024 Apr 28:2024.04.25.591150. doi: 10.1101/2024.04.25.591150.ABSTRACTMyofibroblast differentiation, essential for driving extracellular matrix synthesis in pulmonary fibrosis, requires increased glycolysis. While glycolytic cells must export lactate, the contributions of lactate transporters to myofibroblast differentiation are unknown. In this study, we investigated how MCT1 and MCT4, key lactate transporters, influence myofibroblast differentiation and experimental pulmonary fibrosis. Our findings reveal that inhibiting MCT1 or MCT4 reduces TGFβ-stimulated pulmonary myofibroblast differentiation in vitro and decreases bleomycin-induced pulmonary fibrosis in vivo . Through comprehensive metabolic analyses, including bioenergetics, stable isotope tracing, metabolomics, and imaging mass spectrometry in both cells and mice, we demonstrate that inhibiting lactate transport enhances oxidative phosphorylation, reduces reactive oxygen species production, and diminishes glucose metabolite incorporation into fibrotic lung regions. Furthermore, we introduce VB253, a novel MCT4 inhibitor, which ameliorates pulmonary fibrosis in both young and aged mice, with comparable efficacy to established antifibrotic therapies. These results underscore the necessity of lactate transport for myofibroblast differentiation, identify MCT1 and MCT4 as promising pharmacologic targets in pulmonary fibrosis, and support further evaluation of lactate transport inhibitors for patients for whom limited therapeutic options currently exist.SUMMARY: Small molecule inhibitors of lactate transporters, including the novel MCT4 inhibitor VB253, reprogram fibroblast metabolism to prevent myofibroblast differentiation and decrease bleomycin-induced pulmonary fibrosis.PMID:38712233 | PMC:PMC11071479 | DOI:10.1101/2024.04.25.591150
Antibiotic-associated neutropenia is marked by depletion of intestinal <em>Lachnospiraceae</em> in pediatric patients
medRxiv [Preprint]. 2024 Apr 27:2024.04.25.24306386. doi: 10.1101/2024.04.25.24306386.ABSTRACTHematologic side effects are associated with prolonged antibiotic exposure in up to 34% of patients. Neutropenia, reported in 10-15% of patients, increases the risk of sepsis and death. Murine studies have established a link between the intestinal microbiota and normal hematopoiesis. We sought to identify predisposing factors, presence of microbiota-derived metabolites, and changes in intestinal microbiota composition in otherwise healthy pediatric patients who developed neutropenia after prolonged courses of antibiotics. In this multi-center study, patients with infections requiring anticipated antibiotic treatment of two or more weeks were enrolled. Stool samples were obtained at the start and completion of antibiotics and at the time of neutropenia. We identified 10 patients who developed neutropenia on antibiotics and 29 controls matched for age, sex, race, and ethnicity. Clinical data demonstrated no association between neutropenia and type of infection or type of antibiotic used; however intensive care unit admission and length of therapy were associated with neutropenia. Reduced intestinal microbiome richness and decreased abundance of Lachnospiraceae family members correlated with neutropenia. Untargeted stool metabolomic profiling revealed several metabolites that were depleted exclusively in patients with neutropenia, including members of the urea cycle pathway, pyrimidine metabolism and fatty acid metabolism that are known to be produced by Lachnospiraceae . Our study confirms a relationship between intestinal microbiota disruption and abnormal hematopoiesis and identifies taxa and metabolites likely to contribute to microbiota-sustained hematopoiesis. As the microbiome is a key determinant of stem cell transplant and immunotherapy outcomes, these findings are likely to be of broad significance.KEY POINTS: Neutropenia occurred in 17% of patients receiving prolonged antibiotic therapy.We found no association between neutropenia and type of infection or class of antibiotic used. Development of neutropenia after prolonged antibiotic treatment was associated with decreased prevalence of Lachnospiraceae and Lachnospiraceae metabolites such as citrulline.PMID:38712139 | PMC:PMC11071563 | DOI:10.1101/2024.04.25.24306386
Topical Steroid Withdrawal is a Targetable Excess of Mitochondrial NAD
medRxiv [Preprint]. 2024 Apr 19:2024.04.17.24305846. doi: 10.1101/2024.04.17.24305846.ABSTRACTBACKGROUND: Topical corticosteroids (TCS) are first-line therapies for numerous skin conditions. Topical Steroid Withdrawal (TSW) is a controversial diagnosis advocated by patients with prolonged TCS exposure who report severe systemic reactions upon treatment cessation. However, to date there have been no systematic clinical or mechanistic studies to distinguish TSW from other eczematous disorders.METHODS: A re-analysis of a previous survey with eczematous skin disease was performed to evaluate potential TSW distinguishing symptoms. We subsequently conducted a pilot study of 16 patients fitting the proposed diagnostic criteria. We then performed: tissue metabolomics, transcriptomics, and immunostaining on skin biopsies; serum metabolomics and cytokine assessments; shotgun metagenomics on microbiome skin swabs; genome sequencing; followed by functional, mechanistic studies using human skin cell lines and mice.RESULTS: Clinically distinct TSW symptoms included burning, flushing, and thermodysregulation. Metabolomics and transcriptomics both implicated elevated NAD+ oxidation stemming from increased expression of mitochondrial complex I and conversion of tryptophan into kynurenine metabolites. These abnormalities were induced by glucocorticoid exposure both in vitro and in a cohort of healthy controls (N=19) exposed to TCS. Targeting complex I via either metformin or the herbal compound berberine improved outcomes in both cell culture and in an open-label case series for patients with TSW.CONCLUSION: Taken together, our results suggest that TSW has a distinct dermatopathology. While future studies are needed to validate these results in larger cohorts, this work provides the first mechanistic evaluation into TSW pathology, and offers insights into clinical identification, pharmacogenomic candidates, and directed therapeutic strategies.PMID:38712043 | PMC:PMC11071640 | DOI:10.1101/2024.04.17.24305846
Differences in the intestinal microbiota and association of host metabolism with hair coat status in cattle
Front Microbiol. 2024 Apr 22;15:1296602. doi: 10.3389/fmicb.2024.1296602. eCollection 2024.ABSTRACTINTRODUCTION: The hair coat status of cattle serves as an easily observed indicator of economic value in livestock production; however, the underlying mechanism remains largely unknown. Therefore, the objective of the current study was to determine differences in the intestinal microbiota and metabolome of cattle based on a division of with either slick and shining (SHC) or rough and dull (MHC) hair coat in Simmental cows.METHODS: Eight SHC and eight MHC late-pregnancy Simmental cows (with similar parities, body weights, and body conditions) were selected based on their hair coat status, and blood samples (plasma) from coccygeal venipuncture and fecal samples from the rectum were collected. The intestinal microbiota (in the fecal samples) was characterized by employing 16S rRNA gene sequencing targeting the V3-V4 hypervariable region on the Illumina MiSeq PE300 platform, and plasma samples were subjected to LC-MS/MS-based metabolomics with Progenesis QI 2.3. Plasma macromolecular metabolites were examined for differences in the metabolism of lipids, proteins, mineral elements, and hormones.RESULTS: Notable differences between the SHC and MHC groups related to host hair coat status were observed in the host metabolome and intestinal microbiota (P < 0.05). The host metabolome was enriched in histidine metabolism, cysteine and methionine metabolism, and purine metabolism in the SHC group, and the intestinal microbiota were also enriched in histidine metabolism (P < 0.05). In the MHC group, the symbiotic relationship transitioned from cooperation to competition in the MHC group, and an uncoupling effect was present in the microbe-metabolite association of intestine microbiota-host interactions. The hubs mediating the relationships between intestinal microbiota and plasma metabolites were the intestinal bacterial genus g__norank_f__Eubacterium_coprostanoligenes_group, plasma inosine, triiodothyronine, and phosphorus, which could be used to differentiate cows' hair coat status (P < 0.05).CONCLUSION: Overall, the present study identified the relationships between the features of the intestinal microbiota and host hair coat status, thereby providing evidence and a new direction (intestine microbiota-host interplay) for future studies aimed at understanding the hair coat status of cattle.PMID:38711970 | PMC:PMC11071169 | DOI:10.3389/fmicb.2024.1296602
Corrigendum: Integrative single-cell RNA sequencing and metabolomics decipher the imbalanced lipid-metabolism in maladaptive immune responses during sepsis
Front Immunol. 2024 Apr 22;15:1418495. doi: 10.3389/fimmu.2024.1418495. eCollection 2024.ABSTRACT[This corrects the article DOI: 10.3389/fimmu.2023.1181697.].PMID:38711509 | PMC:PMC11070788 | DOI:10.3389/fimmu.2024.1418495
Gut microbiome and metabolome to discover pathogenic bacteria and probiotics in ankylosing spondylitis
Front Immunol. 2024 Apr 22;15:1369116. doi: 10.3389/fimmu.2024.1369116. eCollection 2024.ABSTRACTOBJECTIVE: Previous research has partially revealed distinct gut microbiota in ankylosing spondylitis (AS). In this study, we performed non-targeted fecal metabolomics in AS in order to discover the microbiome-metabolome interface in AS. Based on prospective cohort studies, we further explored the impact of the tumor necrosis factor inhibitor (TNFi) on the gut microbiota and metabolites in AS.METHODS: To further understand the gut microbiota and metabolites in AS, along with the influence of TNFi, we initiated a prospective cohort study. Fecal samples were collected from 29 patients with AS before and after TNFi therapy and 31 healthy controls. Metagenomic and metabolomic experiments were performed on the fecal samples; moreover, validation experiments were conducted based on the association between the microbiota and metabolites.RESULTS: A total of 7,703 species were annotated using the metagenomic sequencing system and by profiling the microbial community taxonomic composition, while 50,046 metabolites were identified using metabolite profiling. Differential microbials and metabolites were discovered between patients with AS and healthy controls. Moreover, TNFi was confirmed to partially restore the gut microbiota and the metabolites. Multi-omics analysis of the microbiota and metabolites was performed to determine the associations between the differential microbes and metabolites, identifying compounds such as oxypurinol and biotin, which were correlated with the inhibition of the pathogenic bacteria Ruminococcus gnavus and the promotion of the probiotic bacteria Bacteroides uniformis. Through experimental studies, the relationship between microbes and metabolites was further confirmed, and the impact of these two types of microbes on the enterocytes and the inflammatory cytokine interleukin-18 (IL-18) was explored.CONCLUSION: In summary, multi-omics exploration elucidated the impact of TNFi on the gut microbiota and metabolites and proposed a novel therapeutic perspective: supplementation of compounds to inhibit potential pathogenic bacteria and to promote potential probiotics, therefore controlling inflammation in AS.PMID:38711505 | PMC:PMC11070502 | DOI:10.3389/fimmu.2024.1369116
Corrigendum: Sulforaphane diminishes moonlighting of pyruvate kinase M2 and interleukin 1β expression in M1 (LPS) macrophages
Front Immunol. 2024 Apr 22;15:1395642. doi: 10.3389/fimmu.2024.1395642. eCollection 2024.ABSTRACT[This corrects the article DOI: 10.3389/fimmu.2022.935692.].PMID:38711502 | PMC:PMC11070787 | DOI:10.3389/fimmu.2024.1395642