PubMed
A metabolic mechanism analysis of Gentiana radix and wine-processed Gentiana radix effects on damp-heat jaundice syndrome in Rats
J Ethnopharmacol. 2024 May 3:118291. doi: 10.1016/j.jep.2024.118291. Online ahead of print.ABSTRACTETHNOPHARMACOLOGICAL RELEVANCE: Gentiana radix (GR) and wine-processed Gentiana radix (WGR) are commonly used in folk medicine for the treatment of bile or liver disorders, including jaundice, hepatitis, swelling or inflammation for thousands of years. However, the therapeutic effects of gentian root (GR) and wine-made gentian root (WGR) treatment on damp-heat jaundice syndrome (DHJS) have not been studied in animal experiments.AIM OF THE STUDY: This study aimed to investigate the protective effects and mechanisms of GR and WGR on DHJS in rats.MATERIALS AND METHODS: In a high-fat and high-sugar diet in a humidified hot environment, hepatic injury induced by giving of alpha-naphthalene isothiocyanate (ANIT) in rats were used as a DHJS model. Histological analysis, enzyme-linked immunosorbent assay (ELISA), PCR analysis, and metabolomics were used to elucidate the mechanism of GR and WGR for DHJS.RESULTS: The results indicated that GR and WGR affected DHJS by inhibiting the release of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), direct bilirubin (D-BIL), total bilirubin (TBIL), total bile acid (TBA), malondialdehyde (MDA), glutathione S-transferase (GST) (P < 0.05). In addition, they significantly reduced the gene expression levels of Na+/taurocholate cotransporting polypeptide (NTCP), bile salt export pump (BESP), multidrug resistance-associated protein 2 (MRP2) and multidrug resistance-associated protein 3 (MRP3) (P < 0.05). The WGR group improved the above function indicators better than the GR group. GR and WGR could restore 11 potential biomarkers in rats with DHJS tended to return to normal levels, these biomarkers were involved in arachidonic acid metabolism, steroid hormone biosynthesis, biosynthesis of unsaturated fatty acids, porphyrin and chlorophyll metabolism, retinol metabolism, arginine biosynthesis. The results of the metabolic pathway showed that WGR was significantly better than GR in the improvement of porphyrin and chlorophyll metabolism.CONCLUSIONS: These findings suggest that treatment with GR and WGR has a beneficial effect on DHJS in rats, the major mechanisms may be involved in improving functional indicators of the body and endogenous metabolism, and WGR is more effective than GR. It provides important evidence for the clinical application of GR and WGR in the treatment of DHJS.PMID:38705427 | DOI:10.1016/j.jep.2024.118291
Deciphering the therapeutic potential of SheXiangXinTongNing: Interplay between gut microbiota and brain metabolomics in a CUMS mice model, with a focus on tryptophan metabolism
Phytomedicine. 2024 Apr 20;129:155584. doi: 10.1016/j.phymed.2024.155584. Online ahead of print.ABSTRACTDepression, a prevalent and multifaceted mental disorder, has emerged as a significant public health concern due to its escalating prevalence and heightened risk of severe suicidality. Given its profound impact, the imperative for preventing and intervening in depression is paramount. Substantial evidence underscores intricate connections between depression and cardiovascular health. SheXiangXinTongNing (XTN), a recognized traditional Chinese medicine for treating Coronary Heart Disease (CHD), prompted our exploration into its antidepressant effects and underlying mechanisms. In this investigation, we assessed XTN's antidepressant potential using the chronic unpredictable mild stress (CUMS) mice model and behavioral tests. Employing network pharmacology, we delved into the intricate mechanisms at play. We characterized the microbial composition and function in CUMS mice, both with and without XTN treatment, utilizing 16S rRNA sequencing and metabolomics analysis. The joint analysis of these results via Cytoscape identified pivotal metabolic pathways. In the realm of network pharmacology, XTN administration exhibited antidepressant effects by modulating pathways such as IL-17, neuroactive ligand-receptor interaction, PI3K-Akt, cAMP, calcium, and dopamine synapse signaling pathways. Our findings revealed that XTN significantly mitigated depression-like symptoms and cognitive deficits in CUMS mice by inhibiting neuroinflammation and pyroptosis. Furthermore, 16S rRNA sequencing unveiled that XTN increased the alpha-diversity and beta-diversity of the gut microbiome in CUMS mice. Metabolomics analysis identified brain metabolites crucial for distinguishing between the CUMS and CUMS+XTN groups, with a focus on pathways like Tryptophan metabolism and Linoleic acid metabolism. Notably, specific bacterial families, including Alloprevotella, Helicobacter, Allobaculum, and Clostridia, exhibited robust co-occurring relationships with brain tryptophan metabolomics, hinting at the potential mediating role of gut microbiome alterations and metabolites in the efficacy of XTN treatment. In conclusion, our study unveils modifications in microbial compositions and metabolic functions may be pivotal in understanding the response to XTN treatment, offering novel insights into the mechanisms underpinning the efficacy of antidepressants.PMID:38704913 | DOI:10.1016/j.phymed.2024.155584
S-Methyl Cysteine Sulfoxide Does Not Ameliorate Weight Gain or Hyperlipidemia in Mice Fed a High-Fat Diet
Mol Nutr Food Res. 2024 May 5:e2400034. doi: 10.1002/mnfr.202400034. Online ahead of print.ABSTRACTSCOPE: Higher intake of cruciferous and allium vegetables is associated with lower cardiometabolic risk. Little research has investigated the cardiometabolic effects of S-methyl cysteine sulfoxide (SMCSO), found abundant in these vegetables. This study hypothesizes that SMCSO will blunt development of metabolic syndrome features in mice fed high-fat feed.METHODS AND RESULTS: Fifty C57BL/6 male mice are randomly assigned to standard-chow, high-fat, or high-fat supplemented with low-SMCSO (43 mg kg-1 body weight [BW] day-1), medium-SMCSO (153 mg kg-1 BW day-1), or high-SMCSO (256 mg kg-1 BW day-1) for 12-weeks. High-fat with SMCSO did not prevent diet-induced obesity, glucose intolerance, or hypercholesterolemia. Mice fed high-fat with SMCSO has higher hepatic lipids than mice fed standard-chow or high-fat alone. Urinary SMCSO increases at 6- and 12-weeks in the low-SMCSO group, before reducing 46% and 28% in the medium- and high-SMCSO groups, respectively, at 12-weeks, suggesting possible tissue saturation. Interestingly, two SMCSO-fed groups consume significantly more feed, without significant weight gain. Due to limitations in measuring consumed feed, caution should be taken interpreting these results.CONCLUSION: SMCSO (43-256 mg kg-1 BW day-1) does not ameliorate metabolic syndrome features in high-fat fed mice. Substantial knowledge gaps remain. Further studies should administer SMCSO separately (i.e., gavage), with metabolic studies exploring tissue levels to better understand its physiological action.PMID:38704751 | DOI:10.1002/mnfr.202400034
Transcriptomic and metabolomic dissection of skeletal muscle of crossbred Chongming white goats with different meat production performance
BMC Genomics. 2024 May 4;25(1):443. doi: 10.1186/s12864-024-10304-3.ABSTRACTBACKGROUND: The transcriptome and metabolome dissection of the skeletal muscle of high- and low- growing individuals from a crossbred population of the indigenous Chongming white goat and the Boer goat were performed to discover the potential functional differentially expressed genes (DEGs) and differential expression metabolites (DEMs).RESULTS: A total of 2812 DEGs were detected in 6 groups at three time stages (3,6,12 Month) in skeletal muscle using the RNA-seq method. A DEGs set containing seven muscle function related genes (TNNT1, TNNC1, TNNI1, MYBPC2, MYL2, MHY7, and CSRP3) was discovered, and their expression tended to increase as goat muscle development progressed. Seven DEGs (TNNT1, FABP3, TPM3, DES, PPP1R27, RCAN1, LMOD2) in the skeletal muscle of goats in the fast-growing and slow-growing groups was verified their expression difference by reverse transcription-quantitative polymerase chain reaction. Further, through the Liquid chromatography-mass spectrometry (LC-MS) approach, a total of 183 DEMs in various groups of the muscle samples and these DEMs such as Queuine and Keto-PGF1α, which demonstrated different abundance between the goat fast-growing group and slow-growing group. Through weighted correlation network analysis (WGCNA), the study correlated the DEGs with the DEMs and identified 4 DEGs modules associated with 18 metabolites.CONCLUSION: This study benefits to dissection candidate genes and regulatory networks related to goat meat production performance, and the joint analysis of transcriptomic and metabolomic data provided insights into the study of goat muscle development.PMID:38704563 | DOI:10.1186/s12864-024-10304-3
Effects of short-term moderate intensity exercise on the serum metabolome in older adults: a pilot randomized controlled trial
Commun Med (Lond). 2024 May 4;4(1):80. doi: 10.1038/s43856-024-00507-w.ABSTRACTBACKGROUND: We previously reported changes in the serum metabolome associated with impaired myocardial relaxation in an asymptomatic older community cohort. In this prospective parallel-group randomized control pilot trial, we subjected community adults without cardiovascular disease to exercise intervention and evaluated the effects on serum metabolomics.METHODS: Between February 2019 to November 2019, thirty (83% females) middle-aged adults (53 ± 4 years) were randomized with sex stratification to either twelve weeks of moderate-intensity exercise training (Intervention) (n = 15) or Control (n = 15). The Intervention group underwent once-weekly aerobic and strength training sessions for 60 min each in a dedicated cardiac exercise laboratory for twelve weeks (ClinicalTrials.gov: NCT03617653). Serial measurements were taken pre- and post-intervention, including serum sampling for metabolomic analyses.RESULTS: Twenty-nine adults completed the study (Intervention n = 14; Control n = 15). Long-chain acylcarnitine C20:2-OH/C18:2-DC was reduced in the Intervention group by a magnitude of 0.714 but increased in the Control group by a magnitude of 1.742 (mean difference -1.028 age-adjusted p = 0.004). Among Controls, alanine correlated with left ventricular mass index (r = 0.529, age-adjusted p = 0.018) while aspartate correlated with Lateral e' (r = -764, age-adjusted p = 0.016). C20:3 correlated with E/e' ratio fold-change in the Intervention group (r = -0.653, age-adjusted p = 0.004). Among Controls, C20:2/C18:2 (r = 0.795, age-adjusted p = 0.005) and C20:2-OH/C18:2-DC fold-change (r = 0.742, age-adjusted p = 0.030) correlated with change in E/A ratio.CONCLUSIONS: Corresponding relationships between serum metabolites and cardiac function in response to exercise intervention provided pilot observations. Future investigations into cellular fuel oxidation or central carbon metabolism pathways that jointly impact the heart and related metabolic systems may be critical in preventive trials.PMID:38704414 | DOI:10.1038/s43856-024-00507-w
Diet-omics in the Study of Urban and Rural Crohn disease Evolution (SOURCE) cohort
Nat Commun. 2024 May 4;15(1):3764. doi: 10.1038/s41467-024-48106-6.ABSTRACTCrohn disease (CD) burden has increased with globalization/urbanization, and the rapid rise is attributed to environmental changes rather than genetic drift. The Study Of Urban and Rural CD Evolution (SOURCE, n = 380) has considered diet-omics domains simultaneously to detect complex interactions and identify potential beneficial and pathogenic factors linked with rural-urban transition and CD. We characterize exposures, diet, ileal transcriptomics, metabolomics, and microbiome in newly diagnosed CD patients and controls in rural and urban China and Israel. We show that time spent by rural residents in urban environments is linked with changes in gut microbial composition and metabolomics, which mirror those seen in CD. Ileal transcriptomics highlights personal metabolic and immune gene expression modules, that are directly linked to potential protective dietary exposures (coffee, manganese, vitamin D), fecal metabolites, and the microbiome. Bacteria-associated metabolites are primarily linked with host immune modules, whereas diet-linked metabolites are associated with host epithelial metabolic functions.PMID:38704361 | DOI:10.1038/s41467-024-48106-6
Unraveling sex-specific risks of knee osteoarthritis before menopause: Do sex differences start early in life?
Osteoarthritis Cartilage. 2024 May 2:S1063-4584(24)01172-5. doi: 10.1016/j.joca.2024.04.015. Online ahead of print.ABSTRACTOBJECTIVE: Sufficient evidence within the past two decades have shown that osteoarthritis (OA) has a sex-specific component. However, efforts to reveal the biological causes of this disparity have emerged more gradually. In this narrative review, we discuss anatomical differences within the knee, incidence of injuries in youth sports, and metabolic factors that present early in life (childhood and early adulthood) that can contribute to a higher risk of OA in females.DESIGN: We compiled clinical data from multiple tissues within the knee joint -since OA is a whole joint disorder- aiming to reveal relevant factors behind the sex differences from different perspectives.RESULTS: The data gathered in this review indicate that sex differences in articular cartilage, meniscus, and anterior cruciate ligament (ACL) are detected as early as childhood and are not only explained by sex hormones. Aiming to unveil the biological causes of the uneven sex-specific risks for knee OA, we review the current knowledge of sex differences mostly in young, but also including old populations, from the perspective of (i) human anatomy in both healthy and pathological conditions, (ii) physical activity and response to injury, and (iii) metabolic signatures.CONCLUSIONS: We propose that to close the gap in health disparities, and specifically regarding OA, we should address sex-specific anatomic, biologic, and metabolic factors at early stages in life, as a way to prevent the higher severity and incidence of OA in women later in life.PMID:38703811 | DOI:10.1016/j.joca.2024.04.015
Comprehensive proteogenomic characterization of rare kidney tumors
Cell Rep Med. 2024 Apr 26:101547. doi: 10.1016/j.xcrm.2024.101547. Online ahead of print.ABSTRACTNon-clear cell renal cell carcinomas (non-ccRCCs) encompass diverse malignant and benign tumors. Refinement of differential diagnosis biomarkers, markers for early prognosis of aggressive disease, and therapeutic targets to complement immunotherapy are current clinical needs. Multi-omics analyses of 48 non-ccRCCs compared with 103 ccRCCs reveal proteogenomic, phosphorylation, glycosylation, and metabolic aberrations in RCC subtypes. RCCs with high genome instability display overexpression of IGF2BP3 and PYCR1. Integration of single-cell and bulk transcriptome data predicts diverse cell-of-origin and clarifies RCC subtype-specific proteogenomic signatures. Expression of biomarkers MAPRE3, ADGRF5, and GPNMB differentiates renal oncocytoma from chromophobe RCC, and PIGR and SOSTDC1 distinguish papillary RCC from MTSCC. This study expands our knowledge of proteogenomic signatures, biomarkers, and potential therapeutic targets in non-ccRCC.PMID:38703764 | DOI:10.1016/j.xcrm.2024.101547
Metabolic liability for weight gain in early adulthood
Cell Rep Med. 2024 Apr 25:101548. doi: 10.1016/j.xcrm.2024.101548. Online ahead of print.ABSTRACTWhile weight gain is associated with a host of chronic illnesses, efforts in obesity have relied on single "snapshots" of body mass index (BMI) to guide genetic and molecular discovery. Here, we study >2,000 young adults with metabolomics and proteomics to identify a metabolic liability to weight gain in early adulthood. Using longitudinal regression and penalized regression, we identify a metabolic signature for weight liability, associated with a 2.6% (2.0%-3.2%, p = 7.5 × 10-19) gain in BMI over ≈20 years per SD higher score, after comprehensive adjustment. Identified molecules specified mechanisms of weight gain, including hunger and appetite regulation, energy expenditure, gut microbial metabolism, and host interaction with external exposure. Integration of longitudinal and concurrent measures in regression with Mendelian randomization highlights the complexity of metabolic regulation of weight gain, suggesting caution in interpretation of epidemiologic or genetic effect estimates traditionally used in metabolic research.PMID:38703763 | DOI:10.1016/j.xcrm.2024.101548
A novel protein CYTB-187AA encoded by the mitochondrial gene CYTB modulates mammalian early development
Cell Metab. 2024 Apr 29:S1550-4131(24)00132-3. doi: 10.1016/j.cmet.2024.04.012. Online ahead of print.ABSTRACTThe mitochondrial genome transcribes 13 mRNAs coding for well-known proteins essential for oxidative phosphorylation. We demonstrate here that cytochrome b (CYTB), the only mitochondrial-DNA-encoded transcript among complex III, also encodes an unrecognized 187-amino-acid-long protein, CYTB-187AA, using the standard genetic code of cytosolic ribosomes rather than the mitochondrial genetic code. After validating the existence of this mtDNA-encoded protein arising from cytosolic translation (mPACT) using mass spectrometry and antibodies, we show that CYTB-187AA is mainly localized in the mitochondrial matrix and promotes the pluripotent state in primed-to-naive transition by interacting with solute carrier family 25 member 3 (SLC25A3) to modulate ATP production. We further generated a transgenic knockin mouse model of CYTB-187AA silencing and found that reduction of CYTB-187AA impairs females' fertility by decreasing the number of ovarian follicles. For the first time, we uncovered the novel mPACT pattern of a mitochondrial mRNA and demonstrated the physiological function of this 14th protein encoded by mtDNA.PMID:38703762 | DOI:10.1016/j.cmet.2024.04.012
Nanoplastic contamination: Impact on zebrafish liver metabolism and implications for aquatic environmental health
Environ Int. 2024 May 1;187:108713. doi: 10.1016/j.envint.2024.108713. Online ahead of print.ABSTRACTNanoplastics (NPs) are increasingly pervasive in the environment, raising concerns about their potential health implications, particularly within aquatic ecosystems. This study investigated the impact of polystyrene nanoparticles (PSN) on zebrafish liver metabolism using liquid chromatography hybrid quadrupole time of flight mass spectrometry (LC-QTOF-MS) based non-targeted metabolomics. Zebrafish were exposed to 50 nm PSN for 28 days at low (L-PSN) and high (H-PSN) concentrations (0.1 and 10 mg/L, respectively) via water. The results revealed significant alterations in key metabolic pathways in low and high exposure groups. The liver metabolites showed different metabolic responses with L-PSN and H-PSN. A total of 2078 metabolite features were identified from the raw data obtained in both positive and negative ion modes, with 190 metabolites deemed statistically significant in both L-PSN and H-PSN groups. Disruptions in lipid metabolism, inflammation, oxidative stress, DNA damage, and amino acid synthesis were identified. Notably, L-PSN exposure induced changes in DNA building blocks, membrane-associated biomarkers, and immune-related metabolites, while H-PSN exposure was associated with oxidative stress, altered antioxidant metabolites, and liver injury. For the first time, L-PSN was found depolymerized in the liver by cytochrome P450 enzymes. Utilizing an analytical approach to the adverse outcome pathway (AOP), impaired lipid metabolism and oxidative stress have been identified as potentially conserved key events (KEs) associated with PSN exposure. These KEs further induced liver inflammation, steatosis, and fibrosis at the tissue and organ level. Ultimately, this could significantly impact biological health. The study highlights the PSN-induced effects on zebrafish liver metabolism, emphasizing the need for a better understanding of the risks associated with NPs contamination in aquatic ecosystems.PMID:38703446 | DOI:10.1016/j.envint.2024.108713
Differences in metabolomic profiles between Black and White women in the U.S.: Analyses from two prospective cohorts
Eur J Epidemiol. 2024 May 4. doi: 10.1007/s10654-024-01111-x. Online ahead of print.ABSTRACTThere is growing interest in incorporating metabolomics into public health practice. However, Black women are under-represented in many metabolomics studies. If metabolomic profiles differ between Black and White women, this under-representation may exacerbate existing Black-White health disparities. We therefore aimed to estimate metabolomic differences between Black and White women in the U.S. We leveraged data from two prospective cohorts: the Nurses' Health Study (NHS; n = 2077) and Women's Health Initiative (WHI; n = 2128). The WHI served as the replication cohort. Plasma metabolites (n = 334) were measured via liquid chromatography-tandem mass spectrometry. Observed metabolomic differences were estimated using linear regression and metabolite set enrichment analyses. Residual metabolomic differences in a hypothetical population in which the distributions of 14 risk factors were equalized across racial groups were estimated using inverse odds ratio weighting. In the NHS, Black-White differences were observed for most metabolites (75 metabolites with observed differences ≥ |0.50| standard deviations). Black women had lower average levels than White women for most metabolites (e.g., for N6, N6-dimethlylysine, mean Black-White difference = - 0.98 standard deviations; 95% CI: - 1.11, - 0.84). In metabolite set enrichment analyses, Black women had lower levels of triglycerides, phosphatidylcholines, lysophosphatidylethanolamines, phosphatidylethanolamines, and organoheterocyclic compounds, but higher levels of phosphatidylethanolamine plasmalogens, phosphatidylcholine plasmalogens, cholesteryl esters, and carnitines. In a hypothetical population in which distributions of 14 risk factors were equalized, Black-White metabolomic differences persisted. Most results replicated in the WHI (88% of 272 metabolites available for replication). Substantial differences in metabolomic profiles exist between Black and White women. Future studies should prioritize racial representation.PMID:38703248 | DOI:10.1007/s10654-024-01111-x
Functional metabolomics characterizes the contribution of farnesoid X receptor in pyrrolizidine alkaloid-induced hepatic sinusoidal obstruction syndrome
Arch Toxicol. 2024 May 4. doi: 10.1007/s00204-024-03762-x. Online ahead of print.ABSTRACTConsumption of herbal products containing pyrrolizidine alkaloids (PAs) is one of the major causes for hepatic sinusoidal obstruction syndrome (HSOS), a deadly liver disease. However, the crucial metabolic variation and biomarkers which can reflect these changes remain amphibious and thus to result in a lack of effective prevention, diagnosis and treatments against this disease. The aim of the study was to determine the impact of HSOS caused by PA exposure, and to translate metabolomics-derived biomarkers to the mechanism. In present study, cholic acid species (namely, cholic acid, taurine conjugated-cholic acid, and glycine conjugated-cholic acid) were identified as the candidate biomarkers (area under the ROC curve 0.968 [95% CI 0.908-0.994], sensitivity 83.87%, specificity 96.55%) for PA-HSOS using two independent cohorts of patients with PA-HSOS. The increased primary bile acid biosynthesis and decreased liver expression of farnesoid X receptor (FXR, which is known to inhibit bile acid biosynthesis in hepatocytes) were highlighted in PA-HSOS patients. Furtherly, a murine PA-HSOS model induced by senecionine (50 mg/kg, p.o.), a hepatotoxic PA, showed increased biosynthesis of cholic acid species via inhibition of hepatic FXR-SHP singling and treatment with the FXR agonist obeticholic acid restored the cholic acid species to the normal levels and protected mice from senecionine-induced HSOS. This work elucidates that increased levels of cholic acid species can serve as diagnostic biomarkers in PA-HSOS and targeting FXR may represent a therapeutic strategy for treating PA-HSOS in clinics.PMID:38703205 | DOI:10.1007/s00204-024-03762-x
Salivary metabolomic identification of biomarker candidates for oral melanoma and oral squamous cell carcinoma in dogs
J Vet Intern Med. 2024 May 4. doi: 10.1111/jvim.17092. Online ahead of print.ABSTRACTBACKGROUND: Oral melanoma (OM) and oral squamous cell carcinoma (OSCC) are frequently diagnosed in dogs, presenting a challenge in distinguishing them from benign oral tumors (BN). Salivary metabolomic biomarkers offer a practical solution because of saliva's direct contact with tumors and the noninvasive nature of collection.OBJECTIVE: Assess the diversity and abundance of the salivary metabolome in dogs with BN, OM, and OSCC using amine/phenol submetabolome analysis and high-performance chemical isotope labeling liquid chromatography-mass spectrometry (CIL LC-MS).ANIMALS: Study included 11 BN, 24 OM, 10 OSCC, and 20 healthy control dogs.METHODS: Case-control cross-sectional study was conducted to assess salivary submetabolic profiles in dogs with BN, OM, and OSCC and healthy dogs. Samples were labeled with 12C-dansyl chloride and analyzed using CIL LC-MS targeted to amine- and phenol-containing metabolites for amine/phenol submetabolome analysis.RESULTS: Distinct clusters and significant differences in metabolite concentrations were observed among the oral cancer, BN, and control groups. A total of 154 and 66 metabolites showed significantly altered concentrations, particularly in OM and OSCC, respectively, when compared with BN (Padj < .05). Potential metabolic biomarkers were identified for each cancer, including decreased concentrations of seryl-arginine and sarcosine in OSCC. Moreover, high-confidence putative metabolites were identified, including an increase in tryptophyl-threonine and a decrease in 1,2-dihydroxynapthalene-6-sulfonic acid and hydroxyprolyl-hydroxyproline for OM.CONCLUSIONS AND CLINICAL IMPORTANCE: We identified high coverage of the amine/phenol submetabolome, including seryl-arginine, and sarcosine, in OSCC. Our findings emphasize the potential of these biomarkers for distinguishing between oral OSCC and BN in dogs.PMID:38703129 | DOI:10.1111/jvim.17092
De Novo multi-omics pathway analysis (DMPA) designed for prior data independent inference of cell signaling pathways
Mol Cell Proteomics. 2024 May 2:100780. doi: 10.1016/j.mcpro.2024.100780. Online ahead of print.ABSTRACTNew tools for cell signaling pathway inference from multi-omics data that are independent of previous knowledge are needed. Here we propose a new de novo method, the de novo multi-omics pathway analysis (DMPA), to model and combine omics data into network modules and pathways. DMPA was validated with published omics data and was found accurate in discovering reported molecular associations in transcriptome, interactome, phosphoproteome, methylome, and metabolomics data and signaling pathways in multi-omics data. DMPA was benchmarked against module discovery and multi-omics integration methods and outperformed previous methods in module and pathway discovery especially when applied to datasets with relatively low sample sizes. Transcription factor, kinase, subcellular location and function prediction algorithms were devised for transcriptome, phosphoproteome and interactome modules and pathways, respectively. To apply DMPA in a biologically relevant context, interactome, phosphoproteome, transcriptome and proteome data were collected from analyses carried out using melanoma cells to address gamma-secretase cleavage-dependent signaling characteristics of the receptor tyrosine kinase TYRO3. The pathways modeled with DMPA reflected the predicted function and its direction in validation experiments.PMID:38703893 | DOI:10.1016/j.mcpro.2024.100780
Green banana (Musa ssp.) mixed pulp and peel flour: A new ingredient with interesting bioactive, nutritional, and technological properties for food applications
Food Chem. 2024 Apr 27;451:139506. doi: 10.1016/j.foodchem.2024.139506. Online ahead of print.ABSTRACTThis study aimed to characterize and evaluate the in vitro bioactive properties of green banana pulp (GBPF), peel (GBPeF), and mixed pulp/peel flours M1 (90/10) and M2 (80/20). Lipid concentration was higher in GBPeF (7.53%), as were the levels of free and bound phenolics (577 and 653.1 mg GAE/100 g, respectively), whereas the resistant starch content was higher in GBPF (44.11%). Incorporating up to 20% GBPeF into the mixed flour had a minor effect on the starch pasting properties of GBPF. GBPeF featured rutin and trans-ferulic acid as the predominant free and bound phenolic compounds, respectively. GBPF presented different major free phenolics, though it had similar bound phenolics to GBPeF. Both M1 and M2 demonstrated a reduction in intracellular reactive oxygen species (ROS) generation. Consequently, this study validates the potential of green banana mixed flour, containing up to 20% GBPeF, for developing healthy foods and reducing post-harvest losses.PMID:38703733 | DOI:10.1016/j.foodchem.2024.139506
Deciphering layer formation in Red Heart Qu: A comprehensive study of metabolite profile and microbial community influenced by raw materials and environmental factors
Food Chem. 2024 Apr 16;451:139377. doi: 10.1016/j.foodchem.2024.139377. Online ahead of print.ABSTRACTEnvironmental-origin microbiota significantly influences Red Heart Qu (RH_Qu) stratification, but their microbial migration and metabolic mechanisms remain unclear. Using high-throughput sequencing and metabolomics, we divided the stratification of RH_Qu into three temperature-based stages. Phase I features rising temperatures, causing microbial proliferation and a two-layer division. Phase II, characterized by peak temperatures, sees the establishment of thermotolerant species like Bacillus, Thermoactinomyces, Rhodococcus, and Thermoascus, forming four distinct layers and markedly altering metabolite profiles. The Huo Quan (HQ), developing from the Pi Zhang (PZ), is driven by the tyrosine-melanin pathway and increased MRPs (Maillard reaction products). The Hong Xin evolves from the Rang, associated with the phenylalanine-coumarin pathway and QCs (Quinone Compounds) production. Phase III involves the stabilization of the microbial and metabolic profile as temperatures decline. These findings enhance our understanding of RH_Qu stratification and offer guidance for quality control in its fermentation process.PMID:38703722 | DOI:10.1016/j.foodchem.2024.139377
Unveiling the altered metabolic pathways induced by nivolumab in non-small cell lung cancer via GC-MS metabolomics approach coupled with multivariate analysis
J Chromatogr B Analyt Technol Biomed Life Sci. 2024 Apr 30;1240:124144. doi: 10.1016/j.jchromb.2024.124144. Online ahead of print.ABSTRACTThis research investigates the effects of the immunotherapeutic agent nivolumab on the metabolism of lung cancer cells (NCI-H1975) using GC-MS metabolomic profiling. Multivariate analysis such as unsupervised PCA and supervised OPLS-DA along with univariate analysis and pathway analysis were employed to explore the metabolomic data and identify altered metabolic pathways induced by nivolumab treatment. The study revealed distinct metabolic alterations in cancer cells, linked to proliferative and survival advantages, such as enhanced glycolysis, increased glutaminolysis, and modified amino acid metabolism. Key findings indicate elevated levels of glycolysis-related metabolites (glycine, alanine, pyruvate, and lactate) and TCA cycle intermediates (succinate, fumarate, malate) in cancer cells, with a significant decrease following nivolumab treatment. Additionally, lower levels of aspartic acid and citrate in cancer cells imply altered nucleotide synthesis and fatty acid production essential for tumor growth. Treatment with nivolumab also reduced oleic acid levels, indicative of its effect on disrupted lipid metabolism. Our research shows nivolumab's potential to modify metabolic pathways involved in lung cancer progression, suggesting its dual role in cancer therapy: as an immune response modulator and a metabolic pathway disruptor.PMID:38703714 | DOI:10.1016/j.jchromb.2024.124144
Integrated physiological, transcriptomic and metabolomic analyses provide insights into phosphorus-mediated cadmium detoxification in Salix caprea roots
Plant Physiol Biochem. 2024 Apr 30;211:108677. doi: 10.1016/j.plaphy.2024.108677. Online ahead of print.ABSTRACTPhosphorus (P) plays a crucial role in facilitating plant adaptation to cadmium (Cd) stress. However, the molecular mechanisms underlying P-mediated responses to Cd stress in roots remain elusive. This study investigates the effects of P on the growth, physiology, transcriptome, and metabolome of Salix caprea under Cd stress. The results indicate that Cd significantly inhibits plant growth, while sufficient P alleviates this inhibition. Under Cd exposure, P sufficiency resulted in increased Cd accumulation in roots, along with reduced oxidative stress levels (superoxide anion and hydrogen peroxide contents were reduced by 16.8% and 30.1%, respectively). This phenomenon can be attributed to the enhanced activities of antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT), as well as increased levels of antioxidants including ascorbic acid (AsA) and flavonoids under sufficient P conditions. A total of 4208 differentially expressed genes (DEGs) and 552 differentially accumulated metabolites (DAMs) were identified in the transcriptomic and metabolomic analyses, with 2596 DEGs and 113 DAMs identified among treatments with different P levels under Cd stress, respectively. Further combined analyses reveal the potential roles of several pathways in P-mediated Cd detoxification, including flavonoid biosynthesis, ascorbate biosynthesis, and plant hormone signal transduction pathways. Notably, sufficient P upregulates the expression of genes including HMA, ZIP, NRAMP and CAX, all predicted to localize to the cell membrane. This may elucidate the heightened Cd accumulation under sufficient P conditions. These findings provide insights into the roles of P in enhancing plant resistance to Cd stress and improving of phytoremediation.PMID:38703499 | DOI:10.1016/j.plaphy.2024.108677
Associations of Plasma and Fecal Metabolites with Body Mass Index and Body Fat Distribution in Children
J Clin Endocrinol Metab. 2024 May 4:dgae296. doi: 10.1210/clinem/dgae296. Online ahead of print.ABSTRACTCONTEXT: Childhood obesity continues to be a critical public health concern with far-reaching implications for the well-being.OBJECTIVE: This study aimed to investigate the association between metabolites in plasma and feces and indicators including body mass index (BMI), BMI for age Z score (BMIZ), and body fat distribution among children aged 6-9 years in China.METHODS: This cross-sectional study enrolled 424 healthy children, including 186 girls and 238 boys. Dual-energy X-ray absorptiometry (DXA) was used to determine the body fat content and regional fat distribution. Plasma and fecal metabolites were analyzed using targeted metabolomic technologies.RESULTS: A total of 200 plasma metabolites and 212 fecal metabolites were accurately quantified via ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). By using Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) and random forest model, we discovered that 9 plasma metabolites and 11 fecal metabolites were associated with different weight statuses. After adjusting for potential covariates and false discovery rate (FDR) correction, multiple linear regression analyses revealed that plasma metabolites (fumaric acid, glycine, l-glutamine, methylmalonic acid, and succinic acid) and fecal metabolites (protocatechuic acid) were negatively associated (β: -1.373--0.016, pFDR: <0.001-0.031; β: -1.008--0.071, pFDR: 0.005-0.033), while plasma metabolites (isovaleric acid, isovalerylcarnitine, l-glutamic acid, and pyroglutamic acid) and fecal metabolites (3-aminoisobutanoic acid, butyric acid, N-acetylneuraminic acid, octanoylcarnitine, oleoylcarnitine, palmitoylcarnitine, stearoylcarnitine, taurochenodesoxycholic acid, and taurodeoxycholic acid) exhibited positive associations with BMI, BMIZ, and body fat distribution (β: 0.023-2.396, pFDR: <0.001; β: 0.014-1.736, pFDR: <0.001-0.049).CONCLUSION: Plasma and fecal metabolites such as glutamine may serve as a potential therapeutic target for the development of obesity.PMID:38703096 | DOI:10.1210/clinem/dgae296