Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

PGC1α deficiency reverses cholestasis-induced liver injury via attenuating hepatic inflammation and promoting bile duct remodeling

Mon, 09/10/2023 - 12:00
Acta Histochem. 2023 Oct 7;125(8):152097. doi: 10.1016/j.acthis.2023.152097. Online ahead of print.ABSTRACTOBJECTIVES: Cholestatic liver diseases are characterized by hepatocellular damage, cholangiocyte proliferation, and progressive fibrosis. Bile duct ligation (BDL) is widely used to resemble liver injuries induced by cholestasis. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC1α) was reported to play a critical role in multiple biological responses. Nevertheless, whether PGC1α is involved in bile acid metabolism and biliary disorders remains unclear. This study aimed to investigate the effect of PGC1α on hepatic responses after cholestatic injury.MATERIALS AND METHODS: Wild-type mice were subjected to BDL or sham surgery for 14 days and human liver specimens from patients with primary biliary cholangitis (PBC) were collected to detect the expression of PGC1α. Hepatic-specific PGC1α knockout mice (HKO) were constructed and subjected to BDL, in which the effects of PGC1α on cholestatic liver injury were demonstrated by biochemical and histopathological assessments, immunoblotting, and metabolomics.RESULTS: The expression of PGC1α was upregulated in the liver of PBC patients and murine models. Both in vivo and in vitro experiments supported the protective effects of PGC1α on cholestasis-induced hepatocyte injury. Infiltrated inflammatory cells after BDL were decreased in HKO mice. Inhibited Wnt/β-Catenin pathway and enhanced Notch signaling promoted transdifferentiation of hepatic progenitor cells (HPC)/ hepatocytes into cholangiocytes, leading to the greater ductular reaction observed in the HKO mice. But bile acids metabolism and mitochondrial function were not affected due to hepatic PGC1α deficiency in cholestasis.CONCLUSIONS: Hepatic-specific deletion of PGC1α regulated liver regeneration by promoting ductular reactions, thereby exerting protective effects against BDL-induced liver injury, which could be a new potential therapeutic target.PMID:37813066 | DOI:10.1016/j.acthis.2023.152097

Spatial metabolomics method to reveal differential metabolomes in microregions of Panax quinquefolius roots by using ultra-performance liquid chromatography quadrupole/time of flight-mass spectrometry and desorption electrospray ionization mass...

Mon, 09/10/2023 - 12:00
Food Chem. 2023 Oct 5;435:137504. doi: 10.1016/j.foodchem.2023.137504. Online ahead of print.ABSTRACTPanax quinquefolius is a natural homology medicine and food that is rich in bioactive ingredients, such as ginsenosides and polysaccharides. The combination of ultra-performance liquid chromatography quadrupole/time of flight-mass spectrometry (UPLC-Q-TOF/MS) and desorption electrospray ionization mass spectrometry imaging (DESI-MSI) was used for the first time in a spatial metabolomics analysis to comprehensively evaluate the differential components in different microregions of P. quinquefolius. UPLC-Q-TOF/MS and DESI-MSI combined with principal component analysis and orthogonal partial least squares-discriminant analysis were used to screen differential metabolites. UPLC-Q-TOF/MS and DESI-MSI screened 27 and 23 differential metabolites, respectively, among which 15 differential metabolites were identified by both methods. It was found that some components, such as ginsenoside Rg1 and malonyl-ginsenoside Rc, were mainly distributed in P of the transverse slice of P. quinquefolius roots, while ginsenoside Ro and malonyl-ginsenoside Rd were mainly distributed in C. The methods and results of this study could be used to understand the precise localization, biosynthesis, and biological functions of special metabolites in P. quinquefolius.PMID:37813026 | DOI:10.1016/j.foodchem.2023.137504

Transcriptomics and metabolomics profiling reveals involvement of flavonoids in early nodulation of Caucasian clover (Trifolium ambiguum)

Mon, 09/10/2023 - 12:00
Plant Physiol Biochem. 2023 Oct 4;203:108050. doi: 10.1016/j.plaphy.2023.108050. Online ahead of print.ABSTRACTCaucasian clover (Trifolium ambiguum) is a perennial rooted and tillering leguminous forage with strong adaptability, outstanding stress tolerance and other preferable traits. However, the specificity with rhizobia limits the extended application of Caucasian clover. Therefore, it is important to study the changes of genes and metabolites in the early process of nodulation in Caucasian clover to improve its nodulation and nitrogen fixation ability. In this study, we used Caucasian clover as the experimental material to investigate its nodulation mechanism using transcriptomic and metabolomic approaches, such that to break the nitrogen fixation barrier for the promotion of Caucasian clover. Metabolomic and transcriptomic profiling revealed that both DAMs and DEGs were significantly enriched in the phenylpropanoid and flavonoid biosynthetic pathways, with DEGs showing up-regulation at 3 days and 6 days post inoculation (dpi) with rhizobia, and some DEGs showing down-regulation at 9 dpi. Accumulation of flavonoids was significantly increased at both 3 dpi and 6 dpi, and some compounds were significantly decreased at 9 dpi. A total of 35 DEGs were involved in flavonoid synthesis by WGCNA analysis, among which HCT, CCR, COMT and F3H played an important role. This study provides insights in understanding the molecular mechanism of nodulation and nitrogen fixation in Caucasian clover.PMID:37812991 | DOI:10.1016/j.plaphy.2023.108050

Metabolome and transcriptome reprogramming underlying tomato drought resistance triggered by a Pseudomonas strain

Mon, 09/10/2023 - 12:00
Plant Physiol Biochem. 2023 Oct 4;203:108080. doi: 10.1016/j.plaphy.2023.108080. Online ahead of print.ABSTRACTAlthough amelioration of drought stress by Plant Growth Promoting Rhizobacteria (PGPR) is a well-documented phenomenon, the combined molecular and metabolic mechanisms governing this process remain unclear. In these lines, the present study aimed to provide new insights in the underlying drought attenuating mechanisms of tomato plants inoculated with a PGP Pseudomonas putida strain, by using a combination of metabolomic and transcriptomic approaches. Following Differentially Expressed Gene analysis, it became evident that inoculation resulted in a less disturbed plant transcriptome upon drought stress. Untargeted metabolomics highlighted the differential metabolite accumulation upon inoculation, as well as the less metabolic reprograming and the lower accumulation of stress-related metabolites for inoculated stressed plants. These findings were in line with morpho-physiological evidence of drought stress mitigation in the inoculated plants. The redox state modulation, the more efficient nitrogen assimilation, as well as the differential changes in amino acid metabolism, and the induction of the phenylpropanoid biosynthesis pathway, were the main drought-attenuating mechanisms in the SAESo11-inoculated plants. Shifts in pathways related to hormonal signaling were also evident upon inoculation at a transcript level and in conjunction with carbon metabolism regulation, possibly contributed to a drought-attenuation preconditioning. The identified signatory molecules of SAESo11-mediated priming against drought included aspartate, myo-inositol, glutamate, along with key genes related to trehalose, tryptophan and cysteine synthesis. Taken together, SAESo11-inoculation provides systemic effects encompassing both metabolic and regulatory functions, supporting both seedling growth and drought stress amelioration.PMID:37812990 | DOI:10.1016/j.plaphy.2023.108080

Dual function of magnetic field in enhancing antibiotic wastewater treatment by an integrated photocatalysis and fluidized bed biofilm reactor (FBBR)

Mon, 09/10/2023 - 12:00
J Environ Manage. 2023 Oct 7;347:119249. doi: 10.1016/j.jenvman.2023.119249. Online ahead of print.ABSTRACTThe integrated photocatalysis and fluidized bed biofilm reactor (FBBR) is an attractive wastewater treatment technique for managing wastewater containing antibiotics. However, the fast recombination of photoinduced charge and low microbial activity limit the degradation and mineralization efficiency for antibiotics. To address this, we attempt to introduce magnetic field (MF) to the integrated system with B-doped Bi3O4Cl as the photocatalysts to effectively improve removal and mineralization of ciprofloxacin (CIP). As a consequence, the degradation rate reaches 96% after 40 d in integrated system with MF. The biofilm inside the integrated system with MF carrier can mineralize the photocatalytic products, thereby increasing the total organic carbon (TOC) degradation rate by more than 32%. The electrochemical experiment indicates the Lorentz force generated by MF can accelerate charge separation, increasing the electron concentration. Simultaneously, the increased amounts of electrons lead to the generation of more ·OH and ·O2-. MF addition also results in increased biomass, increased biological respiratory activity, microbial community evolution and accelerated microbial metabolism, enabling more members to biodegrade photocatalytic intermediates. Therefore, applied MF is an efficient method to enhance CIP degradation and mineralization by the integrated system.PMID:37812897 | DOI:10.1016/j.jenvman.2023.119249

Exploring the differences in serum metabolite profiles after intake of red meat in women with rheumatoid arthritis and a matched control group

Mon, 09/10/2023 - 12:00
Eur J Nutr. 2023 Oct 9. doi: 10.1007/s00394-023-03257-y. Online ahead of print.ABSTRACTPURPOSE: Studies have suggested that women with RA tend to avoid red meat more often than women without RA, based on their perception that it exacerbates their symptoms. Therefore, the aim of this study is to investigate and compare the postprandial metabolic response following the consumption of a red meat meal in patients with RA and a matched control group.METHODS: Participants were challenged with a meal with red meat and blood samples were collected before and at 0.5, 1, 2, 3 and 5 h after the meal. Serum metabolites were quantified by Nuclear Magnetic Resonance (NMR) analysis. Orthogonal Projections to Latent Structures with Discriminant Analysis (OPLS-DA) was used to evaluate separation by metabolites due to diagnosis of RA or not and to identify changes in metabolites related to RA. Incremental area under the curve was calculated for univariate comparisons for 23 metabolites.RESULTS: The matched groups, including 22 women with RA and 22 women without RA, did not differ significantly in age, body mass index, diet quality or reported physical activity. OPLS-DA models had a limited quality indicating that there were no differences in metabolite patterns between the groups. However, phenylalanine was significantly higher in concentration in women with RA compared to controls in both fasting and postprandial samples.CONCLUSION: To conclude, this well-controlled postprandial intervention study found a significantly higher concentration of phenylalanine in both fasting and postprandial samples of women with RA compared to matched women without RA. These findings warrant further investigation in larger studies.TRIAL REGISTRATION: The PIRA (Postprandial Inflammation in Rheumatoid Arthritis) trial is Registered at Clinicaltrials.gov (NCT04247009).PMID:37814020 | DOI:10.1007/s00394-023-03257-y

The malate shuttle detoxifies ammonia in exhausted T cells by producing 2-ketoglutarate

Mon, 09/10/2023 - 12:00
Nat Immunol. 2023 Oct 9. doi: 10.1038/s41590-023-01636-5. Online ahead of print.ABSTRACTThe malate shuttle is traditionally understood to maintain NAD+/NADH balance between the cytosol and mitochondria. Whether the malate shuttle has additional functions is unclear. Here we show that chronic viral infections induce CD8+ T cell expression of GOT1, a central enzyme in the malate shuttle. Got1 deficiency decreased the NAD+/NADH ratio and limited antiviral CD8+ T cell responses to chronic infection; however, increasing the NAD+/NADH ratio did not restore T cell responses. Got1 deficiency reduced the production of the ammonia scavenger 2-ketoglutarate (2-KG) from glutaminolysis and led to a toxic accumulation of ammonia in CD8+ T cells. Supplementation with 2-KG assimilated and detoxified ammonia in Got1-deficient T cells and restored antiviral responses. These data indicate that the major function of the malate shuttle in CD8+ T cells is not to maintain the NAD+/NADH balance but rather to detoxify ammonia and enable sustainable ammonia-neutral glutamine catabolism in CD8+ T cells during chronic infection.PMID:37813964 | DOI:10.1038/s41590-023-01636-5

Joint analysis of the metabolomics and transcriptomics uncovers the dysregulated network and develops the diagnostic model of high-risk neuroblastoma

Mon, 09/10/2023 - 12:00
Sci Rep. 2023 Oct 9;13(1):16991. doi: 10.1038/s41598-023-43988-w.ABSTRACTHigh-risk neuroblastoma (HR-NB) has a significantly lower survival rate compared to low- and intermediate-risk NB (LIR-NB) due to the lack of risk classification diagnostic models and effective therapeutic targets. The present study aims to characterize the differences between neuroblastomas with different risks through transcriptomic and metabolomic, and establish an early diagnostic model for risk classification of neuroblastoma.Plasma samples from 58 HR-NB and 38 LIR-NB patients were used for metabolomics analysis. Meanwhile, NB tissue samples from 32 HR-NB and 23 LIR-NB patients were used for transcriptomics analysis. In particular, integrative metabolomics and transcriptomic analysis was performed between HR-NB and LIR-NB. A total of 44 metabolites (P < 0.05 and fold change > 1.5) were altered, including 12 that increased and 32 that decreased in HR-NB. A total of 1,408 mRNAs (P < 0.05 and |log2(fold change)|> 1) showed significantly altered in HR-NB, of which 1,116 were upregulated and 292 were downregulated. Joint analysis of both omic data identified 4 aberrant pathways (P < 0.05 and impact ≥ 0.5) consisting of glycerolipid metabolism, retinol metabolism, arginine biosynthesis and linoleic acid metabolism. Importantly, a HR-NB risk classification diagnostic model was developed using plasma circulating-free S100A9, CDK2, and UNC5D, with an area under receiver operating characteristic curve of 0.837 where the sensitivity and specificity in the validation set were both 80.0%. This study presents a novel pioneering study demonstrating the metabolomics and transcriptomics profiles of HR-NB. The glycerolipid metabolism, retinol metabolism, arginine biosynthesis and linoleic acid metabolism were altered in HR-NB. The risk classification diagnostic model based on S100A9, CDK2, and UNC5D can be clinically used for HR-NB risk classification.PMID:37813883 | DOI:10.1038/s41598-023-43988-w

Comparative metabolomics study on areca nut from China and Southeast Asia (Thailand and Indonesia)

Mon, 09/10/2023 - 12:00
Phytochem Anal. 2023 Oct 9. doi: 10.1002/pca.3293. Online ahead of print.ABSTRACTINTRODUCTION: Areca nut is an economic crop and an important component in traditional Chinese medicine (TCM) and ethnomedicine. The crop is rich in alkaloids and flavonoids. Most previous studies have focused on the chemical components, especially alkaloids, in crops from certain areca nut-producing areas.OBJECTIVE: The purpose of this study was to compare the differences in areca nut seeds in two main cultivation areas, identify differential metabolites, and evaluate seed quality in different production areas.METHODS: A widely targeted metabolomics method based on ultrahigh-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC-QQQ-MS), combined with the TCM systems pharmacology (TCMSP) database and multivariate statistical analysis, was used in this study to maximise the differentiation between quality characteristics of areca nut seeds from China and Southeast Asian regions.RESULTS: Altogether, 1031 metabolites were identified in areca nut seeds; by querying the TCMSP database, 375 metabolites were identified as the main active ingredients. Moreover, the research showed that the metabolic profiles of areca nut seeds from China (ASCN) and Southeast Asia (ASSA) exhibit significant differences, and the difference is mainly reflected in 318 compounds. The relative content of 146 metabolites in ASCN was significantly higher than that in ASSA. Through Kyoto Encyclopedia of Genes and Genomes (KEGG) comparative analysis, areca nut seed metabolites in Chinese production areas were determined to have a wider metabolic pathway.CONCLUSION: The areca nut seeds from cultivation areas possess many metabolites that are beneficial for health, including alkaloids, amino acids, phenolic acids, and lipids. Thus, compared with ASSA, ASCN have a higher medicinal value. This study provides a direction for the subsequent development and utilisation of areca nut seeds.PMID:37813812 | DOI:10.1002/pca.3293

Dissecting Causal Relationships Between Gut Microbiota, Blood Metabolites, and Stroke: A Mendelian Randomization Study

Mon, 09/10/2023 - 12:00
J Stroke. 2023 Sep;25(3):350-360. doi: 10.5853/jos.2023.00381. Epub 2023 Sep 26.ABSTRACTBACKGROUND AND PURPOSE: We investigated the causal relationships between the gut microbiota (GM), stroke, and potential metabolite mediators using Mendelian randomization (MR).METHODS: We leveraged the summary statistics of GM (n=18,340 in the MiBioGen consortium), blood metabolites (n=115,078 in the UK Biobank), and stroke (cases n=60,176 and controls n=1,310,725 in the Global Biobank Meta-Analysis Initiative) from the largest genome-wide association studies to date. We performed bidirectional MR analyses to explore the causal relationships between the GM and stroke, and two mediation analyses, two-step MR and multivariable MR, to discover potential mediating metabolites.RESULTS: Ten taxa were causally associated with stroke, and stroke led to changes in 27 taxa. In the two-step MR, Bifidobacteriales order, Bifidobacteriaceae family, Desulfovibrio genus, apolipoprotein A1 (ApoA1), phospholipids in high-density lipoprotein (HDL_PL), and the ratio of apolipoprotein B to ApoA1 (ApoB/ApoA1) were causally associated with stroke (all P<0.044). The causal associations between Bifidobacteriales order, Bifidobacteriaceae family and stroke were validated using the weighted median method in an independent cohort. The three GM taxa were all positively associated with ApoA1 and HDL_PL, whereas Desulfovibrio genus was negatively associated with ApoB/ApoA1 (all P<0.010). Additionally, the causal associations between the three GM taxa and ApoA1 remained significant after correcting for the false discovery rate (all q-values <0.027). Multivariable MR showed that the associations between Bifidobacteriales order, Bifidobacteriaceae family and stroke were mediated by ApoA1 and HDL_PL, each accounting for 6.5% (P=0.028) and 4.6% (P=0.033); the association between Desulfovibrio genus and stroke was mediated by ApoA1, HDL_PL, and ApoB/ApoA1, with mediated proportions of 7.6% (P=0.019), 4.2% (P=0.035), and 9.1% (P=0.013), respectively.CONCLUSION: The current MR study provides evidence supporting the causal relationships between several specific GM taxa and stroke and potential mediating metabolites.PMID:37813672 | DOI:10.5853/jos.2023.00381

Cohort Profile: Guangzhou Nutrition and Health Study (GNHS): A Population-Based Multi-Omics Study

Mon, 09/10/2023 - 12:00
J Epidemiol. 2023 Oct 7. doi: 10.2188/jea.JE20230108. Online ahead of print.ABSTRACTBACKGROUND: The Guangzhou Nutrition and Health Study (GNHS) aims to assess the determinants of metabolic disease in nutritional aspects, as well as other environmental and genetic factors, and explore possible biomarkers and mechanisms with multi-omics integration.METHODS: The population-based sample of adults in Guangzhou, China (baseline: 40-83 years old; n = 5118) was followed up about every 3 years. All will be tracked via on-site follow-up and health information systems. We assessed detailed information on lifestyle factors, physical activities, dietary assessments, psychological health, cognitive function, body measurements, and muscle function. Instrument tests included dual-energy X-ray absorptiometry scanning, carotid artery and liver ultrasonography evaluations, vascular endothelial function evaluation, upper-abdomen and brain magnetic resonance imaging, and 14-d real-time continuous glucose monitoring tests. We also measured multi-omics, including host genome-wide genotyping, serum metabolome and proteome, gut microbiome (16S rRNA sequencing, metagenome, and internal transcribed spacer 2 sequencing), and fecal metabolome and proteome.RESULTS: The baseline surveys were conducted from 2008 to 2015. Now, we have completed 3 waves. The 3rd and 4th follow-ups have started but have yet to end. A total of 5118 participants aged 40-83 took part in the study. The median age at baseline was approximately 59.0 years and the proportion of female participants was about 69.4%. Among all the participants, 3628 (71%) completed at least one on-site follow-up with a median duration of 9.48 years.CONCLUSION: The cohort will provide data that have been influential in establishing the role of nutrition in metabolic diseases with multi-omics.PMID:37813622 | DOI:10.2188/jea.JE20230108

Plasma Metabolomics Reveals Distinct Biological and Diagnostic Signatures for Melioidosis

Mon, 09/10/2023 - 12:00
Am J Respir Crit Care Med. 2023 Oct 9. doi: 10.1164/rccm.202207-1349OC. Online ahead of print.ABSTRACTRATIONALE: The global burden of sepsis is greatest in low-resource settings. Melioidosis, infection with the Gram-negative bacterium Burkholderia pseudomallei, is a frequent cause of fatal sepsis in endemic tropical regions such as Southeast Asia.OBJECTIVES: To investigate whether plasma metabolomics would identify biological pathways specific to melioidosis and yield clinically meaningful biomarkers.METHODS: Using a comprehensive approach, differential enrichment of plasma metabolites and pathways were systematically evaluated in patients from a prospective cohort of individuals hospitalized in rural Thailand with infection. Statistical and bioinformatics methods were used to distinguish metabolomic features and processes specific to melioidosis patients, and between fatal and non-fatal cases.MEASUREMENTS AND MAIN RESULTS: Metabolomic profiling and pathway enrichment analysis of plasma samples of melioidosis (n=175) and non-melioidosis infections (n=75) revealed a distinct immuno-metabolic state among patients with melioidosis, as suggested by excessive tryptophan catabolism in the kynurenine pathway and significantly increased lipid metabolism such as sphingomyelins and ceramide species. We derived a 12-metabolite classifier to distinguish melioidosis from other infections, with an area under the receiver operating characteristic curve of 0.87 in a second validation set of patients. Melioidosis non-survivors (n=94) had a significantly disturbed metabolome compared to survivors (n=81) with increased leucine, isoleucine and valine metabolism, and elevated circulating free fatty acids and acylcarnitines. A limited 8-metabolite panel shows promise as an early prognosticator of mortality in melioidosis.CONCLUSIONS: Melioidosis induces a distinct metabolomic state that can be leveraged to distinguish underlying pathophysiological mechanisms leading to increased risk of death. A twelve-metabolite signature accurately differentiates melioidosis from other infections and may have diagnostic applications.PMID:37812796 | DOI:10.1164/rccm.202207-1349OC

Quantitative Analysis of Acetyl-CoA, Malonyl-CoA, and Succinyl-CoA in Myocytes

Mon, 09/10/2023 - 12:00
J Am Soc Mass Spectrom. 2023 Oct 9. doi: 10.1021/jasms.3c00278. Online ahead of print.ABSTRACTSeveral analytical challenges make it difficult to accurately measure coenzyme A (CoA) metaboforms, including insufficient stability and a lack of available metabolite standards. Consequently, our understanding of CoA biology and the modulation of human diseases may be nascent. CoA's serve as lipid precursors, energy intermediates, and mediators of post-translational modifications of proteins. Here, we present a liquid chromatography-mass spectrometry (LC-MS) approach to measure malonyl-CoA, acetyl-CoA, and succinyl-CoA in complex biological samples. Additionally, we evaluated workflows to increase sample stability. We used reference standards to optimize CoA assay sensitivity and test CoA metabolite stability as a function of the reconstitution solvent. We show that using glass instead of plastic sample vials decreases CoA signal loss and improves the sample stability. We identify additives that improve CoA stability and facilitate accurate analysis of CoA species across large sample sets. We apply our optimized workflow to biological samples of skeletal muscle cells cultured under hypoxic and normoxia conditions. Together, our workflow improves the detection and identification of CoA species through targeted analysis in complex biological samples.PMID:37812744 | DOI:10.1021/jasms.3c00278

Reinventing metabolic pathways: Independent evolution of benzoxazinoids in flowering plants

Mon, 09/10/2023 - 12:00
Proc Natl Acad Sci U S A. 2023 Oct 17;120(42):e2307981120. doi: 10.1073/pnas.2307981120. Epub 2023 Oct 9.ABSTRACTBenzoxazinoids (BXDs) form a class of indole-derived specialized plant metabolites with broad antimicrobial and antifeedant properties. Unlike most specialized metabolites, which are typically lineage-specific, BXDs occur sporadically in a number of distantly related plant orders. This observation suggests that BXD biosynthesis arose independently numerous times in the plant kingdom. However, although decades of research in the grasses have led to the elucidation of the BXD pathway in the monocots, the biosynthesis of BXDs in eudicots is unknown. Here, we used a metabolomic and transcriptomic-guided approach, in combination with pathway reconstitution in Nicotiana benthamiana, to identify and characterize the BXD biosynthetic pathways from both Aphelandra squarrosa and Lamium galeobdolon, two phylogenetically distant eudicot species. We show that BXD biosynthesis in A. squarrosa and L. galeobdolon utilize a dual-function flavin-containing monooxygenase in place of two distinct cytochrome P450s, as is the case in the grasses. In addition, we identified evolutionarily unrelated cytochrome P450s, a 2-oxoglutarate-dependent dioxygenase, a UDP-glucosyltransferase, and a methyltransferase that were also recruited into these BXD biosynthetic pathways. Our findings constitute the discovery of BXD pathways in eudicots. Moreover, the biosynthetic enzymes of these pathways clearly demonstrate that BXDs independently arose in the plant kingdom at least three times. The heterogeneous pool of identified BXD enzymes represents a remarkable example of metabolic plasticity, in which BXDs are synthesized according to a similar chemical logic, but with an entirely different set of metabolic enzymes.PMID:37812727 | DOI:10.1073/pnas.2307981120

The metabolomic physics of complex diseases

Mon, 09/10/2023 - 12:00
Proc Natl Acad Sci U S A. 2023 Oct 17;120(42):e2308496120. doi: 10.1073/pnas.2308496120. Epub 2023 Oct 9.ABSTRACTHuman diseases involve metabolic alterations. Metabolomic profiles have served as a vital biomarker for the early identification of high-risk individuals and disease prevention. However, current approaches can only characterize individual key metabolites, without taking into account the reality that complex diseases are multifactorial, dynamic, heterogeneous, and interdependent. Here, we leverage a statistical physics model to combine all metabolites into bidirectional, signed, and weighted interaction networks and trace how the flow of information from one metabolite to the next causes changes in health state. Viewing a disease outcome as the consequence of complex interactions among its interconnected components (metabolites), we integrate concepts from ecosystem theory and evolutionary game theory to model how the health state-dependent alteration of a metabolite is shaped by its intrinsic properties and through extrinsic influences from its conspecifics. We code intrinsic contributions as nodes and extrinsic contributions as edges into quantitative networks and implement GLMY homology theory to analyze and interpret the topological change of health state from symbiosis to dysbiosis and vice versa. The application of this model to real data allows us to identify several hub metabolites and their interaction webs, which play a part in the formation of inflammatory bowel diseases. The findings by our model could provide important information on drug design to treat these diseases and beyond.PMID:37812720 | DOI:10.1073/pnas.2308496120

Identification of the lipodepsipeptide selethramide encoded in a giant nonribosomal peptide synthetase from a <em>Burkholderia</em> bacterium

Mon, 09/10/2023 - 12:00
Proc Natl Acad Sci U S A. 2023 Oct 17;120(42):e2304668120. doi: 10.1073/pnas.2304668120. Epub 2023 Oct 9.ABSTRACTBacterial natural products have found many important industrial applications. Yet traditional discovery pipelines often prioritize individual natural product families despite the presence of multiple natural product biosynthetic gene clusters in each bacterial genome. Systematic characterization of talented strains is a means to expand the known natural product space. Here, we report genomics, epigenomics, and metabolomics studies of Burkholderia sp. FERM BP-3421, a soil isolate and known producer of antitumor spliceostatins. Its genome is composed of two chromosomes and two plasmids encoding at least 29 natural product families. Metabolomics studies showed that FERM BP-3421 also produces antifungal aminopyrrolnitrin and approved anticancer romidepsin. From the orphan metabolome features, we connected a lipopeptide of 1,928 Da to an 18-module nonribosomal peptide synthetase encoded as a single gene in chromosome 1. Isolation and structure elucidation led to the identification of selethramide which contains a repeating pattern of serine and leucine and is cyclized at the side chain oxygen of the one threonine residue at position 13. A (R)-3-hydroxybutyric acid moiety decorates the N-terminal serine. Initial attempts to obtain deletion mutants to probe the role of selethramide failed. After acquiring epigenome (methylome) data for FERM BP-3421, we employed a mimicry by methylation strategy that improved DNA transfer efficiency. Mutants defective in selethramide biosynthesis showed reduced surfactant activity and impaired swarming motility that could be chemically complemented with selethramide. This work unveils a lipopeptide that promotes surface motility, establishes improved DNA transfer efficiency, and sets the stage for continued natural product identification from a prolific strain.PMID:37812712 | DOI:10.1073/pnas.2304668120

Impairment of serine transport across the blood-brain barrier by deletion of Slc38a5 causes developmental delay and motor dysfunction

Mon, 09/10/2023 - 12:00
Proc Natl Acad Sci U S A. 2023 Oct 17;120(42):e2302780120. doi: 10.1073/pnas.2302780120. Epub 2023 Oct 9.ABSTRACTBrain L-serine is critical for neurodevelopment and is thought to be synthesized solely from glucose. In contrast, we found that the influx of L-serine across the blood-brain barrier (BBB) is essential for brain development. We identified the endothelial Slc38a5, previously thought to be a glutamine transporter, as an L-serine transporter expressed at the BBB in early postnatal life. Young Slc38a5 knockout (KO) mice exhibit developmental alterations and a decrease in brain L-serine and D-serine, without changes in serum or liver amino acids. Slc38a5-KO brains exhibit accumulation of neurotoxic deoxysphingolipids, synaptic and mitochondrial abnormalities, and decreased neurogenesis at the dentate gyrus. Slc38a5-KO pups exhibit motor impairments that are affected by the administration of L-serine at concentrations that replenish the serine pool in the brain. Our results highlight a critical role of Slc38a5 in supplying L-serine via the BBB for proper brain development.PMID:37812701 | DOI:10.1073/pnas.2302780120

Root Exposure of Graphitic Carbon Nitride (g-C<sub>3</sub>N<sub>4</sub>) Modulates Metabolite Profile and Endophytic Bacterial Community to Alleviate Cadmium- and Arsenate-Induced Phytotoxicity to Rice (<em>Oryza sativa</em> L.)

Mon, 09/10/2023 - 12:00
ACS Nano. 2023 Oct 9. doi: 10.1021/acsnano.3c03066. Online ahead of print.ABSTRACTTo investigate the mechanisms by which g-C3N4 alleviates metal(loid)-induced phytotoxicity, rice seedlings were exposed to 100 and 250 mg/kg graphitic carbon nitride (g-C3N4) with or without coexposure to 10 mg/kg Cd and 50 mg/kg As for 30 days. Treatment with 250 mg/kg g-C3N4 significantly increased shoot and root fresh weight by 22.4-29.9%, reduced Cd and As accumulations in rice tissues by 20.6-26.6%, and elevated the content of essential nutrients (e.g., K, S, Mg, Cu, and Zn) compared to untreated controls. High-throughput sequencing showed that g-C3N4 treatment increased the proportion of plant-growth-promoting endophytic bacteria, including Streptomyces, Saccharimonadales, and Thermosporothrix, by 0.5-3.30-fold; these groups are known to be important to plant nutrient assimilation, as well as metal(loid) resistance and bioremediation. In addition, the population of Deinococcus was decreased by 72.3%; this genus is known to induce biotransformation As(V) to As(III). Metabolomics analyses highlighted differentially expressed metabolites (DEMs) involved in the metabolism of tyrosine metabolism, pyrimidines, and purines, as well as phenylpropanoid biosynthesis related to Cd/As-induced phytotoxicity. In the phenylpropanoid biosynthesis pathway, the increased expression of 4-coumarate (1.13-fold) and sinapyl alcohol (1.26-fold) triggered by g-C3N4 coexposure with Cd or As played a critical role in promoting plant growth and enhancing rice resistance against metal(loid) stresses. Our findings demonstrate the potential of g-C3N4 to enhance plant growth and minimize the Cd/As-induced toxicity in rice and provide a promising nanoenabled strategy for remediating heavy metal(loid)-contaminated soil.PMID:37812587 | DOI:10.1021/acsnano.3c03066

Microbial degradation mechanism of historical silk revealed by proteomics and metabolomics

Mon, 09/10/2023 - 12:00
Anal Methods. 2023 Oct 9. doi: 10.1039/d3ay01033c. Online ahead of print.ABSTRACTArchaeological silk undergoes destructive and irreversible changes during the natural process of decay. However, in-depth studies on the influence of this biological factor are still lacking. Here, a combination of proteomics and metabolomics is proposed for the first time to explore the interaction between bacteria and historical silk during biodegradation, which provides information on changes at the molecular level of proteins and bacterial metabolites. Morphological observation revealed biofilms produced by Stenotrophomonas maltophilia and Pseudomonas alcaligenes when cultured in the stationary phase and confirmed severe deterioration of silk. Proteomics showed that S. maltophilia had an unbiased effect on silk fibroin, indicating its ability to disrupt both heavy and light chains, as well as other proteins, while P. alcaligenes showed an affinity for more disordered proteins. Analysis of bacterial metabolites showed that overall activity reduction and significant accumulation of fatty acid and phenol metabolites occurred after silk addition, suggesting that the presence of silk may inhibit the activity of an individual strain. This study provides a new insight into the microbial degradation mechanism of archaeological silk.PMID:37812415 | DOI:10.1039/d3ay01033c

A comprehensive investigation of the regulatory roles of OsERF096, an AP2/ERF transcription factor, in rice cold stress response

Mon, 09/10/2023 - 12:00
Plant Cell Rep. 2023 Oct 9. doi: 10.1007/s00299-023-03079-6. Online ahead of print.ABSTRACTOsERF096 negatively regulates rice cold tolerance and mediates IAA biosynthesis and signaling under cold stress. The APETALA2/ethylene-responsive factor (AP2/ERF) transcription factors play important roles in regulating plant tolerance to abiotic stress. OsERF096 was previously identified as a direct target of miR1320, and was suggested to negatively regulate rice cold tolerance. In this study, we performed RNA-sequencing and targeted metabolomics assays to reveal the regulatory roles of OsERF096 in cold stress response. GO and KEGG analysis of differentially expressed genes showed that the starch and sucrose metabolism, plant-pathogen interaction, and plant hormone signal transduction pathways were significantly enriched. Quantification analysis confirmed a significant difference in sugar contents among WT and OsERF096 transgenic lines under cold treatment. Targeted metabolomics analysis uncovered that IAA accumulation and signaling were modified by OsERF096 in response to cold stress. Expectedly, qRT-PCR assays confirmed significant OsIAAs and OsARFs expression changes in OsERF096 transgenic lines. Finally, we identified three targets of OsERF096 based on RNA-seq, qRT-PCR, and dual-LUC assays. In summary, these results revealed the multiple regulatory roles of OsERF096 in cold stress response.PMID:37812280 | DOI:10.1007/s00299-023-03079-6

Pages