PubMed
Qualitative Metabolite Profiling of <em>Orchis purpurea</em> Huds. by GC and UHPLC/MS Approaches
Plants (Basel). 2024 Apr 10;13(8):1064. doi: 10.3390/plants13081064.ABSTRACTOrchids are experiencing wide success in ornamental, medicinal, and food fields. The reason for their success is correlated with both their morphology and metabolomics, the latter linked to their taste and biological effects. Despite many orchids having already been the subject of chemotaxonomic works, some of them are still untapped, like the case of Orchis purpurea. O. purpurea is one of the most common species of the genus Orchis, present in hedgerows, verges, and light woodland, where it is one of the few herbaceous plants able to be unpleasant to herbivorous animals. Essential oil from roots, stems, leaves, and flowers were analyzed via GC/MS analyses, revealing the presence of 70 compounds, with a clear prevalence of coumarin. The high concentration of this metabolite may explain the resistance of O. purpurea to herbivores, being associated with appetite-suppressing properties and a bitter taste. Non-volatile fractions were analyzed via UHPLC-MS analysis revealing the presence of hydroxycinnamic acid derivatives, polyphenols, and glycosidic compounds, probably responsible for their color and fragrance. Taken together, the herein presented results shed light on both the defensive strategy and the chemotaxonomy of O. purpurea.PMID:38674473 | DOI:10.3390/plants13081064
Carotenoid Accumulation in the <em>Rhododendron chrysanthum</em> Is Mediated by Abscisic Acid Production Driven by UV-B Stress
Plants (Basel). 2024 Apr 9;13(8):1062. doi: 10.3390/plants13081062.ABSTRACTRhododendron chrysanthum (R. chrysanthum) development is hampered by UV-B sunlight because it damages the photosynthetic system and encourages the buildup of carotenoids. Nevertheless, it is still unclear how R. chrysanthum repairs the photosynthetic system to encourage the formation of carotenoid pigments. The carotenoid and abscisic acid (ABA) concentrations of the R. chrysanthum were ascertained in this investigation. Following UV-B stress, the level of carotenoids was markedly increased, and there was a strong correlation between carotenoids and ABA. The modifications of R. chrysanthum's OJIP transient curves were examined in order to verify the regulatory effect of ABA on carotenoid accumulation. It was discovered that external application of ABA lessened the degree of damage on the donor side and lessened the damage caused by UV-B stress on R. chrysanthum. Additionally, integrated metabolomics and transcriptomics were used to examine the changes in differentially expressed genes (DEGs) and differential metabolites (DMs) in R. chrysanthum in order to have a better understanding of the role that ABA plays in carotenoid accumulation. The findings indicated that the majority of DEGs were connected to carotenoid accumulation and ABA signaling sensing. To sum up, we proposed a method for R. chrysanthum carotenoid accumulation. UV-B stress activates ABA production, which then interacts with transcription factors to limit photosynthesis and accumulate carotenoids, such as MYB-enhanced carotenoid biosynthesis. This study showed that R. chrysanthum's damage from UV-B exposure was lessened by carotenoid accumulation, and it also offered helpful suggestions for raising the carotenoid content of plants.PMID:38674471 | DOI:10.3390/plants13081062
Combined Analysis of Untargeted Metabolomics and Transcriptomics Revealed Seed Germination and Seedling Establishment in Zelkova schneideriana
Genes (Basel). 2024 Apr 12;15(4):488. doi: 10.3390/genes15040488.ABSTRACTZelkova schneideriana Hand.-Mazz is a valuable ornamental tree and timber source, whose seedling breeding and large-scale cultivation are restricted by low seed germination and seedling rates. The regulatory mechanisms underlying seed germination and seedling establishment in Z. schneideriana remain unknown. This study conducted metabolomic and transcriptomic analyses of seed germination and seedling establishment in Z. schneideriana. Regular expression of genes and metabolite levels has been observed in plant hormone signal transduction, starch and sucrose metabolism, linoleic acid metabolism, and phenylpropanoid biosynthesis. The reduction in abscisic acid during seed germination may lead to seed release from dormancy. After the seed is released from dormancy, the metabolic levels of auxin, cytokinins, brassinolide, and various sugars are elevated, and they are consumed in large quantities during the seedling establishment stage. Linoleic acid metabolism is gradually activated during seedling establishment. Transcriptome analysis showed that a large number of genes in different metabolic pathways are upregulated during plant establishment, and material metabolism may be accelerated during seedling establishment. Genes regulating carbohydrate metabolism are altered during seed germination and seedling establishment, which may have altered the efficiency of carbohydrate utilization. In addition, the syntheses of lignin monomers and cellulose have different characteristics at different stages. These results provide new insights into the complex mechanisms underlying seed germination and seedling establishment in Z. schneideriana and other woody plants.PMID:38674422 | DOI:10.3390/genes15040488
Novel Synergistic Probiotic Intervention: Transcriptomic and Metabolomic Analysis Reveals Ameliorative Effects on Immunity, Gut Barrier, and Metabolism of Mice during Salmonella typhimurium Infection
Genes (Basel). 2024 Mar 29;15(4):435. doi: 10.3390/genes15040435.ABSTRACTSalmonella typhimurium (S. typhimurium), a prevalent cause of foodborne infection, induces significant changes in the host transcriptome and metabolome. The lack of therapeutics with minimal or no side effects prompts the scientific community to explore alternative therapies. This study investigates the therapeutic potential of a probiotic mixture comprising Lactobacillus acidophilus (L. acidophilus 1.3251) and Lactobacillus plantarum (L. plantarum 9513) against S. typhimurium, utilizing transcriptome and metabolomic analyses, a novel approach that has not been previously documented. Twenty-four SPF-BALB/c mice were divided into four groups: control negative group (CNG); positive control group (CPG); probiotic-supplemented non-challenged group (LAPG); and probiotic-supplemented Salmonella-challenged group (LAPST). An RNA-sequencing analysis of small intestinal (ileum) tissue revealed 2907 upregulated and 394 downregulated DEGs in the LAPST vs. CPG group. A functional analysis of DEGs highlighted their significantly altered gene ontology (GO) terms related to metabolism, gut integrity, cellular development, and immunity (p ≤ 0.05). The KEGG analysis showed that differentially expressed genes (DEGs) in the LAPST group were primarily involved in pathways related to gut integrity, immunity, and metabolism, such as MAPK, PI3K-Akt, AMPK, the tryptophan metabolism, the glycine, serine, and threonine metabolism, ECM-receptor interaction, and others. Additionally, the fecal metabolic analysis identified 1215 upregulated and 305 downregulated metabolites in the LAPST vs. CPG group, implying their involvement in KEGG pathways including bile secretion, propanoate metabolism, arginine and proline metabolism, amino acid biosynthesis, and protein digestion and absorption, which are vital for maintaining barrier integrity, immunity, and metabolism. In conclusion, these findings suggest that the administration of a probiotic mixture improves immunity, maintains gut homeostasis and barrier integrity, and enhances metabolism in Salmonella infection.PMID:38674370 | DOI:10.3390/genes15040435
Uterine Cesarean Scar Tissue-An Immunohistochemical Study
Medicina (Kaunas). 2024 Apr 18;60(4):651. doi: 10.3390/medicina60040651.ABSTRACTBackground and Objectives: Wound healing encompasses a multitude of factors and entails the establishment of interactions among components of the basement membrane. The quantification of particle concentrations can serve as valuable biomarkers for assessing biomechanical muscle properties. The objective of this study was to examine the immunoexpression and immunoconcentration of myometrial collagen type VI, elastin, alpha-smooth muscle actin, and smooth muscle myosin heavy chain, as well as the expression of platelets and clusters of differentiation 31 in the uterine scar following a cesarean section (CS). Materials and Methods: A total of 177 biopsies were procured from a cohort of pregnant women who were healthy, specifically during the surgical procedure of CS. The participants were categorized into seven distinct groups. Group 1 consisted of primiparas, with a total of 52 individuals. The subsequent groups were organized based on the duration of time that had elapsed since their previous CS. The analysis focused on the immunoexpression and immunoconcentration of the particles listed. Results: No significant variations were observed in the myometrial immunoconcentration of collagen type VI, elastin, smooth muscle myosin, and endothelial cell cluster of differentiation 31 among the analyzed groups. The concentration of alpha-smooth muscle actin in the myometrium was found to be significantly higher in patients who underwent CS within a period of less than 2 years since their previous CS, compared to those with a longer interval between procedures. Conclusions: Our findings indicate that the immunoconcentration of uterine myometrial scar collagen type VI, elastin, smooth muscle myosin heavy chain, alpha-smooth muscle actin, and endothelial cell marker cluster of differentiation 31 remains consistent regardless of the duration elapsed since the previous CS. The findings indicate that there are no significant alterations in the biomechanical properties of the uterine muscle beyond a period of 13 months following a CS.PMID:38674297 | DOI:10.3390/medicina60040651
Dietary Supplementation of Myo-Inositol, Cocoa Polyphenols, and Soy Isoflavones Improves Vasomotor Symptoms and Metabolic Profile in Menopausal Women with Metabolic Syndrome: A Retrospective Clinical Study
Medicina (Kaunas). 2024 Apr 4;60(4):598. doi: 10.3390/medicina60040598.ABSTRACTBackground and Objectives: Hormonal changes physiologically occurring in menopausal women may increase the risk of developing metabolic and vasomotor disturbances, which contribute to increase the risk of developing other concomitant pathologies, such as metabolic syndrome (MetS). Materials and Methods: Retrospective data from 200 menopausal women with MetS and vasomotor symptoms taking one sachet per day of the dietary supplement INOFOLIC® NRT (Farmares srl, Rome, Italy) were collected. Each sachet consisted of myo-Inositol (2000 mg), cocoa polyphenols (30 mg), and soy isoflavones (80 mg, of which 50 mg is genistin). Patients recorded their symptoms through a medical questionnaire at the beginning of the administration (T0) and after 6 months (T1). Results: We observed an improvement in both the frequency and the severity of hot flushes: increased percentage of 2-3 hot flushes (28 at T0 vs. 65% at T1, p value < 0.001) and decreased percentage of 4-9 hot flushes (54% at T0 vs. 18% at T1, p value < 0.001). Moreover, symptoms of depression improved after supplementation (87% at T0 vs. 56% at T1 of patients reported moderate depression symptoms, p value < 0.001). Regarding metabolic profile, women improved body mass index and waist circumference with a reduction in the percentage of overweight and obesity women (88% at T0 vs. 51% at T1, p value = 0.01; 14% at T0 vs. 9% at T1, p value = 0.04). In addition, the number of women suffering from non-insulin dependent diabetes reduced (26% at T0 vs. 16% at T1, p value = 0.04). Conclusions: These data corroborate previously observed beneficial effects of the oral administration of myo-Inositol, cocoa polyphenols, and soy isoflavones against menopausal symptoms in the study population. Considering the promising results of the present study, further prospective controlled clinical trials are needed to deeply understand and support the efficacy of these natural compounds for the management of menopausal symptoms.PMID:38674244 | DOI:10.3390/medicina60040598
Transcription Factor <em>Mc</em>HB7 Improves Ice Plant Drought Tolerance through ABA Signaling Pathway
Int J Mol Sci. 2024 Apr 22;25(8):4569. doi: 10.3390/ijms25084569.ABSTRACTAs global climate change continues, drought episodes have become increasingly frequent. Studying plant stress tolerance is urgently needed to ensure food security. The common ice plant is one of the model halophyte plants for plant stress biology research. This study aimed to investigate the functions of a newly discovered transcription factor, Homeobox 7 (HB7), from the ice plant in response to drought stress. An efficient Agrobacterium-mediated transformation method was established in the ice plant, where ectopic McHB7 expression may be sustained for four weeks. The McHB7 overexpression (OE) plants displayed drought tolerance, and the activities of redox enzymes and chlorophyll content in the OE plants were higher than the wild type. Quantitative proteomics revealed 1910 and 495 proteins significantly changed in the OE leaves compared to the wild type under the control and drought conditions, respectively. Most increased proteins were involved in the tricarboxylic acid cycle, photosynthesis, glycolysis, pyruvate metabolism, and oxidative phosphorylation pathways. Some were found to participate in abscisic acid signaling or response. Furthermore, the abscisic acid levels increased in the OE compared with the wild type. McHB7 was revealed to bind to the promoter motifs of Early Responsive to Dehydration genes and abscisic acid-responsive genes, and protein-protein interaction analysis revealed candidate proteins responsive to stresses and hormones (e.g., abscisic acid). To conclude, McHB7 may contribute to enhance plant drought tolerance through abscisic acid signaling.PMID:38674154 | DOI:10.3390/ijms25084569
The Integration of Transcriptome and Metabolome Analyses Provides Insights into the Determinants of the Wood Properties in Toona ciliata
Int J Mol Sci. 2024 Apr 21;25(8):4541. doi: 10.3390/ijms25084541.ABSTRACTToona ciliata, also known as Chinese mahogany, is a high-quality and fast-growing wood species with a high economic value. The wood properties of T. ciliata of different provenances vary significantly. In this study, we conducted comprehensive transcriptome and metabolome analyses of red and non-red T. ciliata wood cores of different provenances to compare their wood properties and explore the differential metabolites and genes that govern the variation in their wood properties. Through combined analyses, three differential genes and two metabolites were identified that are possibly related to lignin synthesis. The lignin content in wood cores from T. ciliata of different provenances shows significant variation following systematic measurement and comparisons. The gene Tci09G002190, one of the three differential genes, was identified as a member of the CAD (Cinnamyl alcohol dehydrogenase) gene family of T. ciliata, which is associated with lignin synthesis. Our data provide insights into the determinants of the wood properties in T. ciliata, providing a solid foundation for research into the subsequent mechanisms of the formation of T. ciliata wood.PMID:38674126 | DOI:10.3390/ijms25084541
Using Targeted Metabolomics to Unravel Phenolic Metabolites of Plant Origin in Animal Milk
Int J Mol Sci. 2024 Apr 20;25(8):4536. doi: 10.3390/ijms25084536.ABSTRACTMilk holds a high nutritional value and is associated with diverse health benefits. The understanding of its composition of (poly)phenolic metabolites is limited, which necessitates a comprehensive evaluation of the subject. This study aimed at analyzing the (poly)phenolic profile of commercial milk samples from cows and goats and investigating their sterilization treatments, fat content, and lactose content. Fingerprinting of phenolic metabolites was achieved by using ultra-high-performance liquid chromatography coupled with triple-quadrupole mass spectrometry (UHPLC-QqQ-MS/MS). Two hundred and three potential microbial and phase II metabolites of the main dietary (poly)phenols were targeted. Twenty-five metabolites were identified, revealing a diverse array of phenolic metabolites in milk, including isoflavones and their microbial catabolites equol and O-desmethylangolensin, phenyl-γ-valerolactones (flavan-3-ol microbial catabolites), enterolignans, urolithins (ellagitannin microbial catabolites), benzene diols, and hippuric acid derivates. Goat's milk contained higher concentrations of these metabolites than cow's milk, while the sterilization process and milk composition (fat and lactose content) had minimal impact on the metabolite profiles. Thus, the consumption of goat's milk might serve as a potential means to supplement bioactive phenolic metabolites, especially in individuals with limited production capacity. However, further research is needed to elucidate the potential health effects of milk-derived phenolics.PMID:38674121 | DOI:10.3390/ijms25084536
Serotonin Transporter Deficiency Induces Metabolic Alterations in the Ileal Mucosa
Int J Mol Sci. 2024 Apr 18;25(8):4459. doi: 10.3390/ijms25084459.ABSTRACTSerotonin transporter (SERT) deficiency has been implicated in metabolic syndrome, intestinal inflammation, and microbial dysbiosis. Interestingly, changes in microbiome metabolic capacity and several alterations in host gene expression, including lipid metabolism, were previously observed in SERT-/- mice ileal mucosa. However, the precise host or microbial metabolites altered by SERT deficiency that may contribute to the pleiotropic phenotype of SERT KO mice are not yet understood. This study investigated the hypothesis that SERT deficiency impacts lipid and microbial metabolite abundances in the ileal mucosa, where SERT is highly expressed. Ileal mucosal metabolomics was performed by Metabolon on wild-type (WT) and homozygous SERT knockout (KO) mice. Fluorescent-activated cell sorting (FACS) was utilized to measure immune cell populations in ileal lamina propria to assess immunomodulatory effects caused by SERT deficiency. SERT KO mice exhibited a unique ileal mucosal metabolomic signature, with the most differentially altered metabolites being lipids. Such changes included increased diacylglycerols and decreased monoacylglycerols in the ileal mucosa of SERT KO mice compared to WT mice. Further, the ileal mucosa of SERT KO mice exhibited several changes in microbial-related metabolites known to play roles in intestinal inflammation and insulin resistance. SERT KO mice also had a significant reduction in the abundance of ileal group 3 innate lymphoid cells (ILC3). In conclusion, SERT deficiency induces complex alterations in the ileal mucosal environment, indicating potential links between serotonergic signaling, gut microbiota, mucosal immunity, intestinal inflammation, and metabolic syndrome.PMID:38674044 | DOI:10.3390/ijms25084459
Synthetic Microbial Community Members Interact to Metabolize Caproic Acid to Inhibit Potato Dry Rot Disease
Int J Mol Sci. 2024 Apr 18;25(8):4437. doi: 10.3390/ijms25084437.ABSTRACTThe potato dry rot disease caused by Fusarium spp. seriously reduces potato yield and threatens human health. However, potential biocontrol agents cannot guarantee the stability and activity of biocontrol. Here, 18 synthetic microbial communities of different scales were constructed, and the synthetic microbial communities with the best biocontrol effect on potato dry rot disease were screened through in vitro and in vivo experiments. The results show that the synthetic community composed of Paenibacillus amylolyticus, Pseudomonas putida, Acinetobacter calcoaceticus, Serratia proteamaculans, Actinomycetia bacterium and Bacillus subtilis has the best biocontrol activity. Metabolomics results show that Serratia protoamaculans interacts with other member strains to produce caproic acid and reduce the disease index to 38.01%. Furthermore, the mycelial growth inhibition after treatment with caproic acid was 77.54%, and flow cytometry analysis showed that the living conidia rate after treatment with caproic acid was 11.2%. This study provides potential value for the application of synthetic microbial communities in potatoes, as well as the interaction mechanisms between member strains of synthetic microbial communities.PMID:38674022 | DOI:10.3390/ijms25084437
Metabolomic Markers in Attention-Deficit/Hyperactivity Disorder (ADHD) among Children and Adolescents-A Systematic Review
Int J Mol Sci. 2024 Apr 16;25(8):4385. doi: 10.3390/ijms25084385.ABSTRACTAttention-Deficit/Hyperactivity Disorder (ADHD), characterized by clinical diversity, poses diagnostic challenges often reliant on subjective assessments. Metabolomics presents an objective approach, seeking biomarkers for precise diagnosis and targeted interventions. This review synthesizes existing metabolomic insights into ADHD, aiming to reveal biological mechanisms and diagnostic potentials. A thorough PubMed and Web of Knowledge search identified studies exploring blood/urine metabolites in ADHD-diagnosed or psychometrically assessed children and adolescents. Synthesis revealed intricate links between ADHD and altered amino acid metabolism, neurotransmitter dysregulation (especially dopamine and serotonin), oxidative stress, and the kynurenine pathway impacting neurotransmitter homeostasis. Sleep disturbance markers, notably in melatonin metabolism, and stress-induced kynurenine pathway activation emerged. Distinct metabolic signatures, notably in the kynurenine pathway, show promise as potential diagnostic markers. Despite limitations like participant heterogeneity, this review underscores the significance of integrated therapeutic approaches targeting amino acid metabolism, neurotransmitters, and stress pathways. While guiding future research, this overview of the metabolomic findings in ADHD suggests directions for precision diagnostics and personalized ADHD interventions.PMID:38673970 | DOI:10.3390/ijms25084385
Low-Protein Diets Differentially Regulate Energy Balance during Thermoneutral and Heat Stress in Cobb Broiler Chicken (<em>Gallus domesticus</em>)
Int J Mol Sci. 2024 Apr 15;25(8):4369. doi: 10.3390/ijms25084369.ABSTRACTThe objective was to assess whether low-protein (LP) diets regulate food intake (FI) and thermogenesis differently during thermoneutral (TN) and heat stress (HS) conditions. Two-hundred-day-old male broiler chicks were weight-matched and assigned to 36 pens with 5-6 chicks/pen. After 2 weeks of acclimation, birds were subjected into four groups (9 pens/group) including (1) a normal-protein diet under TN (ambient temperature), (2) an LP diet under TN, (3) a normal-protein diet under HS (35 °C for 7 h/day), and (4) an LP diet under HS, for 4 weeks. During HS, but not TN, LP tended to decrease FI, which might be associated with a lower mRNA abundance of duodenal ghrelin and higher GIP during HS. The LP group had a higher thermal radiation than NP under TN, but during HS, the LP group had a lower thermal radiation than NP. This was linked with higher a transcript of muscle β1AR and AMPKα1 during TN, but not HS. Further, LP increased the gene expression of COX IV during TN but reduced COX IV and the sirtuin 1 abundance during HS. The dietary protein content differentially impacted plasma metabolome during TN and HS with divergent changes in amino acids such as tyrosine and tryptophan. Compared to NP, LP had increased abundances of p_Tenericutes, c_Mollicutes, c_Mollicutes_RF9, and f_tachnospiraceae under HS. Overall, LP diets may mitigate the negative outcome of heat stress on the survivability of birds by reducing FI and heat production. The differential effect of an LP diet on energy balance during TN and HS is likely regulated by gut and skeletal muscle and alterations in plasma metabolites and cecal microbiota.PMID:38673954 | DOI:10.3390/ijms25084369
Proteomic Analysis of Domestic Cat Blastocysts and Their Secretome Produced in an In Vitro Culture System without the Presence of the Zona Pellucida
Int J Mol Sci. 2024 Apr 14;25(8):4343. doi: 10.3390/ijms25084343.ABSTRACTDomestic cat blastocysts cultured without the zona pellucida exhibit reduced implantation capacity. However, the protein expression profile has not been evaluated in these embryos. The objective of this study was to evaluate the protein expression profile of domestic cat blastocysts cultured without the zona pellucida. Two experimental groups were generated: (1) domestic cat embryos generated by IVF and cultured in vitro (zona intact, (ZI)) and (2) domestic cat embryos cultured in vitro without the zona pellucida (zona-free (ZF group)). The cleavage, morula, and blastocyst rates were estimated at days 2, 5 and 7, respectively. Day 7 blastocysts and their culture media were subjected to liquid chromatography-tandem mass spectrometry (LC-MS/MS). The UniProt Felis catus database was used to identify the standard proteome. No significant differences were found in the cleavage, morula, or blastocyst rates between the ZI and ZF groups (p > 0.05). Proteomic analysis revealed 22 upregulated and 20 downregulated proteins in the ZF blastocysts. Furthermore, 14 proteins involved in embryo development and implantation were present exclusively in the culture medium of the ZI blastocysts. In conclusion, embryo culture without the zona pellucida did not affect in vitro development, but altered the protein expression profile and release of domestic cat blastocysts.PMID:38673927 | DOI:10.3390/ijms25084343
Lipidomics Analysis Unravels Aberrant Lipid Species and Pathways Induced by Zinc Oxide Nanoparticles in Kidney Cells
Int J Mol Sci. 2024 Apr 12;25(8):4285. doi: 10.3390/ijms25084285.ABSTRACTZinc oxide nanoparticles (ZnO NPs) are widely used in versatile applications, from high technology to household products. While numerous studies have examined the toxic gene profile of ZnO NPs across various tissues, the specific lipid species associated with adverse effects and potential biomarkers remain elusive. In this study, we conducted a liquid chromatography-mass spectrometry based lipidomics analysis to uncover potential lipid biomarkers in human kidney cells following treatment with ZnO NPs. Furthermore, we employed lipid pathway enrichment analysis (LIPEA) to elucidate altered lipid-related signaling pathways. Our results demonstrate that ZnO NPs induce cytotoxicity in renal epithelial cells and modulate lipid species; we identified 64 lipids with a fold change (FC) > 2 and p < 0.01 with corrected p < 0.05 in HK2 cells post-treatment with ZnO NPs. Notably, the altered lipids between control HK2 cells and those treated with ZnO NPs were associated with the sphingolipid, autophagy, and glycerophospholipid pathways. This study unveils novel potential lipid biomarkers of ZnO NP nanotoxicity, representing the first lipidomic profiling of ZnO NPs in human renal epithelial cells.PMID:38673870 | DOI:10.3390/ijms25084285
Identification of Plasma Lipid Alterations Associated with Melanoma Metastasis
Int J Mol Sci. 2024 Apr 11;25(8):4251. doi: 10.3390/ijms25084251.ABSTRACTThe aim of this study was to apply a state-of-the-art quantitative lipidomic profiling platform to uncover lipid alterations predictive of melanoma progression. Our study included 151 melanoma patients; of these, 83 were without metastasis and 68 with metastases. Plasma samples were analyzed using a targeted Lipidyzer™ platform, covering 13 lipid classes and over 1100 lipid species. Following quality control filters, 802 lipid species were included in the subsequent analyses. Total plasma lipid contents were significantly reduced in patients with metastasis. Specifically, levels of two out of the thirteen lipid classes (free fatty acids (FFAs) and lactosylceramides (LCERs)) were significantly decreased in patients with metastasis. Three lipids (CE(12:0), FFA(24:1), and TAG47:2-FA16:1) were identified as more effective predictors of melanoma metastasis than the well-known markers LDH and S100B. Furthermore, the predictive value substantially improved upon combining the lipid markers. We observed an increase in the cumulative levels of five lysophosphatidylcholines (LPC(16:0); LPC(18:0); LPC(18:1); LPC(18:2); LPC(20:4)), each individually associated with an elevated risk of lymph node metastasis but not cutaneous or distant metastasis. Additionally, seventeen lipid molecules were linked to patient survival, four of which (CE(12:0), CE(14:0), CE(15:0), SM(14:0)) overlapped with the lipid panel predicting metastasis. This study represents the first comprehensive investigation of the plasma lipidome of melanoma patients to date. Our findings suggest that plasma lipid profiles may serve as important biomarkers for predicting clinical outcomes of melanoma patients, including the presence of metastasis, and may also serve as indicators of patient survival.PMID:38673837 | DOI:10.3390/ijms25084251
Metabolic Comparison and Molecular Networking of Antimicrobials in <em>Streptomyces</em> Species
Int J Mol Sci. 2024 Apr 10;25(8):4193. doi: 10.3390/ijms25084193.ABSTRACTStreptomyces are well-known for producing bioactive secondary metabolites, with numerous antimicrobials essential to fight against infectious diseases. Globally, multidrug-resistant (MDR) microorganisms significantly challenge human and veterinary diseases. To tackle this issue, there is an urgent need for alternative antimicrobials. In the search for potent agents, we have isolated four Streptomyces species PC1, BT1, BT2, and BT3 from soils collected from various geographical regions of the Himalayan country Nepal, which were then identified based on morphology and 16S rRNA gene sequencing. The relationship of soil microbes with different Streptomyces species has been shown in phylogenetic trees. Antimicrobial potency of isolates was carried out against Staphylococcus aureus American Type Culture Collection (ATCC) 43300, Shigella sonnei ATCC 25931, Salmonella typhi ATCC 14028, Klebsiella pneumoniae ATCC 700603, and Escherichia coli ATCC 25922. Among them, Streptomyces species PC1 showed the highest zone of inhibition against tested pathogens. Furthermore, ethyl acetate extracts of shake flask fermentation of these Streptomyces strains were subjected to liquid chromatography-tandem mass spectrometric (LC-MS/MS) analysis for their metabolic comparison and Global Natural Products Social Molecular Networking (GNPS) web-based molecular networking. We found very similar metabolite composition in four strains, despite their geographical variation. In addition, we have identified thirty-seven metabolites using LC-MS/MS analysis, with the majority belonging to the diketopiperazine class. Among these, to the best of our knowledge, four metabolites, namely cyclo-(Ile-Ser), 2-n-hexyl-5-n-propylresorcinol, 3-[(6-methylpyrazin-2-yl) methyl]-1H-indole, and cyclo-(d-Leu-l-Trp), were detected for the first time in Streptomyces species. Besides these, other 23 metabolites including surfactin B, surfactin C, surfactin D, and valinomycin were identified with the help of GNPS-based molecular networking.PMID:38673777 | DOI:10.3390/ijms25084193
Integrated Omics Analysis Uncovers the Culprit behind Exacerbated Atopic Dermatitis in a Diet-Induced Obesity Model
Int J Mol Sci. 2024 Apr 9;25(8):4143. doi: 10.3390/ijms25084143.ABSTRACTAtopic dermatitis (AD), a chronic inflammatory skin disease, is exacerbated by obesity, yet the precise linking mechanism remains elusive. This study aimed to elucidate how obesity amplifies AD symptoms. We studied skin samples from three mouse groups: sham control, AD, and high-fat (HF) + AD. The HF + AD mice exhibited more severe AD symptoms than the AD or sham control mice. Skin lipidome analysis revealed noteworthy changes in arachidonic acid (AA) metabolism, including increased expression of pla2g4, a key enzyme in AA generation. Genes for phospholipid transport (Scarb1) and acyltransferase utilizing AA as the acyl donor (Agpat3) were upregulated in HF + AD skin. Associations were observed between AA-containing phospholipids and skin lipids containing AA and its metabolites. Furthermore, imbalanced phospholipid metabolism was identified in the HF + AD mice, marked by excessive activation of the AA and phosphatidic acid (PA)-mediated pathway. This imbalance featured increased expression of Plcb1, Plcg1, and Dgk involved in PA generation, along with a decrease in genes converting PA into diglycerol (DG) and CDP-DG (Lpin1 and cds1). This investigation revealed imbalanced phospholipid metabolism in the skin of HF + AD mice, contributing to the heightened inflammatory response observed in HF + AD, shedding light on potential mechanisms linking obesity to the exacerbation of AD symptoms.PMID:38673730 | DOI:10.3390/ijms25084143
Integrated Untargeted Metabolome, Full-Length Sequencing and Transcriptome Analyses Reveal the Mechanism of Flavonoid Biosynthesis in Blueberry (Vaccinium spp.) Fruit
Int J Mol Sci. 2024 Apr 9;25(8):4137. doi: 10.3390/ijms25084137.ABSTRACTAs a highly economic berry fruit crop, blueberry is enjoyed by most people and has various potential health benefits, many of which are attributed to the relatively high concentrations of flavonoids. To obtain more accurate and comprehensive transcripts, the full-length transcriptome of half-highbush blueberry (Vaccinium corymbosum/angustifolium cultivar Northland) obtained using single molecule real-time and next-generation sequencing technologies was reported for the first time. Overall, 147,569 consensus transcripts (average length, 2738 bp; N50, 3176 bp) were obtained. After quality control steps, 63,425 high-quality isoforms were obtained and 5030 novel genes, 3002 long non-coding RNAs, 3946 transcription factor genes (TFs), 30,540 alternative splicing events, and 2285 fusion gene pairs were identified. To better explore the molecular mechanism of flavonoid biosynthesis in mature blueberry fruit, an integrative analysis of the metabolome and transcriptome was performed on the exocarp, sarcocarp, and seed. A relatively complete biosynthesis pathway map of phenylpropanoids, flavonoids, and proanthocyanins in blueberry was constructed. The results of the joint analysis showed that the 228 functional genes and 42 TFs regulated 78 differentially expressed metabolites within the biosynthesis pathway of phenylpropanoids/flavonoids. O2PLS analysis results showed that the key metabolites differentially accumulated in blueberry fruit tissues were albireodelphin, delphinidin 3,5-diglucoside, delphinidin 3-O-rutinoside, and delphinidin 3-O-sophoroside, and 10 structural genes (4 Vc4CLs, 3 VcBZ1s, 1 VcUGT75C1, 1 VcAT, and 1 VcUGAT), 4 transporter genes (1 VcGSTF and 3 VcMATEs), and 10 TFs (1 VcMYB, 2 VcbHLHs, 4 VcWD40s, and 3 VcNACs) exhibited strong correlations with 4 delphinidin glycosides. These findings provide insights into the molecular mechanisms of flavonoid biosynthesis and accumulation in blueberry fruit.PMID:38673724 | DOI:10.3390/ijms25084137
Urinary Biomarkers for Lupus Nephritis: A Systems Biology Approach
J Clin Med. 2024 Apr 18;13(8):2339. doi: 10.3390/jcm13082339.ABSTRACTSystemic lupus erythematosus (SLE) is the prototypical systemic autoimmune disorder. Kidney involvement, termed lupus nephritis (LN), is seen in 40-60% of patients with systemic lupus erythematosus (SLE). After the diagnosis, serial measurement of proteinuria is the most common method of monitoring treatment response and progression. However, present treatments for LN-corticosteroids and immunosuppressants-target inflammation, not proteinuria. Furthermore, subclinical renal inflammation can persist despite improving proteinuria. Serial kidney biopsies-the gold standard for disease monitoring-are also not feasible due to their inherent risk of complications. Biomarkers that reflect the underlying renal inflammatory process and better predict LN progression and treatment response are urgently needed. Urinary biomarkers are particularly relevant as they can be measured non-invasively and may better reflect the compartmentalized renal response in LN, unlike serum studies that are non-specific to the kidney. The past decade has overseen a boom in applying cutting-edge technologies to dissect the pathogenesis of diseases at the molecular and cellular levels. Using these technologies in LN is beginning to reveal novel disease biomarkers and therapeutic targets for LN, potentially improving patient outcomes if successfully translated to clinical practice.PMID:38673612 | DOI:10.3390/jcm13082339