Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Silkworm Hemolymph and Cocoon Metabolomics Reveals Valine Improves Feed Efficiency of Silkworm Artificial Diet

Fri, 26/04/2024 - 12:00
Insects. 2024 Apr 19;15(4):291. doi: 10.3390/insects15040291.ABSTRACTArtificial silkworm diets significantly impact farm profitability. Sustainable cocoon production depends on the continuous improvement of feed efficiency to reduce costs and nutrient losses in the feed. This study used metabolomics to explore the differences in silkworm cocoons and hemolymph under two modes of rearing: an artificial diet and a mulberry-leaf diet. Nine metabolites of silkworm cocoons and hemolymph in the mulberry-leaf group were higher than those in the artificial-diet group. Enrichment analysis of the KEGG pathways for these metabolites revealed that they were mainly enriched in the valine, leucine, and isoleucine biosynthesis and degradation pathways. Hence, the artificial silkworm diet was supplemented various concentrations of valine were supplemented to with the aim of examining the impact of valine on their feeding and digestion of the artificial diet. The results indicated that valine addition had no significant effect on feed digestibility in the fifth-instar silkworm. Food intake in the 2% and 4% valine groups was significantly lower than that in the 0% valine group. However, the 2% and 4% valine groups showed significantly improved cocoon-production efficiency, at 11.3% and 25.1% higher, respectively. However, the cocoon-layer-production efficiencies of the 2% and 4% valine groups decreased by 7.7% and 13.9%, respectively. The research confirmed that valine is an effective substance for enhancing the feed efficiency of silkworms.PMID:38667421 | DOI:10.3390/insects15040291

Revealing Changes in Ovarian and Hemolymphatic Metabolites Using Widely Targeted Metabolomics between Newly Emerged and Laying Queens of Honeybee (Apis mellifera)

Fri, 26/04/2024 - 12:00
Insects. 2024 Apr 11;15(4):263. doi: 10.3390/insects15040263.ABSTRACTThe queen bee is a central and pivotal figure within the colony, serving as the sole fertile female responsible for its reproduction. The queen possesses an open circulatory system, with her ovaries immersed in hemolymph. A continuous and intricate transportation and interchange of substances exist between the ovaries and hemolymph of queen bees. To determine the characteristic metabolites in the hemolymph and ovary, as well as understand how their rapid metabolism contributes to the process of egg-laying by queens, we reared Apis mellifera queens from three different age groups: newly emerged queen (NEQ), newly laying queen (NLQ), and old laying queen (OLQ). Using widely targeted metabolomics, our study revealed that the laying queen (NLQ and OLQ) exhibited faster fatty acid metabolism, up-regulated expression of antioxidants, and significant depletion of amino acids compared to the NEQ. This study revealed that the levels of carnitine and antioxidants (GSH, 2-O-α-D-glucopyranosyl-L-ascorbic acid, L-ascorbic acid 2-phosphate, etc.) in the NLQ and OLQ were significantly higher compared to NEQ. However, most of the differentially expressed amino acids, such as L-tryptophan, L-tyrosine, L-aspartic acid, etc., detected in NLQ and OLQ were down-regulated compared to the NEQ. Following egg-laying, pathways in the queens change significantly, e.g., Tryptophan metabolism, Tyrosine metabolism, cAMP signaling pathway, etc. Our results suggest that carnitine and antioxidants work together to maintain the redox balance of the queen. Additionally, various amino acids are responsible for maintaining the queen's egg production.PMID:38667393 | DOI:10.3390/insects15040263

Integrated Omics Analysis Reveals Key Pathways in Cotton Defense against Mirid Bug (<em>Adelphocoris suturalis</em> Jakovlev) Feeding

Fri, 26/04/2024 - 12:00
Insects. 2024 Apr 8;15(4):254. doi: 10.3390/insects15040254.ABSTRACTThe recent dominance of Adelphocoris suturalis Jakovlev as the primary cotton field pest in Bt-cotton-cultivated areas has generated significant interest in cotton pest control research. This study addresses the limited understanding of cotton defense mechanisms triggered by A. suturalis feeding. Utilizing LC-QTOF-MS, we analyzed cotton metabolomic changes induced by A. suturalis, and identified 496 differential positive ions (374 upregulated, 122 downregulated) across 11 categories, such as terpenoids, alkaloids, phenylpropanoids, flavonoids, isoflavones, etc. Subsequent iTRAQ-LC-MS/MS analysis of the cotton proteome revealed 1569 differential proteins enriched in 35 metabolic pathways. Integrated metabolome and proteome analysis highlighted significant upregulation of 17 (89%) proteases in the α-linolenic acid (ALA) metabolism pathway, concomitant with a significant increase in 14 (88%) associated metabolites. Conversely, 19 (73%) proteases in the fructose and mannose biosynthesis pathway were downregulated, with 7 (27%) upregulated proteases corresponding to the downregulation of 8 pathway-associated metabolites. Expression analysis of key regulators in the ALA pathway, including allene oxidase synthase (AOS), phospholipase A (PLA), allene oxidative cyclase (AOC), and 12-oxophytodienoate reductase3 (OPR3), demonstrated significant responses to A. suturalis feeding. Finally, this study pioneers the exploration of molecular mechanisms in the plant-insect relationship, thereby offering insights into potential novel control strategies against this cotton pest.PMID:38667384 | DOI:10.3390/insects15040254

Lipidomic Analysis of Plasma Extracellular Vesicles Derived from Alzheimer's Disease Patients

Fri, 26/04/2024 - 12:00
Cells. 2024 Apr 18;13(8):702. doi: 10.3390/cells13080702.ABSTRACTAnalysis of blood-based indicators of brain health could provide an understanding of early disease mechanisms and pinpoint possible intervention strategies. By examining lipid profiles in extracellular vesicles (EVs), secreted particles from all cells, including astrocytes and neurons, and circulating in clinical samples, important insights regarding the brain's composition can be gained. Herein, a targeted lipidomic analysis was carried out in EVs derived from plasma samples after removal of lipoproteins from individuals with Alzheimer's disease (AD) and healthy controls. Differences were observed for selected lipid species of glycerolipids (GLs), glycerophospholipids (GPLs), lysophospholipids (LPLs) and sphingolipids (SLs) across three distinct EV subpopulations (all-cell origin, derived by immunocapture of CD9, CD81 and CD63; neuronal origin, derived by immunocapture of L1CAM; and astrocytic origin, derived by immunocapture of GLAST). The findings provide new insights into the lipid composition of EVs isolated from plasma samples regarding specific lipid families (MG, DG, Cer, PA, PC, PE, PI, LPI, LPE, LPC), as well as differences between AD and control individuals. This study emphasizes the crucial role of plasma EV lipidomics analysis as a comprehensive approach for identifying biomarkers and biological targets in AD and related disorders, facilitating early diagnosis and potentially informing novel interventions.PMID:38667317 | DOI:10.3390/cells13080702

NMR Metabolomics of Primary Ovarian Cancer Cells in Comparison to Established Cisplatin-Resistant and -Sensitive Cell Lines

Fri, 26/04/2024 - 12:00
Cells. 2024 Apr 9;13(8):661. doi: 10.3390/cells13080661.ABSTRACTCancer cell lines are frequently used in metabolomics, such as in vitro tumor models. In particular, A2780 cells are commonly used as a model for ovarian cancer to evaluate the effects of drug treatment. Here, we compare the NMR metabolomics profiles of A2780 and cisplatin-resistant A2780 cells with those of cells derived from 10 patients with high-grade serous ovarian carcinoma (collected during primary cytoreduction before any chemotherapeutic treatment). Our analysis reveals a substantial similarity among all primary cells but significant differences between them and both A2780 and cisplatin-resistant A2780 cells. Notably, the patient-derived cells are closer to the resistant A2780 cells when considering the exo-metabolome, whereas they are essentially equidistant from A2780 and A2780-resistant cells in terms of the endo-metabolome. This behavior results from dissimilarities in the levels of several metabolites attributable to the differential modulation of underlying biochemical pathways. The patient-derived cells are those with the most pronounced glycolytic phenotype, whereas A2780-resistant cells mainly diverge from the others due to alterations in a few specific metabolites already known as markers of resistance.PMID:38667276 | DOI:10.3390/cells13080661

Raman Flow Cytometry and Its Biomedical Applications

Fri, 26/04/2024 - 12:00
Biosensors (Basel). 2024 Mar 31;14(4):171. doi: 10.3390/bios14040171.ABSTRACTRaman flow cytometry (RFC) uniquely integrates the "label-free" capability of Raman spectroscopy with the "high-throughput" attribute of traditional flow cytometry (FCM), offering exceptional performance in cell characterization and sorting. Unlike conventional FCM, RFC stands out for its elimination of the dependency on fluorescent labels, thereby reducing interference with the natural state of cells. Furthermore, it significantly enhances the detection information, providing a more comprehensive chemical fingerprint of cells. This review thoroughly discusses the fundamental principles and technological advantages of RFC and elaborates on its various applications in the biomedical field, from identifying and characterizing cancer cells for in vivo cancer detection and surveillance to sorting stem cells, paving the way for cell therapy, and identifying metabolic products of microbial cells, enabling the differentiation of microbial subgroups. Moreover, we delve into the current challenges and future directions regarding the improvement in sensitivity and throughput. This holds significant implications for the field of cell analysis, especially for the advancement of metabolomics.PMID:38667164 | DOI:10.3390/bios14040171

Deciphering Microbiome, Transcriptome, and Metabolic Interactions in the Presence of Probiotic <em>Lactobacillus acidophilus</em> against <em>Salmonella</em> Typhimurium in a Murine Model

Fri, 26/04/2024 - 12:00
Antibiotics (Basel). 2024 Apr 11;13(4):352. doi: 10.3390/antibiotics13040352.ABSTRACTSalmonella enterica serovar Typhimurium (S. Typhimurium), a foodborne pathogen that poses significant public health risks to humans and animals, presents a formidable challenge due to its antibiotic resistance. This study explores the potential of Lactobacillus acidophilus (L. acidophilus 1.3251) probiotics as an alternative strategy to combat antibiotic resistance associated with S. Typhimurium infection. In this investigation, twenty-four BALB/c mice were assigned to four groups: a non-infected, non-treated group (CNG); an infected, non-treated group (CPG); a group fed with L. acidophilus but not infected (LAG); and a group fed with L. acidophilus and challenged with Salmonella (LAST). The results revealed a reduction in Salmonella levels in the feces of mice, along with restored weight and improved overall health in the LAST compared to the CPG. The feeding of L. acidophilus was found to downregulate pro-inflammatory cytokine mRNA induced by Salmonella while upregulating anti-inflammatory cytokines. Additionally, it influenced the expression of mRNA transcript, encoding tight junction protein, oxidative stress-induced enzymes, and apoptosis-related mRNA expression. Furthermore, the LEfSe analysis demonstrated a significant shift in the abundance of critical commensal genera in the LAST, essential for maintaining gut homeostasis, metabolic reactions, anti-inflammatory responses, and butyrate production. Transcriptomic analysis revealed 2173 upregulated and 506 downregulated differentially expressed genes (DEGs) in the LAST vs. the CPG. Functional analysis of these DEGs highlighted their involvement in immunity, metabolism, and cellular development. Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analysis indicated their role in tumor necrosis factor (TNF), mitogen-activated protein kinase (MAPK), chemokine, Forkhead box O (FOXO), and transforming growth factor (TGF-β) signaling pathway. Moreover, the fecal metabolomic analysis identified 929 differential metabolites, with enrichment observed in valine, leucine, isoleucine, taurine, glycine, and other metabolites. These findings suggest that supplementation with L. acidophilus promotes the growth of beneficial commensal genera while mitigating Salmonella-induced intestinal disruption by modulating immunity, gut homeostasis, gut barrier integrity, and metabolism.PMID:38667028 | DOI:10.3390/antibiotics13040352

Multiomics Picture of Obesity in Young Adults

Fri, 26/04/2024 - 12:00
Biology (Basel). 2024 Apr 18;13(4):272. doi: 10.3390/biology13040272.ABSTRACTObesity is a socially significant disease that is characterized by a disproportionate accumulation of fat. It is also associated with chronic inflammation, cancer, diabetes, and other comorbidities. Investigating biomarkers and pathological processes linked to obesity is especially vital for young individuals, given their increased potential for lifestyle modifications. By comparing the genetic, proteomic, and metabolomic profiles of individuals categorized as underweight, normal, overweight, and obese, we aimed to determine which omics layer most accurately reflects the phenotypic changes in an organism that result from obesity. We profiled blood plasma samples by employing three omics methodologies. The untargeted GC×GC-MS metabolomics approach identified 313 metabolites. To augment the metabolomic dataset, we integrated a label-free HPLC-MS/MS proteomics method, leading to the identification of 708 proteins. The genomic layer encompassed the genotyping of 647,250 SNPs. Utilizing omics data, we trained sparse Partial Least Squares models to predict body mass index. Molecular features exhibiting frequently non-zero coefficients were selected as potential biomarkers, and we further explored enriched biological pathways. Proteomics was the most effective in single-omics analyses, with a median absolute error (MAE) of 5.44 ± 0.31 kg/m2, incorporating an average of 24 proteins per model. Metabolomics showed slightly lower performance (MAE = 6.06 ± 0.33 kg/m2), followed by genomics (MAE = 6.20 ± 0.34 kg/m2). As expected, multiomic models demonstrated better accuracy, particularly the combination of proteomics and metabolomics (MAE = 4.77 ± 0.33 kg/m2), while including genomics data did not enhance the results. This manuscript is the first multiomics study of obesity in a gender-balanced cohort of young adults profiled by genomic, proteomic, and metabolomic methods. The comprehensive approach provides novel insights into the molecular mechanisms of obesity, opening avenues for more targeted interventions.PMID:38666884 | DOI:10.3390/biology13040272

Comparative Metabolomics and Transcriptome Studies of Two Forms of Rhododendron chrysanthum Pall. under UV-B Stress

Fri, 26/04/2024 - 12:00
Biology (Basel). 2024 Mar 24;13(4):211. doi: 10.3390/biology13040211.ABSTRACTRhododendron chrysanthum Pall. (R. chrysanthum), a plant with UV-B resistance mechanisms that can adapt to alpine environments, has gained attention as an important plant resource with the ability to cope with UV-B stress. In this experiment, R. chrysanthums derived from the same origin were migrated to different culture environments (artificial climate chamber and intelligent artificial incubator) to obtain two forms of R. chrysanthum. After UV-B irradiation, 404 metabolites and 93,034 unigenes were detected. Twenty-six of these different metabolites were classified as UV-B-responsive metabolites. Glyceric acid is used as a potential UV-B stress biomarker. The domesticated Rhododendron chrysanthum Pall. had high amino acid and SOD contents. The study shows that the domesticated Rhododendron chrysanthum Pall. has significant UV-B resistance. The transcriptomics results show that the trends of DEGs after UV-B radiation were similar for both forms of R. chrysanthum: cellular process and metabolic process accounted for a higher proportion in biological processes, cellular anatomical entity accounted for the highest proportion in the cellular component, and catalytic activity and binding accounted for the highest proportion in the molecular function category. Through comparative study, the forms of metabolites resistant to UV-B stress in plants can be reflected, and UV-B radiation absorption complexes can be screened for application in future specific practices. Moreover, by comparing the differences in response to UV-B stress between the two forms of R. chrysanthum, references can be provided for cultivating domesticated plants with UV-B stress resistance characteristics. Research on the complex mechanism of plant adaptation to UV-B will be aided by these results.PMID:38666823 | DOI:10.3390/biology13040211

Metabolome Profiling of Malignant Ascites Identifies Candidate Metabolic Biomarkers of Hepatocellular Carcinoma

Fri, 26/04/2024 - 12:00
Curr Med Chem. 2024;31(13):1769-1780. doi: 10.2174/0929867330666230324153552.ABSTRACTBACKGROUND: Malignant ascites is one of the severe complications of hepatocellular carcinoma, which can be regarded as a unique tumor microenvironment of hepatocellular carcinoma. The identification of novel biomarkers in malignant ascites could be crucial to differentiate patients with hepatocellular carcinoma and cirrhotic ascites.OBJECTIVE: The study aimed to distinguish the metabolomics of malignant ascites in patients with hepatocellular carcinoma from that of non-malignant ascites (cirrhotic ascites).METHODS: Liquid chromatography-mass spectrometry was performed to analyze the differentially distributed biomarkers in patients with malignant ascites and hepatocellular carcinoma (n = 39), as well as in patients with cirrhotic ascites, which were taken as controls (n = 36).RESULTS: A total of 20 differential metabolites associated with malignant ascites were identified, of which 8 metabolites were upregulated and 12 metabolites were downregulated (ratio < 0.5 or > 1.5, respectively). Moreover, pathway and enrichment analyses revealed nitrogen metabolism, urea cycle, phenylalanine, and tyrosine metabolism to be implicated in the formation of malignant ascites in patients with hepatocellular carcinoma.CONCLUSION: Our results suggest that the key factors associated with pathways, such as arachidonic acid, phenylalanine, and glutamic acid pathways, are potential ascitic fluidbased biomarkers for differentiating hepatocellular carcinoma with cirrhosis ascites; the results also provide a clinical pathophysiological interpretation of biomarkers and metabolic pathways relevant to disease status.PMID:38666505 | DOI:10.2174/0929867330666230324153552

Rutin targets AKT to inhibit ferroptosis in ventilator-induced lung injury

Fri, 26/04/2024 - 12:00
Phytother Res. 2024 Apr 26. doi: 10.1002/ptr.8212. Online ahead of print.ABSTRACTOur previous research confirmed that rutin reduced ventilator-induced lung injury (VILI) in mice. Ferroptosis has been reported to participate in the pathogenic process of VILI. We will explore whether rutin inhibits ferroptosis to alleviate VILI. A mouse model of VILI was constructed with or without rutin pretreatment to perform a multiomics analysis. Hematoxylin-eosin (HE) staining and transmission electron microscopy were used to evaluate lung injury in VILI mice. Dihydroethidium (DHE) staining and the malondialdehyde (MDA) and superoxide dismutase (SOD) levels were detected. Molecular docking was performed to determine the binding affinity between rutin and ferroptosis-related proteins. Western blot analysis, real-time PCR (RT-PCR) and immunohistochemical (IHC) staining were conducted to detect the expression levels of GPX4, XCT, ACSL4, FTH1, AKT and p-AKT in lung tissues. Microscale thermophoresis (MST) was used to evaluate the binding between rutin and AKT1. Transcriptomic and proteomic analyses showed that ferroptosis may play a key role in VILI mice. Metabolomic analysis demonstrated that rutin may affect ferroptosis via the AKT pathway. Molecular docking analysis indicated that rutin may regulate the expression of ferroptosis-related proteins. Moreover, rutin upregulated GPX4 expression and downregulated the expression of XCT, ACSL4 and FTH1 in the lung tissues. Rutin also increased the ratio of p-AKT/AKT and p-AKT expression. MST analysis showed that rutin binds to AKT1. Rutin binds to AKT to activate the AKT signaling pathway, contributing to inhibit ferroptosis, thus preventing VILI in mice. Our study elucidated a possible novel strategy of involving the use of rutin for preventing VILI.PMID:38666397 | DOI:10.1002/ptr.8212

The endophytic microbiome response patterns of <em>Juglans regia</em> to two pathogenic fungi

Fri, 26/04/2024 - 12:00
Front Microbiol. 2024 Apr 11;15:1378273. doi: 10.3389/fmicb.2024.1378273. eCollection 2024.ABSTRACTThe endophytic microbial community reassembles to participate in plant immune balance when the host plants are stressed by pathogens. However, it remains unclear whether this assembly is pathogen-specific and how regulatory pathways are coordinated in multi-pathogens. In order to investigate the effects of infection with Colletotrichum gloeosporioides (Cg treatment) and Fusarium proliferatum (Fp treatment) on walnut leaf endophytic microbiome in their assembly, co-occurrence pattern, and on comprehensive chemical function of the internal environment of leaf, an interaction system of the walnut-pathogenic fungi was constructed using seed embryo tissue culture technology. The study showed differences in the assembly of endophytic microbial communities in walnut trees across three groups (control group, Ck; Cg; Fp) after Cg and Fp treatments. Despite changes in relative abundances, the dominant communities in phyla and genera remained comparable during the infection of the two pathogens. Endophyte fungi were more sensitive to the pathogen challenge than endophyte bacteria. Both promoted the enrichment of beneficial bacteria such as Bacillus and Pseudomonas, changed the modularity of the community, and reduced the stability and complexity of the endophyte community. Pathogenic fungi infection mainly affects the metabolism of porphyrin and chlorophyll, purine metabolism, phenylpropane metabolism, and amino acid metabolism. However, there was no significant difference in the secondary metabolites for the different susceptible plants. By screening endogenous antagonistic bacteria, we further verified that Pseudomonas psychrotolerans and Bacillus subtilis had inhibitory effects on the two pathogenic fungi and participated in the interaction between the leaves and pathogenic fungi. The antibacterial substances may be 1-methylnaphthalene, 1,3-butadiene, 2,3-butanediol, and toluene aldehyde.PMID:38666257 | PMC:PMC11043491 | DOI:10.3389/fmicb.2024.1378273

Assessment of left ventricular tissue mitochondrial bioenergetics in patients with stable coronary artery disease

Fri, 26/04/2024 - 12:00
Nat Cardiovasc Res. 2023;2(8):733-745. doi: 10.1038/s44161-023-00312-z. Epub 2023 Aug 7.ABSTRACTRecurrent myocardial ischemia can lead to left ventricular (LV) dysfunction in patients with coronary artery disease (CAD). In this observational cohort study, we assessed for chronic metabolomic and transcriptomic adaptations within LV myocardium of patients undergoing coronary artery bypass grafting. During surgery, paired transmural LV biopsies were acquired on the beating heart from regions with and without evidence of inducible ischemia on preoperative stress perfusion cardiovascular magnetic resonance. From 33 patients, 63 biopsies were acquired, compared to analysis of LV samples from 11 donor hearts. The global myocardial adenosine triphosphate (ATP):adenosine diphosphate (ADP) ratio was reduced in patients with CAD as compared to donor LV tissue, with increased expression of oxidative phosphorylation (OXPHOS) genes encoding the electron transport chain complexes across multiple cell types. Paired analyses of biopsies obtained from LV segments with or without inducible ischemia revealed no significant difference in the ATP:ADP ratio, broader metabolic profile or expression of ventricular cardiomyocyte genes implicated in OXPHOS. Differential metabolite analysis suggested dysregulation of several intermediates in patients with reduced LV ejection fraction, including succinate. Overall, our results suggest that viable myocardium in patients with stable CAD has global alterations in bioenergetic and transcriptional profile without large regional differences between areas with or without inducible ischemia.PMID:38666037 | PMC:PMC11041759 | DOI:10.1038/s44161-023-00312-z

Mineral crude drug mirabilite (Mangxiao) inhibits the occurrence of colorectal cancer by regulating the <em>Lactobacillus</em>-bile acid-intestinal farnesoid X receptor axis based on multiomics integration analysis

Fri, 26/04/2024 - 12:00
MedComm (2020). 2024 Apr 25;5(5):e556. doi: 10.1002/mco2.556. eCollection 2024 May.ABSTRACTMineral crude drug has revolutionized the treatment landscape in precision oncology niche that leads to the improvement in therapeutic efficiency on various tumor subtypes. Mangxiao (MX), a mineral crude drug in traditional Chinese medicine, has been used for treating gastrointestinal diseases for thousands of years. However, the action mechanisms are still ambiguous. Here, we attempt to explore inhibitory roles and associated pharmacological mechanisms of MX upon colorectal cancer (CRC) in APCMin/+ male mice by integrating metabolomics, 16S rDNA sequencing analyses, and metagenomic-based microbiota analysis. We found that MX can significantly inhibit the occurrence of CRC through the regulation of the dysregulated gut microbe metabolism. Furthermore, the correlation analysis of metabolomes and 16S rDNA revealed that MX could restore the disorders of gut microbes by specifically enriching the abundance of Lactobacilli to improve bile acid metabolism, which further activated the farnesoid X receptor (FXR) in CRC mice, then the improvement of gut dysbiosis could inhibit the development of CRC. Collectively, our effort confirmed MX has the capacity to intervene the development of CRC and further discovered that it targets Lactobacillus-bile acid-intestinal FXR axis, which can be regarded as a candidate medicine for future drug discovery and development against CRC.PMID:38665997 | PMC:PMC11043829 | DOI:10.1002/mco2.556

Investigating the effects of <em>Laggera pterodonta</em> on H3N2-Induced inflammatory and immune responses through network pharmacology, molecular docking, and experimental validation in a mice model

Fri, 26/04/2024 - 12:00
Heliyon. 2024 Apr 10;10(8):e29487. doi: 10.1016/j.heliyon.2024.e29487. eCollection 2024 Apr 30.ABSTRACTFor centuries, Laggera pterodonta (LP), a Chinese herbal medicine, has been widely employed for treating respiratory infectious diseases; however, the mechanism underlying LP's effectiveness against the influenza A/Aichi/2/1968 virus (H3N2) remains elusive. This study aims to shed light on the mechanism by which LP combats influenza in H3N2-infected mice. First, we conducted quasi-targeted metabolomics analysis using liquid chromatography-mass spectrometry to identify LP components. Subsequently, network pharmacology, molecular docking, and simulation were conducted to screen candidate targets associated with AKT and NF-κB. In addition, we conducted a series of experiments including qPCR, hematoxylin-eosin staining, flow cytometry, immunohistochemistry, and enzyme-linked immunosorbent assay to provide evidence that LP treatment in H3N2-infected mice can reduce pro-inflammatory cytokine levels (TNF-α, IL-6, IL-1β, and MCP-1) while increasing T cells (CD3+, CD4+, and CD8+) and syndecan-1 and secretory IgA expression. This, in turn, aids in the prevention of excessive inflammation and the fortification of immunity, both of which are compromised by H3N2. Finally, we utilized a Western blot assay to confirm that LP indeed inhibits the AKT/NF-κB signaling cascade. Thus, the efficacy of LP serves as a cornerstone in establishing a theoretical foundation for influenza treatment.PMID:38665556 | PMC:PMC11043942 | DOI:10.1016/j.heliyon.2024.e29487

Corrigendum: Editorial: Metabolic modulation of cellular function

Fri, 26/04/2024 - 12:00
Front Cell Dev Biol. 2024 Apr 11;12:1403128. doi: 10.3389/fcell.2024.1403128. eCollection 2024.ABSTRACT[This corrects the article DOI: 10.3389/fcell.2024.1395922.].PMID:38665431 | PMC:PMC11043585 | DOI:10.3389/fcell.2024.1403128

Dietary supplementing phytosterols improves the metabolic status of perinatal cows revealed by plasma metabolomics and faecal microbial metabolism

Fri, 26/04/2024 - 12:00
Anim Biosci. 2024 Apr 26. doi: 10.5713/ab.23.0422. Online ahead of print.ABSTRACTOBJECTIVE: Previous research reported that dietary addition with phytosterols improved the energy utilisation of the rumen microbiome, suggesting its potential to alleviate the negative energy balance of perinatal cows. This experiment aimed to explore the effects of feeding phytosterols on the metabolic status of perinatal cows through plasma metabolomics and faecal bacteria metabolism.METHODS: Ten perinatal Holstein cows (multiparous, 2 parities) with a similar calving date were selected four weeks before calving. After 7 days for adaptation, cows were allocated to two groups (n=5), which respectively received the basal rations supplementing commercial phytosterols at 0 and 200 mg/d during a 42-day experiment. The milk yield of each cow was recorded daily after calving. On days 1 and 42, blood and faeces samples were all collected from perinatal cows before morning feeding for analysing plasma biochemicals and metabolome, and faecal bacteria metabolism.RESULTS: Dietary addition with phytosterols at 200 mg/d had no effects on plasma cholesterol and numerically increased milk yield by 1.82 kg/d (p>0.10) but attenuated their negative energy balance in perinatal cows as observed from the significantly decreased plasma level of β-hydroxybutyric acid (p=0.002). Dietary addition with phytosterols significantly altered 12 and 15 metabolites (p<0.05) within the plasma and faeces of perinatal cows, respectively. Of these metabolites, 5 upregulated plasma fatty acids indicated an improved energy status (i.e., C18:1T, C14:0, C17:0, C18:0, and C16:0). Milk yield negatively correlated with plasma concentrations of ketone bodies (p=0.035) and 5-methoxytryptamine (p=0.039). Furthermore, dietary addition with phytosterols at 200 mg/d had no effects on fermentation characteristics and bacterial diversity of cow faeces (p>0.10) but improved potentially beneficial bacteria such as Christensenellaceae family (p<0.05) that positively correlated with feed efficiency.CONCLUSION: Dietary addition with phytosterols at 200 mg/d could effectively improve the energy status in perinatal cows by attenuating their negative energy balance.PMID:38665074 | DOI:10.5713/ab.23.0422

Metabolomic analysis reveals the changing trend and differential markers of volatile and nonvolatile components of Artemisiae argyi with different aging years

Fri, 26/04/2024 - 12:00
Phytochem Anal. 2024 Apr 25. doi: 10.1002/pca.3359. Online ahead of print.ABSTRACTINTRODUCTION: Artemisia argyi Folium (AAF) is a traditional medicinal herb and edible plant. Analyzing the differential metabolites that affect the efficacy of AAF with different aging years is necessary.OBJECTIVE: The aim of the study was to investigate the changing trend and differential markers of volatile and nonvolatile metabolites of AAF from different aging years, which are necessary for application in clinical medicine.METHODOLOGY: Metabolites were analyzed using a widely targeted metabolomic approach based on ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and gas chromatography tandem mass spectrometry (GC-MS).RESULTS: A total of 153 volatile metabolites and 159 nonvolatile metabolites were identified. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) could clearly distinguish AAF aged for 1 year (AF-1), 3 years (AF-3), and 5 years (AF-5). Seven flavonoids and nine terpenoids were identified as biomarkers for tracking the aging years.CONCLUSIONS: The metabolomic method provided an effective strategy for tracking and identifying biomarkers of AAF from different aging years. This study laid the foundation for analysis of the biological activity of Artemisia argyi with different aging years.PMID:38665054 | DOI:10.1002/pca.3359

Synergistic effect of human uterine cervical mesenchymal stem cell secretome and paclitaxel on triple negative breast cancer

Thu, 25/04/2024 - 12:00
Stem Cell Res Ther. 2024 Apr 25;15(1):121. doi: 10.1186/s13287-024-03717-0.ABSTRACTBACKGROUND: Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer and, despite its adverse effects, chemotherapy is the standard systemic treatment option for TNBC. Since, it is of utmost importance to consider the combination of different agents to achieve greater efficacy and curability potential, MSC secretome is a possible innovative alternative.METHODS: In the present study, we proposed to investigate the anti-tumor effect of the combination of a chemical agent (paclitaxel) with a complex biological product, secretome derived from human Uterine Cervical Stem cells (CM-hUCESC) in TNBC.RESULTS: The combination of paclitaxel and CM-hUCESC decreased cell proliferation and invasiveness of tumor cells and induced apoptosis in vitro (MDA-MB-231 and/or primary tumor cells). The anti-tumor effect was confirmed in a mouse tumor xenograft model showing that the combination of both products has a significant effect in reducing tumor growth. Also, pre-conditioning hUCESC with a sub-lethal dose of paclitaxel enhances the effect of its secretome and in combination with paclitaxel reduced significantly tumor growth and even allows to diminish the dose of paclitaxel in vivo. This effect is in part due to the action of extracellular vesicles (EVs) derived from CM-hUCESC and soluble factors, such as TIMP-1 and - 2.CONCLUSIONS: In conclusion, our data demonstrate the synergistic effect of the combination of CM-hUCESC with paclitaxel on TNBC and opens an opportunity to reduce the dose of the chemotherapeutic agents, which may decrease chemotherapy-related toxicity.PMID:38664697 | DOI:10.1186/s13287-024-03717-0

Methionine inducing carbohydrate esterase secretion of Trichoderma harzianum enhances the accessibility of substrate glycosidic bonds

Thu, 25/04/2024 - 12:00
Microb Cell Fact. 2024 Apr 26;23(1):120. doi: 10.1186/s12934-024-02394-1.ABSTRACTBACKGROUND: The conversion of plant biomass into biochemicals is a promising way to alleviate energy shortage, which depends on efficient microbial saccharification and cellular metabolism. Trichoderma spp. have plentiful CAZymes systems that can utilize all-components of lignocellulose. Acetylation of polysaccharides causes nanostructure densification and hydrophobicity enhancement, which is an obstacle for glycoside hydrolases to hydrolyze glycosidic bonds. The improvement of deacetylation ability can effectively release the potential for polysaccharide degradation.RESULTS: Ammonium sulfate addition facilitated the deacetylation of xylan by inducing the up-regulation of multiple carbohydrate esterases (CE3/CE4/CE15/CE16) of Trichoderma harzianum. Mainly, the pathway of ammonium-sulfate's cellular assimilates inducing up-regulation of the deacetylase gene (Thce3) was revealed. The intracellular metabolite changes were revealed through metabonomic analysis. Whole genome bisulfite sequencing identified a novel differentially methylated region (DMR) that existed in the ThgsfR2 promoter, and the DMR was closely related to lignocellulolytic response. ThGsfR2 was identified as a negative regulatory factor of Thce3, and methylation in ThgsfR2 promoter released the expression of Thce3. The up-regulation of CEs facilitated the substrate deacetylation.CONCLUSION: Ammonium sulfate increased the polysaccharide deacetylation capacity by inducing the up-regulation of multiple carbohydrate esterases of T. harzianum, which removed the spatial barrier of the glycosidic bond and improved hydrophilicity, and ultimately increased the accessibility of glycosidic bond to glycoside hydrolases.PMID:38664812 | DOI:10.1186/s12934-024-02394-1

Pages