Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Metabologenomic characterization uncovers a clinically aggressive IDH mutant glioma subtype

Sun, 07/04/2024 - 12:00
Acta Neuropathol. 2024 Apr 7;147(1):68. doi: 10.1007/s00401-024-02713-1.ABSTRACTMutations in the pivotal metabolic isocitrate dehydrogenase (IDH) enzymes are recognized to drive the molecular footprint of diffuse gliomas, and patients with IDH mutant gliomas have overall favorable outcomes compared to patients with IDH wild-type tumors. However, survival still varies widely among patients with IDH mutated tumors. Here, we aimed to characterize molecular signatures that explain the range of IDH mutant gliomas. By integrating matched epigenome-wide methylome, transcriptome, and global metabolome data in 154 patients with gliomas, we identified a group of IDH mutant gliomas with globally altered metabolism that resembled IDH wild-type tumors. IDH-mutant gliomas with altered metabolism have significantly shorter overall survival from their IDH mutant counterparts that is not fully accounted for by recognized molecular prognostic markers of CDKN2A/B loss and glioma CpG Island Methylator Phenotype (GCIMP) status. IDH-mutant tumors with dysregulated metabolism harbored distinct epigenetic alterations that converged to drive proliferative and stem-like transcriptional profiles, providing a window to target novel dependencies in gliomas.PMID:38583102 | DOI:10.1007/s00401-024-02713-1

Metabolomic Analysis in Saliva and Different Brain Regions of Older Mice with Postoperative Delirium Behaviors

Sun, 07/04/2024 - 12:00
Biomed Environ Sci. 2024 Feb 20;37(2):133-145. doi: 10.3967/bes2024.015.ABSTRACTOBJECTIVE: Postoperative delirium (POD) has become a critical challenge with severe consequences and increased incidences as the global population ages. However, the underlying mechanism is yet unknown. Our study aimed to explore the changes in metabolites in three specific brain regions and saliva of older mice with postoperative delirium behavior and to identify potential non-invasive biomarkers.METHODS: Eighteen-month-old male C57/BL6 mice were randomly assigned to the anesthesia/surgery or control group. Behavioral tests were conducted 24 h before surgery and 6, 9, and 24 h after surgery. Complement C3 (C3) and S100 calcium-binding protein B protein (S100beta) levels were measured in the hippocampus, and a metabolomics analysis was performed on saliva, hippocampus, cortex, and amygdala samples.RESULTS: In total, 43, 33, 38, and 14 differential metabolites were detected in the saliva, hippocampus, cortex, and amygdala, respectively. "Pyruvate" "alpha-linolenic acid" and "2-oleoyl-1-palmitoy-sn-glycero-3-phosphocholine" are enriched in one common pathway and may be potential non-invasive biomarkers for POD. Common changes were observed in the three brain regions, with the upregulation of 1-methylhistidine and downregulation of D-glutamine.CONCLUSION: Dysfunctions in energy metabolism, oxidative stress, and neurotransmitter dysregulation are implicated in the development of POD. The identification of changes in the level of salivary metabolite biomarkers could aid in the development of noninvasive diagnostic methods for POD.PMID:38582976 | DOI:10.3967/bes2024.015

Comparative secretome analysis of Striga and Cuscuta species identifies candidate virulence factors for two evolutionarily independent parasitic plant lineages

Sat, 06/04/2024 - 12:00
BMC Plant Biol. 2024 Apr 6;24(1):251. doi: 10.1186/s12870-024-04935-7.ABSTRACTBACKGROUND: Many parasitic plants of the genera Striga and Cuscuta inflict huge agricultural damage worldwide. To form and maintain a connection with a host plant, parasitic plants deploy virulence factors (VFs) that interact with host biology. They possess a secretome that represents the complement of proteins secreted from cells and like other plant parasites such as fungi, bacteria or nematodes, some secreted proteins represent VFs crucial to successful host colonisation. Understanding the genome-wide complement of putative secreted proteins from parasitic plants, and their expression during host invasion, will advance understanding of virulence mechanisms used by parasitic plants to suppress/evade host immune responses and to establish and maintain a parasite-host interaction.RESULTS: We conducted a comparative analysis of the secretomes of root (Striga spp.) and shoot (Cuscuta spp.) parasitic plants, to enable prediction of candidate VFs. Using orthogroup clustering and protein domain analyses we identified gene families/functional annotations common to both Striga and Cuscuta species that were not present in their closest non-parasitic relatives (e.g. strictosidine synthase like enzymes), or specific to either the Striga or Cuscuta secretomes. For example, Striga secretomes were strongly associated with 'PAR1' protein domains. These were rare in the Cuscuta secretomes but an abundance of 'GMC oxidoreductase' domains were found, that were not present in the Striga secretomes. We then conducted transcriptional profiling of genes encoding putatively secreted proteins for the most agriculturally damaging root parasitic weed of cereals, S. hermonthica. A significant portion of the Striga-specific secretome set was differentially expressed during parasitism, which we probed further to identify genes following a 'wave-like' expression pattern peaking in the early penetration stage of infection. We identified 39 genes encoding putative VFs with functions such as cell wall modification, immune suppression, protease, kinase, or peroxidase activities, that are excellent candidates for future functional studies.CONCLUSIONS: Our study represents a comprehensive secretome analysis among parasitic plants and revealed both similarities and differences in candidate VFs between Striga and Cuscuta species. This knowledge is crucial for the development of new management strategies and delaying the evolution of virulence in parasitic weeds.PMID:38582844 | DOI:10.1186/s12870-024-04935-7

Impact of different growth hormone levels on gut microbiota and metabolism in short stature

Sat, 06/04/2024 - 12:00
Pediatr Res. 2024 Apr 6. doi: 10.1038/s41390-024-03140-4. Online ahead of print.ABSTRACTBACKGROUND: Growth hormone deficiency(GHD) and idiopathic short stature(ISS) are the primary causes of short stature in children. Animal experiments have revealed a link between growth hormone(GH), gut microbiota and metabolism, however, limited information is available from human trials.METHODS: Fecal samples collected from GHD (n = 36), ISS (n = 32) and healthy control (HC) children(n = 16) were subjected to microbiome (16 S rRNA gene sequencing) and metabolome (nuclear magnetic resonance,NMR) analyses.RESULTS: GHD, ISS and HC exhibit distinct differences in beta diversity of gut microbiota.In addition, short stature (GHD and ISS) exhibit higher relative abundance of Prevotellaceae_NK3B31_group at genus level compared to HC, whereas Rodentibacter, Rothia, and Pelomonas showed lower abundance. Additionally,Fusobacterium_mortiferum was identified as the characteristic species of GHD. Moreover, glucose metabolism, pyruvate metabolism and pyrimidine metabolism might play significant roles for distinguishing between GHD and normal GH groups (ISS and HC). Furthermore, a disease prediction model based on differential bacteria and metabolites between GHD and ISS exhibited high diagnostic value.CONCLUSION: These findings highlight the characteristics of different GH levels on the gut microbiota and metabolism in children, providing novel perspectives for early diagnosis and prognostic treatment of short stature with abnormal GH levels.IMPACT: The key message of our study is to identify human-relevant gut microbiota and host metabolic patterns that are interfered with growth hormone levels, and to develop biomarker models to identify short stature associated with growth hormone deficiency. We used idiopathic short stature as a control group for growth hormone deficiency, complementing the absence of height as a factor in the existing literature. Our study ultimately hopes to shed new light on the diagnosis and treatment of short stature children associated with growth hormone deficiency.PMID:38582946 | DOI:10.1038/s41390-024-03140-4

Apiospora arundinis, a panoply of carbohydrate-active enzymes and secondary metabolites

Sat, 06/04/2024 - 12:00
IMA Fungus. 2024 Apr 7;15(1):10. doi: 10.1186/s43008-024-00141-0.ABSTRACTThe Apiospora genus comprises filamentous fungi with promising potential, though its full capabilities remain undiscovered. In this study, we present the first genome assembly of an Apiospora arundinis isolate, demonstrating a highly complete and contiguous assembly estimated to 48.8 Mb, with an N99 of 3.0 Mb. Our analysis predicted a total of 15,725 genes, with functional annotations for 13,619 of them, revealing a fungus capable of producing very high amounts of carbohydrate-active enzymes (CAZymes) and secondary metabolites. Through transcriptomic analysis, we observed differential gene expression in response to varying growth media, with several genes related to carbohydrate metabolism showing significant upregulation when the fungus was cultivated on a hay-based medium. Finally, our metabolomic analysis unveiled a fungus capable of producing a diverse array of metabolites.PMID:38582937 | DOI:10.1186/s43008-024-00141-0

Inhibition of acyl-CoA binding protein (ACBP) by means of a GABA<sub>A</sub>Rγ2-derived peptide

Sat, 06/04/2024 - 12:00
Cell Death Dis. 2024 Apr 6;15(4):249. doi: 10.1038/s41419-024-06633-6.ABSTRACTAcyl-CoA binding protein (ACBP) encoded by diazepam binding inhibitor (DBI) is an extracellular inhibitor of autophagy acting on the gamma-aminobutyric acid A receptor (GABAAR) γ2 subunit (GABAARγ2). Here, we show that lipoanabolic diets cause an upregulation of GABAARγ2 protein in liver hepatocytes but not in other major organs. ACBP/DBI inhibition by systemically injected antibodies has been demonstrated to mediate anorexigenic and organ-protective, autophagy-dependent effects. Here, we set out to develop a new strategy for developing ACBP/DBI antagonists. For this, we built a molecular model of the interaction of ACBP/DBI with peptides derived from GABAARγ2. We then validated the interaction between recombinant and native ACBP/DBI protein and a GABAARγ2-derived eicosapeptide (but not its F77I mutant) by pull down experiments or surface plasmon resonance. The GABAARγ2-derived eicosapeptide inhibited the metabolic activation of hepatocytes by recombinant ACBP/DBI protein in vitro. Moreover, the GABAARγ2-derived eicosapeptide (but not its F77I-mutated control) blocked appetite stimulation by recombinant ACBP/DBI in vivo, induced autophagy in the liver, and protected mice against the hepatotoxin concanavalin A. We conclude that peptidomimetics disrupting the interaction between ACBP/DBI and GABAARγ2 might be used as ACBP/DBI antagonists. This strategy might lead to the future development of clinically relevant small molecules of the ACBP/DBI system.PMID:38582872 | DOI:10.1038/s41419-024-06633-6

DRP1 inhibition-mediated mitochondrial elongation abolishes cancer stemness, enhances glutaminolysis, and drives ferroptosis in oral squamous cell carcinoma

Sat, 06/04/2024 - 12:00
Br J Cancer. 2024 Apr 6. doi: 10.1038/s41416-024-02670-2. Online ahead of print.ABSTRACTBACKGROUND: Mitochondrial dynamics play a fundamental role in determining stem cell fate. However, the underlying mechanisms of mitochondrial dynamics in the stemness acquisition of cancer cells are incompletely understood.METHODS: Metabolomic profiling of cells were analyzed by MS/MS. The genomic distribution of H3K27me3 was measured by CUT&Tag. Oral squamous cell carcinoma (OSCC) cells depended on glucose or glutamine fueling TCA cycle were monitored by 13C-isotope tracing. Organoids and tumors from patients and mice were treated with DRP1 inhibitors mdivi-1, ferroptosis inducer erastin, or combination with mdivi-1 and erastin to evaluate treatment effects.RESULTS: Mitochondria of OSCC stem cells own fragment mitochondrial network and DRP1 is required for maintenance of their globular morphology. Imbalanced mitochondrial dynamics induced by DRP1 knockdown suppressed stemness of OSCC cells. Elongated mitochondria increased α-ketoglutarate levels and enhanced glutaminolysis to fuel the TCA cycle by increasing glutamine transporter ASCT2 expression. α-KG promoted the demethylation of histone H3K27me3, resulting in downregulation of SNAI2 associated with stemness and EMT. Significantly, suppressing DRP1 enhanced the anticancer effects of ferroptosis.CONCLUSION: Our study reveals a novel mechanism underlying mitochondrial dynamics mediated cancer stemness acquisition and highlights the therapeutic potential of mitochondria elongation to increase the susceptibility of cancer cells to ferroptosis.PMID:38582810 | DOI:10.1038/s41416-024-02670-2

Octanal enhances disease resistance in postharvest citrus fruit by the biosynthesis and metabolism of aromatic amino acids

Sat, 06/04/2024 - 12:00
Pestic Biochem Physiol. 2024 Mar;200:105835. doi: 10.1016/j.pestbp.2024.105835. Epub 2024 Feb 21.ABSTRACTOctanal was found to be able to reduce green mold incidence in citrus fruit by a defense response mechanism. However, the underlying mechanism remains largely unclear. Herein, the metabolomics, RNA-seq and biochemical analyses were integrated to explore the effect of octanal on disease resistance in harvested citrus fruit. Results showed that octanal fumigation at 40 μL L-1 was effective in controlling citrus green mold. Metabolomics analysis showed that octanal mainly led to the accumulation of some plant hormones including methyl jasmonate, abscisic acid, indole-3-butyric acid, indoleacetic acid (IAA), salicylic acid, and gibberellic acid and many phenylpropanoid metabolites including cinnamyl alcohol, hesperidin, dihydrokaempferol, vanillin, quercetin-3-O-malonylglucoside, curcumin, naringin, chrysin, coniferin, calycosin-7-O-β-D-glucoside, trans-cinnamaldehyde, and 4',5,7-trihydroxy-3,6-dimethoxyflavone. Particularly, IAA and hesperidin were dramatically accumulated in the peel, which might be the contributors to the resistance response. Additionally, transcriptome analysis showed that octanal greatly activated the biosynthesis and metabolism of aromatic amino acids. This was further verified by the accumulation of some metabolites (shikimic acid, tryptophan, tyrosine, phenylalanine, IAA, total phenolics, flavonoids and lignin), increase in some enzyme activities (phenylalanine ammonia-lyase, tyrosine ammonia-lyase, 4-coumarate CoA ligase, cinnamic acid 4-hydroxylase, polyphenol oxidase, and peroxidase), up-regulation of some genes (tryptophan pyruvate aminotransferase, aldehyde dehydrogenase, shikimate kinase and shikimate dehydrogenase) expressions and molecular docking results. Thus, these results indicate that octanal is an efficient strategy for the control of postharvest green mold by triggering the defense response in citrus fruit.PMID:38582597 | DOI:10.1016/j.pestbp.2024.105835

Assessing the impact of Chlorantraniliprole (CAP) pesticide stress on oilseed rape (Brassia campestris L.): Residue dynamics, enzyme activities, and metabolite profiling

Sat, 06/04/2024 - 12:00
Pestic Biochem Physiol. 2024 Mar;200:105785. doi: 10.1016/j.pestbp.2024.105785. Epub 2024 Jan 11.ABSTRACTThis study investigates the effects of chlorantraniliprole (CAP) pesticide stress on oilseed rape through comprehensive pot experiments. Assessing CAP residue variations in soil and oilseed rape (Brassia campestris L.), enzyme activities (POD, CPR, GST), and differential metabolites, we unveil significant findings. The average CAP residue levels were 18.38-13.70 mg/kg in unplanted soil, 9.94-6.30 mg/kg in planted soil, and 0-4.18 mg/kg in oilseed rape samples, respectively. Soil microbial influences and systemic pesticide translocation into oilseed rape contribute to CAP residue variations. Under the influence of CAP stress, oilseed rape displays escalated enzyme activities (POD, CPR, GST) and manifests 57 differential metabolites. Among these, 32 demonstrate considerable downregulation, mainly impacting amino acids and phenolic compounds, while 25 exhibit noteworthy overexpression, primarily affecting flavonoid compounds. This impact extends to 24 metabolic pathways, notably influencing amide biosynthesis, as well as arginine and proline metabolism. These findings underscore the discernible effects of CAP pesticide stress on oilseed rape.PMID:38582570 | DOI:10.1016/j.pestbp.2024.105785

Metabolomics in human SGBS cells as new approach method for studying adipogenic effects: Analysis of the effects of DINCH and MINCH on central carbon metabolism

Sat, 06/04/2024 - 12:00
Environ Res. 2024 Apr 4:118847. doi: 10.1016/j.envres.2024.118847. Online ahead of print.ABSTRACTGrowing evidence suggests that exposure to certain metabolism-disrupting chemicals (MDCs), such as the phthalate plasticizer DEHP, might promote obesity in humans, contributing to the spread of this global health problem. Due to the restriction on the use of phthalates, there has been a shift to safer declared substitutes, including the plasticizer diisononyl-cyclohexane-1,2-dicarboxylate (DINCH). Notwithstanding, recent studies suggest that the primary metabolite monoisononyl-cyclohexane-1,2-dicarboxylic acid ester (MINCH), induces differentiation of human adipocytes and affects enzyme levels of key metabolic pathways. Given the lack of methods for assessing metabolism-disrupting effects of chemicals on adipose tissue, we used metabolomics to analyze human SGSB cells exposed to DINCH or MINCH. Concentration analysis of DINCH and MINCH revealed that uptake of MINCH in preadipocytes was associated with increased lipid accumulation during adipogenesis. Although we also observed intracellular uptake for DINCH, the solubility of DINCH in cell culture medium was limited, hampering the analysis of possible effects in the μM concentration range. Metabolomics revealed that MINCH induces lipid accumulation similar to peroxisome proliferator activated receptor gamma (PPARG)-agonist rosiglitazone through upregulation of the pyruvate cycle, which was recently identified as a key driver of de novo lipogenesis. Analysis of the metabolome in the presence of the PPARG-inhibitor GW9662 indicated that the effect of MINCH on metabolism was mediated at least partly by a PPARG-independent mechanism. However, all effects of MINCH were only observed at high concentrations of 10 μM, which are three orders of magnitudes higher than the current concentrations of plasticizers in human serum. Overall, the assessment of the effects of DINCH and MINCH on SGBS cells by metabolomics revealed no adipogenic potential at physiologically relevant concentrations. This finding aligns with previous in vivo studies and supports the potential of our method as a New Approach Method (NAM) for the assessment of adipogenic effects of environmental chemicals.PMID:38582427 | DOI:10.1016/j.envres.2024.118847

Sedanolide alleviated DSS-induced colitis by modulating the intestinal FXR-SMPD3 pathway in mice

Sat, 06/04/2024 - 12:00
J Adv Res. 2024 Apr 4:S2090-1232(24)00128-0. doi: 10.1016/j.jare.2024.03.026. Online ahead of print.ABSTRACTINTRODUCTION: Inflammatory bowel disease (IBD) is a global disease with limited therapy. It is reported that sedanolide exerts anti-oxidative and anti-inflammatory effects as a natural phthalide, but its effects on IBD remain unclear.OBJECTIVES: In this study, we investigated the impacts of sedanolide on dextran sodium sulfate (DSS)-induced colitis in mice.METHODS: The mice were administered sedanolide or vehicle followed by DSS administration, after which colitis symptoms, inflammation levels, and intestinal barrier function were evaluated. Transcriptome analysis, 16S rRNA sequencing, and targeted metabolomics analysis of bile acids and lipids were performed.RESULTS: Sedanolide protected mice from DSS-induced colitis, suppressed the inflammation, restored the weakened epithelial barrier, and modified the gut microbiota by decreasing bile salt hydrolase (BSH)-expressing bacteria. The downregulation of BSH activity by sedanolide increased the ratio of conjugated/unconjugated bile acids (BAs), thereby inhibiting the intestinal farnesoid X receptor (FXR) pathway. The roles of the FXR pathway and gut microbiota were verified using an intestinal FXR-specific agonist (fexaramine) and germ-free mice, respectively. Furthermore, we identified the key effector ceramide, which is regulated by sphingomyelin phosphodiesterase 3 (SMPD3). The protective effects of ceramide (d18:1/16:0) against inflammation and the gut barrier were demonstrated in vitro using the human cell line Caco-2.CONCLUSION: Sedanolide could reshape the intestinal flora and influence BA composition, thus inhibiting the FXR-SMPD3 pathway to stimulate the synthesis of ceramide, which ultimately alleviated DSS-induced colitis in mice. Overall, our research revealed the protective effects of sedanolide against DSS-induced colitis in mice, which indicated that sedanolide may be a clinical treatment for colitis. Additionally, the key lipid ceramide (d18:1/16:0) was shown to mediate the protective effects of sedanolide, providing new insight into the associations between colitis and lipid metabolites.PMID:38582300 | DOI:10.1016/j.jare.2024.03.026

Integrative transcriptomic and metabolomic analyses reveals the toxicity and mechanistic insights of bioformulated chitosan nanoparticles against Magnaporthe oryzae

Sat, 06/04/2024 - 12:00
Chemosphere. 2024 Apr 4:141904. doi: 10.1016/j.chemosphere.2024.141904. Online ahead of print.ABSTRACTRice blast, an extremely destructive disease caused by the filamentous fungal pathogen Magnaporthe oryzae, poses a global threat to the production of rice (Oryza sativa L.). The emerging trend of reducing dependence on chemical fungicides for crop protection has increased interest in exploring bioformulated nanomaterials as a sustainable alternative antimicrobial strategy for effectively managing plant diseases. Herein, we used physiomorphological, transcriptomic, and metabolomic methods to investigate the toxicity and molecular action mechanisms of moringa-chitosan nanoparticles (M-CNPs) against M. oryzae. Our results demonstrate that M-CNPs exhibit direct antifungal properties by impeding the growth and conidia formation of M. oryzae in a concentration-dependent manner. Propidium iodide staining indicated concentration-dependent significant apoptosis (91.33%) in the fungus. Ultrastructural observations revealed complete structural damage in fungal cells treated with 200 mg/L M-CNPs, including disruption of the cell wall and destruction of internal organelles. Transcriptomic and metabolomic analyses revealed the intricate mechanism underlying the toxicity of M-CNPs against M. oryzae. The transcriptomics data indicated that exposure to M-CNPs disrupted various processes integral to cell membrane biosynthesis, aflatoxin biosynthesis, transcriptional regulation, and nuclear integrity in M. oryzae., emphasizing the interaction between M-CNPs and fungal cells. Similarly, metabolomic profiling demonstrated that exposure to M-CNPs significantly altered the levels of several key metabolites involved in the integral components of metabolic pathways, microbial metabolism, histidine metabolism, citrate cycle, and lipid and protein metabolism in M. oryzae. Overall, these findings demonstrated the potent antifungal action of M-CNPs, with a remarkable impact at the physiological and molecular level, culminating in substantial apoptotic-like fungal cell death. This research provides a novel perspective on investigating bioformulated nanomaterials as antifungal agents for plant disease control.PMID:38582174 | DOI:10.1016/j.chemosphere.2024.141904

Integrated transcriptomic and metabolomic analysis of the hepatotoxicity of dichloroacetonitrile

Sat, 06/04/2024 - 12:00
Sci Total Environ. 2024 Apr 4:172237. doi: 10.1016/j.scitotenv.2024.172237. Online ahead of print.ABSTRACTDichloroacetonitrile (DCAN), an emerged nitrogenous disinfection by-product (N-DBP) in drinking water, has garnered attention owing to its strong cytotoxicity, genotoxicity, and carcinogenicity. However, there are limited studies on its potential hepatotoxicity mechanisms. Understanding hepatotoxicity is essential in order to identify and assess the potential risks posed by environmental pollutants on liver health and to safeguard public health. Here, we investigated the viability, reactive oxygen species (ROS) levels, and cell cycle profile of DCAN-exposed HepG2 cells and analyzed the mechanism of DCAN-induced hepatotoxicity using both transcriptomic and metabolomic techniques. The study revealed that there was a decrease in cell viability, increase in ROS production, and increase in the number of cells in the G2/M phase with an increase in the concentration of DCAN. Omics analyses showed that DCAN exposure increased cellular ROS levels, leading to oxidative damage in hepatocytes, which further induced DNA damage, cell cycle arrest, and cell growth impairment. Thus, DCAN has significant toxic effects on hepatocytes. Integrated analysis of transcriptomics and metabolomics offers new insights into the mechanisms of DCAN-induced hepatoxicity.PMID:38582105 | DOI:10.1016/j.scitotenv.2024.172237

Gut bacteria-driven homovanillic acid alleviates depression by modulating synaptic integrity

Sat, 06/04/2024 - 12:00
Cell Metab. 2024 Apr 3:S1550-4131(24)00089-5. doi: 10.1016/j.cmet.2024.03.010. Online ahead of print.ABSTRACTThe gut-brain axis is implicated in depression development, yet its underlying mechanism remains unclear. We observed depleted gut bacterial species, including Bifidobacterium longum and Roseburia intestinalis, and the neurotransmitter homovanillic acid (HVA) in individuals with depression and mouse depression models. Although R. intestinalis does not directly produce HVA, it enhances B. longum abundance, leading to HVA generation. This highlights a synergistic interaction among gut microbiota in regulating intestinal neurotransmitter production. Administering HVA, B. longum, or R. intestinalis to mouse models with chronic unpredictable mild stress (CUMS) and corticosterone (CORT)-induced depression significantly improved depressive symptoms. Mechanistically, HVA inhibited synaptic autophagic death by preventing excessive degradation of microtubule-associated protein 1 light chain 3 (LC3) and SQSTM1/p62 proteins, protecting hippocampal neurons' presynaptic membrane. These findings underscore the role of the gut microbial metabolism in modulating synaptic integrity and provide insights into potential novel treatment strategies for depression.PMID:38582087 | DOI:10.1016/j.cmet.2024.03.010

Gut microbiota regulates the ALK5/NOX1 axis by altering glutamine metabolism to inhibit ferroptosis of intrahepatic cholangiocarcinoma cells

Sat, 06/04/2024 - 12:00
Biochim Biophys Acta Mol Basis Dis. 2024 Apr 5;1870(5):167152. doi: 10.1016/j.bbadis.2024.167152. Online ahead of print.ABSTRACTIntrahepatic cholangiocarcinoma (ICC) is a kind of hepatobiliary tumor that is increasing in incidence and mortality. The gut microbiota plays a role in the onset and progression of cancer, however, the specific mechanism by which the gut microbiota acts on ICC remains unclear. In this study, feces and plasma from healthy controls and ICC patients were collected for 16S rRNA sequencing or metabolomics analysis. Gut microbiota analysis showed that gut microbiota abundance and biodiversity were altered in ICC patients compared with controls. Plasma metabolism analysis showed that the metabolite glutamine content of the ICC patient was significantly higher than that of the controls. KEGG pathway analysis showed that glutamine plays a vital role in ICC. In addition, the use of antibiotics in ICC animals further confirmed that changes in gut microbiota affect changes in glutamine. Further experiments showed that supplementation with glutamine inhibited ferroptosis and downregulated ALK5 and NOX1 expression in HuCCT1 cells. ALK5 overexpression or NOX1 overexpression increased NOX1, p53, PTGS2, ACSL4, LPCAT3, ROS, MDA and Fe2+ and decreased FTH1, SLC7A11 and GSH. Knockdown of NOX1 suppressed FIN56-induced ferroptosis. In vivo, supplementation with glutamine promoted tumor growth. Overexpression of ALK5 repressed tumor growth and induced ferroptosis in nude mice, which could be reversed by the addition of glutamine. Our results suggested that the gut microbiota altered glutamine metabolism to inhibit ferroptosis in ICC by regulating the ALK5/NOX1 axis.PMID:38582012 | DOI:10.1016/j.bbadis.2024.167152

Temporal metabolomics state in pregnant rat: Analysis of amniotic fluid, placenta, and maternal plasma at embryonic and fetal time points

Sat, 06/04/2024 - 12:00
Placenta. 2024 Mar 30;150:22-30. doi: 10.1016/j.placenta.2024.03.015. Online ahead of print.ABSTRACTINTRODUCTION: During pregnancy, the dynamic metabolic demands for fetal growth require a continuous supply of essential metabolites. Understanding maternal metabolome changes during gestation is crucial for predicting disease risks in neonates.METHODS: The study aimed to characterize the placental and amniotic fluid (AF) metabolomes during gestation in rats at gestational days GD-13 and 19 reflecting the end of the embryonic and fetal periods, respectively, and the maternal plasma, using metabolomics (LC-MS) and chemometrics. The objective was to highlight, through univariate and multivariate analyses, the complementarity of the data obtained from these different biological matrices.RESULTS: The biological matrix had more impact on the metabolome composition than the gestational stage. The placental and AF metabolomes showed specific metabolome evolving over the two gestational stages. Analyzing the three targeted metabolomes revealed evolving pathways in arginine and proline metabolism/glutathione metabolism and phenylalanine metabolism; purine metabolism; and carbohydrate metabolism. Significantly, lipid metabolism in the placenta exhibited substantial changes with higher levels of certain phosphatidylethanolamine and sphingomyelins at GD19 while some cholesteryl esters and some glycosphingolipids levels being in higher levels at GD13.DISCUSSION: These data highlight the metabolic gradients (mainly in placenta, also in AF, but only a few in plasma) observed through embryonic patterning and organ development during mid-to late gestation.PMID:38581971 | DOI:10.1016/j.placenta.2024.03.015

Dynamics changes in metabolites and pancreatic lipase inhibitory ability of instant dark tea during liquid-state fermentation by Aspergillus niger

Sat, 06/04/2024 - 12:00
Food Chem. 2024 Mar 27;448:139136. doi: 10.1016/j.foodchem.2024.139136. Online ahead of print.ABSTRACTInstant dark tea (IDT), prepared by liquid-state fermentation using Aspergillus niger, is known for its high theabrownins content and lipid-lowering effect. To explore the impact of fungal fermentation on IDT compositions and its pancreatic lipase inhibitory ability (PLIA), untargeted and targeted metabolomic analysis were applied to track the changes of metabolites over a 9-day fermentation period, and correlation analysis was then conducted between metabolites and PLIA of IDT. There were 54 differential metabolites exhibited significant changes from day 3 to day 5 of fermentation. The concentrations of theabrownins and caffeine increased during fermentation, while phenols and free amino acids decreased. The PLIA of IDT samples significantly increased from day 5 to day 9 of fermentation. Theabrownins not only positively correlated with the PLIA but also exhibited a high inhibition rate. These findings provide a theoretical basis to optimize the production of IDT as functional food ingredient.PMID:38581964 | DOI:10.1016/j.foodchem.2024.139136

Omics analysis unveils changes in the metabolome and lipidome of Caenorhabditis elegans upon polydopamine exposure

Sat, 06/04/2024 - 12:00
J Pharm Biomed Anal. 2024 Apr 1;244:116126. doi: 10.1016/j.jpba.2024.116126. Online ahead of print.ABSTRACTPolydopamine (PDA) is an insoluble biopolymer with a dark brown-black color that forms through the autoxidation of dopamine. Because of its outstanding biocompatibility and durability, PDA holds enormous promise for various applications, both in the biomedical and non-medical domains. To ensure human safety, protect health, and minimize environmental impacts, the assessment of PDA toxicity is important. In this study, metabolomics and lipidomics assessed the impact of acute PDA exposure on Caenorhabditis elegans (C. elegans). The findings revealed a pronounced perturbation in the metabolome and lipidome of C. elegans at the L4 stage following 24 hours of exposure to 100 µg/mL PDA. The changes in lipid composition varied based on lipid classes. Increased lipid classes included lysophosphatidylethanolamine, triacylglycerides, and fatty acids, while decreased species involved in several sub-classes of glycerophospholipids and sphingolipids. Besides, we detected 37 significantly affected metabolites in the positive and 8 in the negative ion modes due to exposure to PDA in C. elegans. The metabolites most impacted by PDA exposure were associated with purine metabolism, biosynthesis of valine, leucine, and isoleucine; aminoacyl-tRNA biosynthesis; and cysteine and methionine metabolism, along with pantothenate and CoA biosynthesis; the citrate cycle (TCA cycle); and beta-alanine metabolism. In conclusion, PDA exposure may intricately influence the metabolome and lipidome of C. elegans. The combined application of metabolomics and lipidomics offers additional insights into the metabolic perturbations involved in PDA-induced biological effects and presents potential biomarkers for the assessment of PDA safety.PMID:38581931 | DOI:10.1016/j.jpba.2024.116126

Protective effects of sodium butyrate on fluorosis in rats by regulating bone homeostasis and serum metabolism

Sat, 06/04/2024 - 12:00
Ecotoxicol Environ Saf. 2024 Apr 5;276:116284. doi: 10.1016/j.ecoenv.2024.116284. Online ahead of print.ABSTRACTFluorosis due to high fluoride levels in drinking water profoundly affects the development of human skeletal and dental structures. Sodium butyrate (NaB) has been found to regulate overall bone mass and prevent pathological bone loss. However, the mechanism of NaB action on fluorosis remains unclear. In this study, a rat model of fluorosis induced by 100 mg/L sodium fluoride was used to investigate the impact of NaB on bone homeostasis and serum metabolomics. It was found that NaB significantly reduced the levels of bone resorption markers CTX-Ⅰ and TRACP-5B in fluorosis rats. Moreover, NaB increased calcium and magnesium levels in bone, while decreasing phosphorus levels. In addition, NaB improved various bone microstructure parameters, including bone mineral density (BMD), trabecular thickness (Tb. Th), trabecular bone separation (Tb. SP), and structural model index (SMI) in the femur. Notably, NaB intervention also enhanced the antioxidant capacity of plasma in fluorosis rats. Furthermore, a comprehensive analysis of serum metabolomics by LC-MS revealed a significant reversal trend of seven biomarkers after the intervention of NaB. Finally, pathway enrichment analysis based on differential metabolites indicated that NaB exerted protective effects on fluorosis by modulating arginine and proline metabolic pathways. These findings suggest that NaB has a beneficial effect on fluorosis and can regulate bone homeostasis by ameliorating metabolic disorders.PMID:38581912 | DOI:10.1016/j.ecoenv.2024.116284

Turning weeds into feed: Ensiling Calotropis gigantea (Giant milkweed) reduces its toxicity and enhances its palatability for dairy cows

Sat, 06/04/2024 - 12:00
Ecotoxicol Environ Saf. 2024 Apr 5;276:116292. doi: 10.1016/j.ecoenv.2024.116292. Online ahead of print.ABSTRACTCalotropis gigantea (Giant milkweed, GM) has the potential to be utilized as a new feed additive for ruminants, however, the presence of unpalatable or toxic compounds decreases animal feed intake. This study aimed to valorize GM as a potential new feed resource through the chemical and microbial biotransformation of toxic compounds that will henceforth, make the plant palatable for cows. After GM's ensiling using fermentative bacteria, the plant was sampled for UHPLC-MS/MS to analyse the metabolomic changes. Illumina Miseq of the 16 S rRNA fragment genes and ITS1 were used to describe the microbial composition and structure colonizing GM silage and contributing to the biodegradation of toxic compounds. Microbial functions were predicted from metataxonomic data and KEGG pathways analysis. Eight Holstein dairy cows assigned in a cross-over design were supplemented with GM and GM silage to evaluate palatability and effects on milk yield and milk protein. Cows were fed their typical diet prior to the experiment (positive control). After ensiling, 23 flavonoids, 47 amino acids and derivatives increased, while the other 14 flavonoids, 9 amino acids and derivatives decreased, indicating active metabolism during the GM ensiling process. Lactobacillus buchneri, Bacteroides ovatus, and Megasphaera elsdenii were specific to ensiled GM and correlated to functional plant metabolites, while Sphingomonas paucimobilis and Staphylococcus saprophyticus were specific to non-ensiled GM and correlated to the toxic metabolite 5-hydroxymethylfurfural."Xenobiotics biodegradation and metabolism", "cancer overview" and "neurodegenerative disease" were the highly expressed microbial KEGG pathways in non-ensiled GM. Non-ensiled GM is unpalatable for cows and drastically reduces the animal's feed intake, whereas ensiled GM does not reduce feed intake, milk yield and milk protein. This study provides essential information for sustainable animal production by valorizing GM as a new feed additive.PMID:38581911 | DOI:10.1016/j.ecoenv.2024.116292

Pages