Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Leaf metabolic traits reveal hidden dimensions of plant form and function

Wed, 30/08/2023 - 12:00
Sci Adv. 2023 Sep;9(35):eadi4029. doi: 10.1126/sciadv.adi4029. Epub 2023 Aug 30.ABSTRACTThe metabolome is the biochemical basis of plant form and function, but we know little about its macroecological variation across the plant kingdom. Here, we used the plant functional trait concept to interpret leaf metabolome variation among 457 tropical and 339 temperate plant species. Distilling metabolite chemistry into five metabolic functional traits reveals that plants vary on two major axes of leaf metabolic specialization-a leaf chemical defense spectrum and an expression of leaf longevity. Axes are similar for tropical and temperate species, with many trait combinations being viable. However, metabolic traits vary orthogonally to life-history strategies described by widely used functional traits. The metabolome thus expands the functional trait concept by providing additional axes of metabolic specialization for examining plant form and function.PMID:37647404 | DOI:10.1126/sciadv.adi4029

The malate-aspartate shuttle is important for de novo serine biosynthesis

Wed, 30/08/2023 - 12:00
Cell Rep. 2023 Aug 29;42(9):113043. doi: 10.1016/j.celrep.2023.113043. Online ahead of print.ABSTRACTThe malate-aspartate shuttle (MAS) is a redox shuttle that transports reducing equivalents across the inner mitochondrial membrane while recycling cytosolic NADH to NAD+. We genetically disrupted each MAS component to generate a panel of MAS-deficient HEK293 cell lines in which we performed [U-13C]-glucose tracing. MAS-deficient cells have reduced serine biosynthesis, which strongly correlates with the lactate M+3/pyruvate M+3 ratio (reflective of the cytosolic NAD+/NADH ratio), consistent with the NAD+ dependency of phosphoglycerate dehydrogenase in the serine synthesis pathway. Among the MAS-deficient cells, those lacking malate dehydrogenase 1 (MDH1) show the most severe metabolic disruptions, whereas oxoglutarate-malate carrier (OGC)- and MDH2-deficient cells are less affected. Increasing the NAD+-regenerating capacity using pyruvate supplementation resolves most of the metabolic disturbances. Overall, we show that the MAS is important for de novo serine biosynthesis, implying that serine supplementation could be used as a therapeutic strategy for MAS defects and possibly other redox disorders.PMID:37647199 | DOI:10.1016/j.celrep.2023.113043

Correction to: Metabolome expression in Eucryphia cordifolia populations: role of seasonality and ecological niche centrality hypothesis

Wed, 30/08/2023 - 12:00
J Plant Res. 2023 Aug 30. doi: 10.1007/s10265-023-01489-x. Online ahead of print.NO ABSTRACTPMID:37646870 | DOI:10.1007/s10265-023-01489-x

Stony coral tissue loss disease intervention with amoxicillin leads to a reversal of disease-modulated gene expression pathways

Wed, 30/08/2023 - 12:00
Mol Ecol. 2023 Aug 30. doi: 10.1111/mec.17110. Online ahead of print.ABSTRACTStony coral tissue loss disease (SCTLD) remains an unprecedented disease outbreak due to its high mortality rate and rapid spread throughout Florida's Coral Reef and wider Caribbean. A collaborative effort is underway to evaluate strategies that mitigate the spread of SCTLD across coral colonies and reefs, including restoration of disease-resistant genotypes, genetic rescue, and disease intervention with therapeutics. We conducted an in-situ experiment in Southeast Florida to assess molecular responses among SCTLD-affected Montastraea cavernosa pre- and post-application of the most widely used intervention method, CoreRx Base 2B with amoxicillin. Through Tag-Seq gene expression profiling of apparently healthy, diseased, and treated corals, we identified modulation of metabolomic and immune gene pathways following antibiotic treatment. In a complementary ex-situ disease challenge experiment, we exposed nursery-cultured M. cavernosa and Orbicella faveolata fragments to SCTLD-affected donor corals to compare transcriptomic profiles among clonal individuals from unexposed controls, those exposed and displaying disease signs, and corals exposed and not displaying disease signs. Suppression of metabolic functional groups and activation of stress gene pathways as a result of SCTLD exposure were apparent in both species. Amoxicillin treatment led to a 'reversal' of the majority of gene pathways implicated in disease response, suggesting potential recovery of corals following antibiotic application. In addition to increasing our understanding of molecular responses to SCTLD, we provide resource managers with transcriptomic evidence that disease intervention with antibiotics appears to be successful and may help to modulate coral immune responses to SCTLD. These results contribute to feasibility assessments of intervention efforts following disease outbreaks and improved predictions of coral reef health across the wider Caribbean.PMID:37646698 | DOI:10.1111/mec.17110

<em>Euglena gracilis</em> Extract Protects From Tobacco Smoke Carcinogen-Induced Lung Cancer by Altering Gut Microbiota Metabolome

Wed, 30/08/2023 - 12:00
Integr Cancer Ther. 2023 Jan-Dec;22:15347354231195323. doi: 10.1177/15347354231195323.ABSTRACTExtracts from Euglena gracilis have been shown to prevent cancer growth in mouse models. However, the molecular mechanism of this anti-cancer activity has not been determined nor has the effect of Euglena extracts on tobacco smoke carcinogen-induced carcinogenesis. Here, we investigate the hypothesis that this anti-cancer activity is a result of changes in the intestinal microbiota induced by oral administration of the extract. We found that a Euglena gracilis water extract prevents lung tumorigenesis induced by a tobacco smoke-specific carcinogen (NNK) in mice treated either 2 weeks before or 10 weeks after NNK injection. Both of these treatment regimens are associated with significant increases in 27 microbiota metabolites found in the mouse feces, including large increases in triethanolamine, salicylate, desaminotyrosine, N-acetylserine, glycolate, and aspartate. Increases in the short-chain fatty acids (SCFAs) including acetate, propionate and butyrate are also observed. We also detected a significant attenuation of lung carcinoma cell growth through the induction of cell cycle arrest and apoptosis caused by low levels of SCFAs. This study provides strong evidence of anti-cancer activity in Euglena gracilis extracts against tobacco smoke carcinogen-induced tumorigenesis and demonstrates that this activity is linked to increased production of specific gut microbiota metabolites and the resultant induction of cell cycle arrest and apoptosis of lung carcinoma cells.PMID:37646331 | DOI:10.1177/15347354231195323

Tissue-specific stilbene accumulation is an early response to wounding/grafting as revealed by using spatial and temporal metabolomics

Wed, 30/08/2023 - 12:00
Plant Cell Environ. 2023 Aug 30. doi: 10.1111/pce.14693. Online ahead of print.ABSTRACTGrafting is widely used in horticulture. Shortly after grafting, callus tissues appear at the graft interface and the vascular tissues of the scion and rootstock connect. The graft interface contains a complex mix of tissues, we hypothesised that each tissue has its own metabolic response to wounding/grafting and accumulates different metabolites at different rates. We made intact and wounded cuttings and grafts of grapevine, and then measured changes in bulk flavonoid, phenolic acid and stilbenoid concentration and used metabolite imaging to study tissue-specific responses. We show that some metabolites rapidly accumulate in specific tissues after grafting, for example, stilbene monomers accumulate in necrotic tissues surrounding mature xylem vessels. Whereas other metabolites, such as complex stilbenes, accumulate in the same tissues at later stages. We also observe that other metabolites accumulate in the newly formed callus tissue and identify genotype-specific responses. In addition, exogenous resveratrol application did not modify grafting success rate, potentially suggesting that the accumulation of resveratrol at the graft interface is not linked to graft union formation. The increasing concentration of complex stilbenes often occurs in response to plant stresses (via unknown mechanisms), and potentially increases antioxidant activity and antifungal capacities.PMID:37646324 | DOI:10.1111/pce.14693

Endophytic <em>Beauveria bassiana</em> of Tomato Resisted the Damage from Whitefly <em>Bemisia tabaci</em> by Mediating the Accumulation of Plant-Specialized Metabolites

Wed, 30/08/2023 - 12:00
J Agric Food Chem. 2023 Aug 30. doi: 10.1021/acs.jafc.3c03679. Online ahead of print.ABSTRACTBeauveria bassiana acts as an endophytic fungus that controls herbivorous pests by stimulating plant defenses and inducing systemic resistance. Through multiomics analysis, 325 differential metabolites and 1739 differential expressed genes were observed in tomatoes treated with B. bassiana by root irrigation; meanwhile, 152 differential metabolites and 1002 differential genes were observed in tomatoes treated by local leaf spraying. Among the upregulated metabolites were α-solanine, 5-O-caffeoylshikimic acid, clerodendrin A, and peucedanin, which demonstrated anti-insect activity. These differential metabolites were primarily associated with alkaloid biosynthesis, flavonoid biosynthesis, and tryptophan metabolism pathways. Furthermore, the gene silencing of UDP-glucose:sterol glucosyltransferase, a gene involved in α-solanine synthesis, indicated that B. bassiana could inhibit the reproduction of whiteflies by regulating α-solanine. This study highlighted the ability of B. bassiana to modulate plant secondary metabolites and emphasized the significance of understanding and harnessing multitrophic interactions of endophytic B. bassiana for sustainable agriculture.PMID:37646319 | DOI:10.1021/acs.jafc.3c03679

Machine learning of cellular metabolic rewiring

Wed, 30/08/2023 - 12:00
bioRxiv. 2023 Aug 14:2023.08.11.552957. doi: 10.1101/2023.08.11.552957. Preprint.ABSTRACTMetabolic rewiring allows cells to adapt their metabolism in response to evolving environmental conditions. Traditional metabolomics techniques, whether targeted or untargeted, often struggle to interpret these adaptive shifts. Here we introduce MetaboLiteLearner , a machine learning framework that harnesses the detailed fragmentation patterns from electron ionization (EI) collected in scan mode during gas chromatography/mass spectrometry (GC/MS) to predict abundance changes in metabolically adapted cells. When tested on breast cancer cells with different preferences to metastasize to specific organs, MetaboLiteLearner successfully predicted the impact of metabolic rewiring on metabolites withheld from the training dataset using only the EI spectra, without metabolite identification or pre-existing knowledge of metabolic networks. Our analysis highlights shared and unique metabolomic shifts between brain- and lung-homing metastatic lineages, suggesting potential organ-tailored cellular adaptations. MetaboLiteLearner 's integration of machine learning and metabolomics paves the way for new insights into complex cellular adaptations.SIGNIFICANCE: Metabolic rewiring-the cellular adaptation to shifts in environment and nutrients-plays key roles in many contexts, including cancer metastasis. Traditional metabolomics often falls short of capturing the nuances of these metabolic shifts. This work introduces MetaboliLiteLearner , a machine learning framework that harnesses the rich fragmentation patterns from electron ionization collected in scan mode during gas chromatography/mass spectrometry, paving the way for enhanced insights into metabolic adaptations. Demonstrating its robustness on a breast cancer model, we highlight MetaboliLiteLearner 's potential to reshape our understanding of metabolic rewiring, with implications in diagnostics, therapeutics, and basic cell biology.PMID:37645838 | PMC:PMC10462012 | DOI:10.1101/2023.08.11.552957

Trans-Omics analysis of post injury thrombo-inflammation identifies endotypes and trajectories in trauma patients

Wed, 30/08/2023 - 12:00
bioRxiv. 2023 Aug 18:2023.08.16.553446. doi: 10.1101/2023.08.16.553446. Preprint.ABSTRACTUnderstanding and managing the complexity of trauma-induced thrombo-inflammation necessitates an innovative, data-driven approach. This study leveraged a trans-omics analysis of longitudinal samples from trauma patients to illuminate molecular endotypes and trajectories that underpin patient outcomes, transcending traditional demographic and physiological characterizations. We hypothesize that trans-omics profiling reveals underlying clinical differences in severely injured patients that may present with similar clinical characteristics but ultimately have very different responses to treatment and clinical outcomes. Here we used proteomics and metabolomics to profile 759 of longitudinal plasma samples from 118 patients at 11 time points and 97 control subjects. Results were used to define distinct patient states through data reduction techniques. The patient groups were stratified based on their shock severity and injury severity score, revealing a spectrum of responses to trauma and treatment that are fundamentally tied to their unique underlying biology. Ensemble models were then employed, demonstrating the predictive power of these molecular signatures with area under the receiver operating curves of 80 to 94% for key outcomes such as INR, ICU-free days, ventilator-free days, acute lung injury, massive transfusion, and death. The molecularly defined endotypes and trajectories provide an unprecedented lens to understand and potentially guide trauma patient management, opening a path towards precision medicine. This strategy presents a transformative framework that aligns with our understanding that trauma patients, despite similar clinical presentations, might harbor vastly different biological responses and outcomes.PMID:37645811 | PMC:PMC10462097 | DOI:10.1101/2023.08.16.553446

SCALiR: a web application for automating absolute quantification of mass spectrometry-based metabolomics data

Wed, 30/08/2023 - 12:00
bioRxiv. 2023 Aug 16:2023.08.16.551807. doi: 10.1101/2023.08.16.551807. Preprint.ABSTRACTMetabolomics is an important approach for studying complex biological systems. Quantitative liquid chromatography-mass spectrometry (LC-MS)-based metabolomics is becoming a mainstream strategy but presents several technical challenges that limit its widespread use. Computing metabolite concentrations using standard curves generated from standard mixtures of known concentrations is a labor-intensive process which is often performed manually. Currently, there are few options for open-source software tools that can automatically calculate metabolite concentrations. Herein, we introduce SCALiR (Standard Curve Application for determining Linear Ranges), a new web-based software tool specifically built for this task, which allows users to automatically transform LC-MS signal data into absolute quantitative data ( https://www.lewisresearchgroup.org/software ). The algorithm used in SCALiR automatically finds the equation of the line of best fit for each standard curve and uses this equation to calculate compound concentrations from their LC-MS signal. Using a standard mix containing 77 metabolites, we found excellent correlation between the concentrations calculated by SCALiR and the expected concentrations of each compound (R 2 = 0.99) and that SCALiR reproducibly calculated concentrations of mid-range standards across ten analytical batches (average coefficient of variation 0.091). SCALiR offers users several advantages, including that it (1) is open-source and vendor agnostic; (2) requires only 10 seconds of analysis time to compute concentrations of >75 compounds; (3) facilitates automation of quantitative workflows; and (4) performs deterministic evaluation of compound quantification limits. SCALiR provides the metabolomics community with a simple and rapid tool that enables rigorous and reproducible quantitative metabolomics studies.PMID:37645808 | PMC:PMC10461962 | DOI:10.1101/2023.08.16.551807

Broadcasters, receivers, functional groups of metabolites and the link to heart failure progression using polygenic factors

Wed, 30/08/2023 - 12:00
Res Sq. 2023 Aug 18:rs.3.rs-3246406. doi: 10.21203/rs.3.rs-3246406/v1. Preprint.ABSTRACTIn a prospective study with records of heart failure (HF) incidence, we present metabolite profiling data from individuals without HF at baseline. We uncovered the interconnectivity of metabolites using data-driven and causal networks augmented with polygenic factors. Exploring the networks, we identified metabolite broadcasters, receivers , mediators, and subnetworks corresponding to functional classes of metabolites, and provided insights into the link between metabolomic architecture and regulation in health. We incorporated the network structure into the identification of metabolites associated with HF to control the effect of confounding metabolites. We identified metabolites associated with higher or lower risk of HF incidence, the associations that were not confounded by the other metabolites, such as glycine, ureidopropionic and glycocholic acids, and LPC 18:2. We revealed the underlying relationships of the findings. For example, asparagine directly influenced glycine, and both were inversely associated with HF. These two metabolites were influenced by polygenic factors and only essential amino acids which are not synthesized in the human body and come directly from the diet. Metabolites may play a critical role in linking genetic background and lifestyle factors to HF progression. Revealing the underlying connectivity of metabolites associated with HF strengthens the findings and facilitates a mechanistic understanding of HF progression.PMID:37645766 | PMC:PMC10462252 | DOI:10.21203/rs.3.rs-3246406/v1

Integrated spatial transcriptomics and lipidomics of precursor lesions of pancreatic cancer identifies enrichment of long chain sulfatide biosynthesis as an early metabolic alteration

Wed, 30/08/2023 - 12:00
bioRxiv. 2023 Aug 15:2023.08.14.553002. doi: 10.1101/2023.08.14.553002. Preprint.ABSTRACTBACKGROUND: The development of diverse spatial profiling technologies has provided an unprecedented insight into molecular mechanisms driving cancer pathogenesis. Here, we conducted the first integrated cross-species assessment of spatial transcriptomics and spatial metabolomics alterations associated with progression of intraductal papillary mucinous neoplasms (IPMN), bona fide cystic precursors of pancreatic ductal adenocarcinoma (PDAC).METHODS: Matrix Assisted Laster Desorption/Ionization (MALDI) mass spectrometry (MS)-based spatial imaging and Visium spatial transcriptomics (ST) (10X Genomics) was performed on human resected IPMN tissues (N= 23) as well as pancreata from a mutant Kras;Gnas mouse model of IPMN. Findings were further compared with lipidomic analyses of cystic fluid from 89 patients with histologically confirmed IPMNs, as well as single-cell and bulk transcriptomic data of PDAC and normal tissues.RESULTS: MALDI-MS analyses of IPMN tissues revealed long-chain hydroxylated sulfatides, particularly the C24:0(OH) and C24:1(OH) species, to be selectively enriched in the IPMN and PDAC neoplastic epithelium. Integrated ST analyses confirmed that the cognate transcripts engaged in sulfatide biosynthesis, including UGT8, Gal3St1 , and FA2H , were co-localized with areas of sulfatide enrichment. Lipidomic analyses of cystic fluid identified several sulfatide species, including the C24:0(OH) and C24:1(OH) species, to be significantly elevated in patients with IPMN/PDAC compared to those with low-grade IPMN. Targeting of sulfatide metabolism via the selective galactosylceramide synthase inhibitor, UGT8-IN-1, resulted in ceramide-induced lethal mitophagy and subsequent cancer cell death in vitro , and attenuated tumor growth of mutant Kras;Gnas allografts. Transcript levels of UGT8 and FA2H were also selectively enriched in PDAC transcriptomic datasets compared to non-cancerous areas, and elevated tumoral UGT8 was prognostic for poor overall survival.CONCLUSION: Enhanced sulfatide metabolism is an early metabolic alteration in cystic pre-cancerous lesions of the pancreas that persists through invasive neoplasia. Targeting sulfatide biosynthesis might represent an actionable vulnerability for cancer interception.PMID:37645752 | PMC:PMC10462088 | DOI:10.1101/2023.08.14.553002

Comparison analysis of full-spectrum metabolomics revealed on the variation of potential metabolites of unscented, <em>Chloranthus spicatus</em> scented, and <em>Osmanthus fragrans (Thunb.)</em> Lour. scented <em>Congou</em> black teas

Wed, 30/08/2023 - 12:00
Front Nutr. 2023 Aug 14;10:1234807. doi: 10.3389/fnut.2023.1234807. eCollection 2023.ABSTRACTINTRODUCTION: In recent years, scented black tea has attracted much attention due to its pleasant floral aroma and mellow flavor, but little research has been carried out on its flavor metabolic profile.METHODS: In this study, the flavor metabolic profiles of unscented, Chloranthus spicatus scented, and Osmanthus fragrans (Thunb.) Lour. scented Congou black teas were investigated using full-spectrum metabolomics analysis method, the first time that the flavor profiles of scented black tea were characterized in detail.RESULTS AND DISCUSSION: The results revealed that a total of 3,128 metabolites were detected in the three teas. Based on the criteria of variable importance in the project >1 and fold change ≥2 or ≤ 0.5, 761 non-volatile metabolites and 509 volatile metabolites were filtered as differential metabolites. Many differential non-volatile metabolites belonged to flavonoids, phenolic acids, and terpenoids. Floral, fruity and herbaceous volatile metabolites were significantly up-regulated in Chloranthus spicatus scented Congou black tea while sweet and fruity volatile metabolites were significantly down-regulated in Osmanthus fragrans (Thunb.) Lour. scented Congou black tea. The results contribute to a better understanding of the scenting techniques on the flavor quality of scented black teas and provide some information on the flavor chemistry theory of scented black teas.PMID:37645629 | PMC:PMC10461629 | DOI:10.3389/fnut.2023.1234807

Petunia dihydroflavonol 4-reductase is only a few amino acids away from producing orange pelargonidin-based anthocyanins

Wed, 30/08/2023 - 12:00
Front Plant Sci. 2023 Aug 14;14:1227219. doi: 10.3389/fpls.2023.1227219. eCollection 2023.ABSTRACTAnthocyanins are responsible for the color spectrum of both ornamental and natural flowers. However, not all plant species produce all colors. For example, roses are not blue because they do not naturally possess a hydroxylase that opens the pathway for delphinidin and its derivatives. It is more intriguing why some plants do not carry orange or scarlet red flowers with anthocyanins based on pelargonidin, because the precursor for these anthocyanins should be available if anthocyanins are made at all. The key to this is the substrate specificity of dihydroflavonol 4-reductase (DFR), an enzyme located at the branch point between flavonols and anthocyanins. The most common example is petunia, which does not bear orange flowers unless the enzyme is complemented by biotechnology. We changed a few amino acids in the active site of the enzyme and showed that the mutated petunia DFR started to favor dihydrokaempferol, the precursor to orange pelargonidin, in vitro. When transferred to petunia, it produced an orange hue and dramatically more pelargonidin-based anthocyanins in the flowers.PMID:37645465 | PMC:PMC10461392 | DOI:10.3389/fpls.2023.1227219

The chemical profiling of <em>Salvia plebeia</em> during different growth periods and the biosynthesis of its main flavonoids ingredients

Wed, 30/08/2023 - 12:00
Front Plant Sci. 2023 Aug 14;14:1228356. doi: 10.3389/fpls.2023.1228356. eCollection 2023.ABSTRACTSalvia plebeia (Lamiaceae) is a valuable medicinal plant widely distributed across Asia and Oceania. However, the composition and accumulation patterns of its active ingredients in different organs during the growth and their biosynthetic mechanism remain unknown. Therefore, we conducted metabolite profiling, transcriptomic analysis, and biological functional verification to explore the distribution, accumulation, and biosynthesis mechanisms of flavonoids in S. plebeia. We identified 70 metabolites including 46 flavonoids, 16 phenolic acids, seven terpenoids, and one organic acid, of which 21 were previously unreported in S. plebeia. Combining metabolomic-transcriptomic analysis and biological functional verification, we identified the key genes involved in biosynthesis of its main active ingredients, hispidulin and homoplantaginin, including SpPAL, SpC4H, Sp4CL2, Sp4CL5, SpCHS1, SpCHI, SpFNS, SpF6H1, SpF6OMT1, SpF6OMT2, SpUGT1, SpUGT2, and SpUGT3. Using the identified genes, we reconstructed the hispidulin and homoplantaginin biosynthesis pathways in Escherichia coli, and obtained a yield of 5.33 and 3.86 mg/L for hispidulin and homoplantaginin, respectively. Our findings provide valuable insights into the changes in chemical components in different organs of S. plebeia during different growth and harvest stages and establishes a foundation for identifying and synthesizing its active components.PMID:37645462 | PMC:PMC10461478 | DOI:10.3389/fpls.2023.1228356

Metabolic and Hepatic Effects of Empagliflozin on Nonalcoholic Fatty Liver Mice

Wed, 30/08/2023 - 12:00
Diabetes Metab Syndr Obes. 2023 Aug 24;16:2549-2560. doi: 10.2147/DMSO.S422327. eCollection 2023.ABSTRACTPURPOSE: Among chronic liver diseases, non-alcoholic fatty liver disease (NAFLD) is one of the commonest. Although empagliflozin has several therapeutic uses in treating cardiovascular and renal disorders, its impacts and mechanisms on NAFLD are poorly understood. This research aimed to examine the metabolic regulatory mechanism through which empagliflozin protects against NAFLD.METHODS: Equal grouping of twenty-seven male C57BL/6J mice into those fed a normal diet (NCD), those fed a high-fat diet (HFD), and those fed an HFD with empagliflozin (Empa) was approached. HE, oil red O staining, and Masson staining were utilized for evaluating the pathological damage to the liver and the mice's liver and body weights. Lipids, blood glucose, and inflammation index were compared across the three groups. Liquid chromatography/mass spectrometry (LC-MS) has been employed for identifying liver metabolomics.RESULTS: The findings suggested that empagliflozin mitigated the inflammatory and oxidative stress response associated with the buildup of lipids caused by HFD. Differentially expressed metabolites (DEMs) were identified by metabonomics analysis as present in both the HFD/NCD and Empa/HFD groups. These DEMs were primarily found in lipids and organic acids like lysophosphatidylcholine (lysoPC), lecithin (PC), triglyceride (TG), palmitic acid, and L-isoleucine. Among the enriched pathways that were shown to be important were those involved in the metabolism of histidine, arachidonic acid, the control of lipolysis in adipocytes, and insulin resistance. There was a strong correlation between inflammation and oxidative stress in most of the metabolites. The inflammation and oxidative stress unbalance were ameliorated by empagliflozin.CONCLUSION: NAFLD mice model showed considerable improvement in metabolic abnormalities and liver protection after treatment with empagliflozin. The process may include the overexpression of L-isoleucine and the downregulation of lysoPC, PC, TG, and palmitic acid to reduce liver harm caused by lipotoxicity.PMID:37645238 | PMC:PMC10461752 | DOI:10.2147/DMSO.S422327

Mahuang Fuzi Xixin decoction ameliorates allergic rhinitis and repairs the airway epithelial barrier by modulating the lung microbiota dysbiosis

Wed, 30/08/2023 - 12:00
Front Microbiol. 2023 Aug 14;14:1206454. doi: 10.3389/fmicb.2023.1206454. eCollection 2023.ABSTRACTBACKGROUND: Allergic rhinitis (AR) is a common disorder, that burdens general well-being. Although the lung is connected to the upper respiratory tract, which is rich in microorganisms, no studies have reported the relationship between lung microbiota and AR. Mahuang Fuzi Xixin decoction (MFXD) is a traditional Chinese medicine (TCM) formula that is widely used to treat AR in the clinic but its underlying mechanism remains unclear.HYPOTHESIS: We hypothesized that lung microbiota is associated with the pathogenesis of AR, and MFXD can improve AR by regulating microbiota dysbiosis.METHODS: The ovalbumin-induced mouse AR model was used to evaluate the therapeutic effect of MFXD on AR. Then 16S rDNA amplicon sequencing, untargeted metabolomics, and other molecular biology technology were used to clarify the effects of MFXD on lung microbes dysbiosis and AR progression. Further, the human nasal epithelial cell line (HNEpCs) was used to evaluate the protective effect of MFXD on epithelial barrier damage caused by specific pathogens.RESULTS: MFXD decreased plasma histamine and IgE levels, ameliorated pathological damage, and diminished the expression of tight junction proteins (ZO-1 and occludin) in lung and nasal tissues. MFXD altered AR-induced microbiota dysbiosis in the lungs and also plasma metabolites. Oral administration of MFXD altered microbiota dysbiosis in lung and AR-associated metabolic disorders. The dominant bacteria in the lungs of AR mice damaged the airway barrier, and MFXD reversed this change.CONCLUSION: This study revealed the correlation between the lung microbiota and AR in the mice model. We confirmed that lung microbiota plays a vital role in AR and that MFXD reduced damage to the epithelial barrier of the lungs and nasal mucosa by regulating lung microbiota and plasma metabolism imbalances. Our research provides a reference for the effect of lung microbiota on AR and provides a new idea for the treatment of AR.PMID:37645224 | PMC:PMC10461068 | DOI:10.3389/fmicb.2023.1206454

The differences in metabolites, starch structure, and physicochemical properties of rice were related to the decrease in taste quality under high nitrogen fertilizer application

Tue, 29/08/2023 - 12:00
Int J Biol Macromol. 2023 Aug 27:126546. doi: 10.1016/j.ijbiomac.2023.126546. Online ahead of print.ABSTRACTNitrogen fertilizer application is one of the key cultivation practices to improve rice yields. However, the application of high nitrogen fertilizers often leads to a reduction in the stickiness of the rice after cooking, thus reducing the taste quality of rice. Moreover, there are differences in taste quality among rice varieties, and the mechanism has not been studied in depth. In this study, two rice varieties (Meixiangzhan2hao and Exiang2hao) were planted under two nitrogen fertilizer levels. The physicochemical properties and taste quality of the rice were determined after maturity. Our results showed that high nitrogen fertilizer level alters tryptophan metabolism in rice, increasing most amino acid content and protein content in rice. The high content of protein and the higher short-range ordered structure of starch inhibited the gelatinization characteristics of starch and reduced the taste quality of rice. Under high nitrogen fertilizer application, Exiang2hao showed smaller increases in protein content, lower level of amylose and relative crystallinity, and higher content of lipid metabolites. These differences in chemical substances resulted in a less pronounced reduction in the taste quality of Exiang2hao. In this study, the taste quality of different rice varieties under different levels of nitrogen fertilizer application was analyzed, providing new ideas for future improvement of rice taste quality.PMID:37643670 | DOI:10.1016/j.ijbiomac.2023.126546

Use of sensitivity-enhanced nuclear magnetic resonance spectroscopy equipped with a 1.7-mm cryogenically cooled micro-coil probe in identifying human sperm intracellular metabolites

Tue, 29/08/2023 - 12:00
Reprod Fertil Dev. 2023 Aug 30. doi: 10.1071/RD22246. Online ahead of print.ABSTRACTCONTEXT: The clinical value of human sperm metabolites has not been established due to the technical complexity in detecting these metabolites when sperm numbers are low.AIMS: To detect endogenous intracellular metabolites in fresh and post-thaw human spermatozoa using 800MHz nuclear magnetic resonance (NMR) spectroscopy equipped with a 1.7-mm cryo-probe.METHODS: Processed spermatozoa from 25 normozoospermic ejaculates were subjected to extraction of intracellular metabolites and then profiled by sensitivity-enhanced NMR spectroscopy equipped with a 1.7-mm cryogenically cooled micro-coil probe. In parallel, some of the processed sperm fractions were subjected to freeze-thawing and were then analysed for intracellular metabolites.KEY RESULTS: Twenty-three metabolites were profiled from only 1.25million sperm cells. Comparison of the metabolomic signature of pre-freeze and post-thaw sperm cells did not show significant changes in the levels of metabolites.CONCLUSIONS: Sensitivity-enhanced NMR spectroscopy equipped with a 1.7-mm cryogenically cooled micro-coil probe is a potential tool for identifying intracellular metabolites when sperm number is low.IMPLICATIONS: Use of sensitivity-enhanced NMR spectroscopy opens up the opportunity to test for endogenous metabolites in samples with a limited number of spermatozoa, to understand the patho-physiology of infertility.PMID:37643634 | DOI:10.1071/RD22246

Human milk extracellular vesicles enhance muscle growth and physical performance of immature mice associating with Akt/mTOR/p70s6k signaling pathway

Tue, 29/08/2023 - 12:00
J Nanobiotechnology. 2023 Aug 29;21(1):304. doi: 10.1186/s12951-023-02043-6.ABSTRACTExtracellular vesicles (EVs) play an important role in human and bovine milk composition. According to excellent published studies, it also exerts various functions in the gut, bone, or immune system. However, the effects of milk-derived EVs on skeletal muscle growth and performance have yet to be fully explored. Firstly, the current study examined the amino acids profile in human milk EVs (HME) and bovine milk EVs (BME) using targeted metabolomics. Secondly, HME and BME were injected in the quadriceps of mice for four weeks (1 time/3 days). Then, related muscle performance, muscle growth markers/pathways, and amino acids profile were detected or measured by grip strength analysis, rotarod performance testing, Jenner-Giemsa/H&E staining, Western blotting, and targeted metabolomics, respectively. Finally, HME and BME were co-cultured with C2C12 cells to detect the above-related indexes and further testify relative phenomena. Our findings mainly demonstrated that HME and BME significantly increase the diameter of C2C12 myotubes. HME treatment demonstrates higher exercise performance and muscle fiber densities than BME treatment. Besides, after KEGG and correlation analyses with biological function after HME and BME treatment, results showed L-Ornithine acts as a "notable marker" after HME treatment to affect mouse skeletal muscle growth or functions. Otherwise, L-Ornithine also significantly positively correlates with the activation of the AKT/mTOR pathway and myogenic regulatory factors (MRFs) and can also be observed in muscle and C2C12 cells after HME treatment. Overall, our study not only provides a novel result for the amino acid composition of HME and BME, but the current study also indicates the advantage of human milk on skeletal muscle growth and performance.PMID:37644475 | DOI:10.1186/s12951-023-02043-6

Pages