Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Sex-specific associations between AD genotype and the microbiome of human amyloid beta knock-in (hAβ-KI) mice

Thu, 04/04/2024 - 12:00
Alzheimers Dement. 2024 Apr 4. doi: 10.1002/alz.13794. Online ahead of print.ABSTRACTINTRODUCTION: Emerging evidence links changes in the gut microbiome to late-onset Alzheimer's disease (LOAD), necessitating examination of AD mouse models with consideration of the microbiome.METHODS: We used shotgun metagenomics and untargeted metabolomics to study the human amyloid beta knock-in (hAβ-KI) murine model for LOAD compared to both wild-type (WT) mice and a model for early-onset AD (3xTg-AD).RESULTS: Eighteen-month female (but not male) hAβ-KI microbiomes were distinct from WT microbiomes, with AD genotype accounting for 18% of the variance by permutational multivariate analysis of variance (PERMANOVA). Metabolomic diversity differences were observed in females, however no individual metabolites were differentially abundant. hAβ-KI mice microbiomes were distinguishable from 3xTg-AD animals (81% accuracy by random forest modeling), with separation primarily driven by Romboutsia ilealis and Turicibacter species. Microbiomes were highly cage specific, with cage assignment accounting for more than 40% of the PERMANOVA variance between the groups.DISCUSSION: These findings highlight a sex-dependent variation in the microbiomes of hAβ-KI mice and underscore the importance of considering the microbiome when designing studies that use murine models for AD.HIGHLIGHTS: Microbial diversity and the abundance of several species differed in human amyloid beta knock-in (hAβ-KI) females but not males. Correlations to Alzheimer's disease (AD) genotype were stronger for the microbiome than the metabolome. Microbiomes from hAβ-KI mice were distinct from 3xTg-AD mice. Cage effects accounted for most of the variance in the microbiome and metabolome.PMID:38572865 | DOI:10.1002/alz.13794

Proteo-metabolomic Dissection of Extracellular Matrix Reveals Alterations in Cell Wall Integrity and Calcium Signaling Governs Wall-Associated Susceptibility during Stem Rot Disease in Jute

Thu, 04/04/2024 - 12:00
J Proteome Res. 2024 Apr 4. doi: 10.1021/acs.jproteome.3c00781. Online ahead of print.ABSTRACTThe plant surveillance system confers specificity to disease and immune states by activating distinct molecular pathways linked to cellular functionality. The extracellular matrix (ECM), a preformed passive barrier, is dynamically remodeled at sites of interaction with pathogenic microbes. Stem rot, caused by Macrophomina phaseolina, adversely affects fiber production in jute. However, how wall related susceptibility affects the ECM proteome and metabolome remains undetermined in bast fiber crops. Here, stem rot responsive quantitative temporal ECM proteome and metabolome were developed in jute upon M. phaseolina infection. Morpho-histological examination revealed that leaf shredding was accompanied by reactive oxygen species production in patho-stressed jute. Electron microscopy showed disease progression and ECM architecture remodeling due to necrosis in the later phase of fungal attack. Using isobaric tags for relative and absolute quantitative proteomics and liquid chromatography-tandem mass spectrometry, we identified 415 disease-responsive proteins involved in wall integrity, acidification, proteostasis, hydration, and redox homeostasis. The disease-related correlation network identified functional hubs centered on α-galactosidase, pectinesterase, and thaumatin. Gas chromatography-mass spectrometry analysis pointed toward enrichment of disease-responsive metabolites associated with the glutathione pathway, TCA cycle, and cutin, suberin, and wax metabolism. Data demonstrated that wall-degrading enzymes, structural carbohydrates, and calcium signaling govern rot responsive wall-susceptibility. Proteomics data were deposited in Pride (PXD046937; PXD046939).PMID:38572503 | DOI:10.1021/acs.jproteome.3c00781

Assessment of metabolome diversity in black and white pepper in response to autoclaving using MS- and NMR-based metabolomics and in relation to its remote and direct antimicrobial effects against food-borne pathogens

Thu, 04/04/2024 - 12:00
RSC Adv. 2024 Apr 3;14(15):10799-10813. doi: 10.1039/d4ra00100a. eCollection 2024 Mar 26.ABSTRACTPiper nigrum L. (black and white peppercorn) is one of the most common culinary spices used worldwide. The current study aims to dissect pepper metabolome using 1H-NMR targeting of its major primary and secondary metabolites. Eighteen metabolites were identified with piperine detected in black and white pepper at 20.2 and 23.9 μg mg-1, respectively. Aroma profiling using HS-SPME coupled to GC-MS analysis and in the context of autoclave treatment led to the detection of a total of 52 volatiles with an abundance of β-caryophyllene at 82% and 59% in black and white pepper, respectively. Autoclaving of black and white pepper revealed improvement of pepper aroma as manifested by an increase in oxygenated compounds' level. In vitro remote antimicrobial activity against food-borne Gram-positive and Gram-negative bacteria revealed the highest activity against P. aeruginosa (VP-MIC 16.4 and 12.9 mg mL-1) and a direct effect against Enterobacter cloacae at ca. 11.6 mg mL-1 for both white and black pepper.PMID:38572341 | PMC:PMC10989240 | DOI:10.1039/d4ra00100a

A novel mitochondrial DNA variant in <em>MT-ND6:</em> m.14430A&gt;C p.(Trp82Gly) identified in a patient with Leigh syndrome and complex I deficiency

Thu, 04/04/2024 - 12:00
Mol Genet Metab Rep. 2024 Mar 29;39:101078. doi: 10.1016/j.ymgmr.2024.101078. eCollection 2024 Jun.ABSTRACTLeigh syndrome is a severe progressive mitochondrial disorder mainly affecting children under the age of 5 years. It is caused by pathogenic variants in any one of more than 75 known genes in the nuclear or mitochondrial genomes. A 19-week-old male infant presented with lactic acidosis and encephalopathy following a 2-week history of irritability, neuroregression and poor weight gain. He was hypotonic with pathological reflexes, impaired vision, and nystagmus. Brain MRI showed extensive bilateral symmetrical T2 hyperintense lesions in basal ganglia, thalami, and brainstem. Metabolic workup showed elevated serum alanine, and heavy lactic aciduria with increased ketones, fumarate, malate, and alpha-ketoglutarate as well as reduced succinate on urine organic acid analysis. Lactic acidemia persisted, with only a marginally elevated lactate:pyruvate ratio (16.46, ref. 0-10). He demised at age 7 months due to respiratory failure. Exome sequencing followed by virtual gene panel analysis for pyruvate metabolism and mitochondrial defects could not identify any nuclear cause for Leigh syndrome. Mitochondrial DNA (mtDNA) genome sequencing revealed 88% heteroplasmy for a novel variant, NC_012920.1(MT-ND6):m.14430A>C p.(Trp82Gly), in blood DNA. This variant was absent from the unaffected mother's blood, fibroblast, and urine DNA, and detected at a level of 5% in her muscle DNA. Mitochondrial respiratory chain analysis revealed markedly reduced mitochondrial complex I activity in patient fibroblasts (34% of parent and control cells), and reduced NADH-linked respirometry (less than half of parental and control cells), while complex II driven respirometry remained intact. The combined clinical, genetic, and biochemical findings suggest that the novel MT-ND6 variant is the likely cause of Leigh syndrome in this patient. The mitochondrial ND6 protein is a subunit of complex I. An interesting finding was the absence of a significantly elevated lactate:pyruvate ratio in the presence of severe lactatemia, which directed initial diagnostic efforts towards excluding a pyruvate metabolism defect. This case highlights the value of a multidisciplinary approach and complete genetic workup to diagnosing mitochondrial disorders in South African patients.PMID:38571879 | PMC:PMC10987324 | DOI:10.1016/j.ymgmr.2024.101078

The effect mechanism of ergosterol from the nutritional mushroom Leucocalocybe mongolica in breast cancer cells: Protein expression modulation and metabolomic profiling using UHPLC-ESI-Q

Thu, 04/04/2024 - 12:00
Saudi Pharm J. 2024 May;32(5):102045. doi: 10.1016/j.jsps.2024.102045. Epub 2024 Mar 23.ABSTRACTThe ergosterol from mushrooms has gained significant ethnopharmacological importance in various cultures, including China, Japan, and Europe. This compound has been found to possess immune-boosting and anti-inflammatory properties, making it useful in the treatment of immune disorders. In this study, we focused on investigating the potential anticancer properties of ergosterol isolated from the edible mushroom Leucocalocybe mongolica in breast cancer cell lines. The ergosterol was purified and identified using advanced analytical techniques such as ESI-MS and NMR. We conducted cell proliferation assays on 4 T1 breast cancer cells to assess the cytotoxic effects of ergosterol. Furthermore, we analyzed the transcription levels of BAX, caspase-7, BCL-2, STAT-3, and PARP proteins using real-time PCR and Western blot analysis. Additionally, we employed non-targeted ultra-high-performance liquid chromatography and high-resolution mass spectrometry (UPLC-MS/MS) to study the potential mechanisms underlying the anticancer effects of ergosterol at the metabolomics level. The results demonstrated a significant reduction in cell viability and the induction of apoptosis upon treatment with ergosterol, especially at higher concentrations (P < 0.05). Moreover, ergosterol affected the expression of cancer-related genes, upregulating pro-apoptotic proteins such as BAX, caspase-7, and PARP, while downregulating the anti-apoptotic proteins BCL-2 and STAT-3 (P < 0.05). Western blot analysis confirmed these findings and provided further evidence of ergosterol's role in inducing apoptosis. Metabolomics analysis revealed substantial changes in pathways related to amino acid, antioxidant, and carbohydrate metabolism. In conclusion, our study demonstrates that ergosterol exhibits anticancer effects by inducing apoptosis and modulating metabolic pathways in breast cancer cells.PMID:38571766 | PMC:PMC10988126 | DOI:10.1016/j.jsps.2024.102045

Exploring the potential of endophyte-plant interactions for improving crop sustainable yields in a changing climate

Thu, 04/04/2024 - 12:00
Front Plant Sci. 2024 Mar 20;15:1349401. doi: 10.3389/fpls.2024.1349401. eCollection 2024.ABSTRACTClimate change poses a major threat to global food security, significantly reducing crop yields as cause of abiotic stresses, and for boosting the spread of new and old pathogens and pests. Sustainable crop management as a route to mitigation poses the challenge of recruiting an array of solutions and tools for the new aims. Among these, the deployment of positive interactions between the micro-biotic components of agroecosystems and plants can play a highly significant role, as part of the agro-ecological revolution. Endophytic microorganisms have emerged as a promising solution to tackle this challenge. Among these, Arbuscular Mycorrhizal Fungi (AMF) and endophytic bacteria and fungi have demonstrated their potential to alleviate abiotic stresses such as drought and heat stress, as well as the impacts of biotic stresses. They can enhance crop yields in a sustainable way also by other mechanisms, such as improving the nutrient uptake, or by direct effects on plant physiology. In this review we summarize and update on the main types of endophytes, we highlight several studies that demonstrate their efficacy in improving sustainable yields and explore possible avenues for implementing crop-microbiota interactions. The mechanisms underlying these interactions are highly complex and require a comprehensive understanding. For this reason, omic technologies such as genomics, transcriptomics, proteomics, and metabolomics have been employed to unravel, by a higher level of information, the complex network of interactions between plants and microorganisms. Therefore, we also discuss the various omic approaches and techniques that have been used so far to study plant-endophyte interactions.PMID:38571718 | PMC:PMC10988515 | DOI:10.3389/fpls.2024.1349401

Secondary metabolites and transcriptomic analysis of novel pulcherrimin producer <em>Metschnikowia persimmonesis</em> KIOM G15050: A potent and safe food biocontrol agent

Thu, 04/04/2024 - 12:00
Heliyon. 2024 Mar 20;10(7):e28464. doi: 10.1016/j.heliyon.2024.e28464. eCollection 2024 Apr 15.ABSTRACTMetschnikowia persimmonesis, a novel endophytic yeast strain isolated from Diospyros kaki calyx, possesses strong antimicrobial activity. We investigated its potential use as an environmentally safe food biocontrol agent through genomics, transcriptomics, and metabolomics. Secondary metabolites were isolated from M. persimmonesis, followed by chemical structure elucidation, PUL gene cluster identification, and RNA sequencing. Pulcherrimin was isolated using 2 M NaOH, its structure was confirmed, and the yield was quantified. Biocontrol efficacy of M. persimmonesis on persimmon fruits and calyx was evaluated by assessing lesion diameter and disease incidence. Following compounds were isolated from M. persimmonesis co-culture with Botrytis cinerea and Fusarium oxysporum: fusaric acid, benzoic acid, benzeneacetic acid, 4-hydroxybenzeneacetic acid, 4-(-2-hydoxyethyl)-benzoic acid, cyclo (Leu-Leu), benzenemethanol, 4-hydroxy-benzaldehide, 2-hydroxy-4-methoxy-benzoic acid, 4-hydroxy-benzoic acid, lumichrome, heptadecanoic acid, and nonadecanoic acid. Exposing M. persimmonesis to different growth media conditions (with or without sugar) resulted in the isolation of five compounds: Tyrosol, Cyclo (Pro-Val), cyclo(L-Pro-L-Tyr), cyclo(Leu-Leu), and cyclo(l-tyrosilylicine). Differentially expressed gene analysis revealed 3264 genes that were significantly expressed (fold change ≥2 and p-value ≤0.05) during M. persimmonesis growth in different media, of which only 270 (8.27%) showed altered expression in all sample combinations with Luria-Bertani Agar as control. Minimal media with ferric ions and tween-80 triggered the most gene expression changes, with the highest levels of PUL gene expression and pulcherrimin yield (262.166 mg/L) among all media treatments. M. persimmonesis also produced a higher amount of pulcherrimin (209.733 mg/L) than Metschnikowia pulcherrima (152.8 mg/L). M. persimmonesis inhibited the growth of Fusarium oxysporum in persimmon fruit and calyx. Toxicity evaluation of M. persimmonesis extracts showed no harmful effects on the liver and mitochondria of zebrafish, and no potential risk of cardiotoxicity in hERG-HEK293 cell lines. Thus, M. persimmonesis can be commercialized as a potent and safe biocontrol agent for preserving food products.PMID:38571591 | PMC:PMC10988027 | DOI:10.1016/j.heliyon.2024.e28464

Plasma metabolomic analysis reveals the metabolic characteristics and potential diagnostic biomarkers of spinal tuberculosis

Thu, 04/04/2024 - 12:00
Heliyon. 2024 Mar 22;10(7):e27940. doi: 10.1016/j.heliyon.2024.e27940. eCollection 2024 Apr 15.ABSTRACTOBJECTIVES: This study aimed to conduct a non-targeted metabolomic analysis of plasma from patients with spinal tuberculosis (STB) to systematically elucidate the metabolomic alterations associated with STB, and explore potential diagnostic biomarkers for STB.METHODS: From January 2020 to January 2022, 30 patients with spinal tuberculosis (STBs) clinically diagnosed at the General Hospital of Ningxia Medical University and 30 age- and sex-matched healthy controls (HCs) were selected for this study. Using ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) based metabolomics, we analyzed the metabolic profiles of 60 plasma samples. Statistical analyses, pathway enrichment, and receiver operating characteristic (ROC) analyses were performed to screen and evaluate potential diagnostic biomarkers.RESULTS: Metabolomic profiling revealed distinct alterations between the STBs and HCs cohorts. A total of 1635 differential metabolites were screened, functionally clustered, and annotated. The results showed that the differential metabolites were enriched in sphingolipid metabolism, tuberculosis, cutin, suberine and wax biosynthesis, beta-alanine metabolism, methane metabolism, and other pathways. Through the random forest algorithm, LysoPE (18:1(11Z)/0:0), 8-Demethyl-8-formylriboflavin 5'-phosphate, Glutaminyl-Gamma-glutamate, (2R)-O-Phospho-3-sulfolactate, and LysoPE (P-16:0/0:0) were determined to have high independent diagnostic value.CONCLUSIONS: STBs exhibited significantly altered metabolite profiles compared with HCs. Here, we provide a global metabolomic profile and identify potential diagnostic biomarkers of STB. Five potential independent diagnostic biomarkers with high diagnostic value were screened. This study provides novel insights into the pathogenesis, diagnosis, and treatment strategies of STB.PMID:38571585 | PMC:PMC10987919 | DOI:10.1016/j.heliyon.2024.e27940

Cancer and the Metaorganism

Thu, 04/04/2024 - 12:00
Cancer Discov. 2024 Apr 4;14(4):658-662. doi: 10.1158/2159-8290.CD-23-1484.ABSTRACTPathogenic shifts in the gut microbiota are part of the "ecological" alterations that accompany tumor progression and compromise immunosurveillance. The future management of health and disease including cancer will rely on the diagnosis of such shifts and their therapeutic correction by general or personalized strategies, hence restoring metaorganismal homeostasis.PMID:38571436 | DOI:10.1158/2159-8290.CD-23-1484

Proteomic and metabolomic characterization of bone, liver, and lung metastases in plasma of breast cancer patients

Thu, 04/04/2024 - 12:00
Proteomics Clin Appl. 2024 Apr 3:e2300136. doi: 10.1002/prca.202300136. Online ahead of print.ABSTRACTBACKGROUND: Breast cancer (BC) is the second leading cause of cancer-related deaths among women, primarily due to metastases to other organs rather than the primary tumor.METHODS: In this study, a comprehensive analysis of plasma proteomics and metabolomics was conducted on a cohort of 51 BC patients. Potential biomarkers were screened by the Least Absolute Shrinkage and Selection Operator (LASSO) regression and Random Forest algorithm. Additionally, enzyme-linked immunosorbent assay (ELISA) kits and untargeted metabolomics were utilized to validate the prognostic biomarkers in an independent cohort.RESULTS: In the study, extracellular matrix (ECM)-related functional enrichments were observed to be enriched in BC cases with bone metastases. Proteins dysregulated in retinol metabolism in liver metastases and leukocyte transendothelial migration in lung metastases were also identified. Machine learning models identified specific biomarker panels for each metastasis type, achieving high diagnostic accuracy with area under the curve (AUC) of 0.955 for bone, 0.941 for liver, and 0.989 for lung metastases.CONCLUSIONS: For bone metastasis, biomarkers such as leucyl-tryptophan, LysoPC(P-16:0/0:0), FN1, and HSPG2 have been validated. dUDP, LPE(18:1/0:0), and aspartylphenylalanine have been confirmed for liver metastasis. For lung metastasis, dUDP, testosterone sulfate, and PE(14:0/20:5) have been established.PMID:38571380 | DOI:10.1002/prca.202300136

Gut metabolome and microbiota signatures predict response to treatment with exclusive enteral nutrition in a prospective study in children with active Crohn's disease

Wed, 03/04/2024 - 12:00
Am J Clin Nutr. 2024 Apr;119(4):885-895. doi: 10.1016/j.ajcnut.2023.12.027. Epub 2024 Feb 19.ABSTRACTBACKGROUND: Predicting response to exclusive enteral nutrition (EEN) in active Crohn's disease (CD) could lead to therapy personalization and pretreatment optimization.OBJECTIVES: This study aimed to explore the ability of pretreatment parameters to predict fecal calprotectin (FCal) levels at EEN completion in a prospective study in children with CD.METHODS: In children with active CD, clinical parameters, dietary intake, cytokines, inflammation-related blood proteomics, and diet-related metabolites, metabolomics and microbiota in feces, were measured before initiation of 8 wk of EEN. Prediction of FCal levels at EEN completion was performed using machine learning. Data are presented with medians (IQR).RESULTS: Of 37 patients recruited, 15 responded (FCal < 250 μg/g) to EEN (responders) and 22 did not (nonresponders). Clinical and immunological parameters were not associated with response to EEN. Responders had lesser (μmol/g) butyrate [responders: 13.2 (8.63-18.4) compared with nonresponders: 22.3 (12.0-32.0); P = 0.03], acetate [responders: 49.9 (46.4-68.4) compared with nonresponders: 70.4 (57.0-95.5); P = 0.027], phenylacetate [responders: 0.175 (0.013-0.611) compared with nonresponders: 0.943 (0.438-1.35); P = 0.021], and a higher microbiota richness [315 (269-347) compared with nonresponders: 243 (205-297); P = 0.015] in feces than nonresponders. Responders consumed (portions/1000 kcal/d) more confectionery products [responders: 0.55 (0.38-0.72) compared with nonresponders: 0.19 (0.01-0.38); P = 0.045]. A multicomponent model using fecal parameters, dietary data, and clinical and immunological parameters predicted response to EEN with 78% accuracy (sensitivity: 80%; specificity: 77%; positive predictive value: 71%; negative predictive value: 85%). Higher taxon abundance from Ruminococcaceae, Lachnospiraceae, and Bacteroides and phenylacetate, butyrate, and acetate were the most influential variables in predicting lack of response to EEN.CONCLUSIONS: We identify microbial signals and diet-related metabolites in feces, which could comprise targets for pretreatment optimization and personalized nutritional therapy in pediatric CD.PMID:38569785 | DOI:10.1016/j.ajcnut.2023.12.027

Infant Bronchiolitis Endotypes and the Risk of Developing Childhood Asthma: Lessons From Cohort Studies

Wed, 03/04/2024 - 12:00
Arch Bronconeumol. 2024 Apr;60(4):215-225. doi: 10.1016/j.arbres.2024.02.009. Epub 2024 Feb 19.ABSTRACTSevere bronchiolitis (i.e., bronchiolitis requiring hospitalization) during infancy is a heterogeneous condition associated with a high risk of developing childhood asthma. Yet, the exact mechanisms underlying the bronchiolitis-asthma link remain uncertain. Birth cohort studies have reported this association at the population level, including only small groups of patients with a history of bronchiolitis, and have attempted to identify the underlying biological mechanisms. Although this evidence has provided valuable insights, there are still unanswered questions regarding severe bronchiolitis-asthma pathogenesis. Recently, a few bronchiolitis cohort studies have attempted to answer these questions by applying unbiased analytical approaches to biological data. These cohort studies have identified novel bronchiolitis subtypes (i.e., endotypes) at high risk for asthma development, representing essential and enlightening evidence. For example, one distinct severe respiratory syncytial virus (RSV) bronchiolitis endotype is characterized by the presence of Moraxella catarrhalis and Streptococcus pneumoniae, higher levels of type I/II IFN expression, and changes in carbohydrate metabolism in nasal airway samples, and is associated with a high risk for childhood asthma development. Although these findings hold significance for the design of future studies that focus on childhood asthma prevention, they require validation. However, this scoping review puts the above findings into clinical context and emphasizes the significance of future research in this area aiming to offer new bronchiolitis treatments and contribute to asthma prevention.PMID:38569771 | DOI:10.1016/j.arbres.2024.02.009

Diurnal rhythmicity of infant fecal microbiota and metabolites: A randomized controlled interventional trial with infant formula

Wed, 03/04/2024 - 12:00
Cell Host Microbe. 2024 Mar 12:S1931-3128(24)00058-1. doi: 10.1016/j.chom.2024.02.015. Online ahead of print.ABSTRACTMicrobiota assembly in the infant gut is influenced by diet. Breastfeeding and human breastmilk oligosaccharides promote the colonization of beneficial bifidobacteria. Infant formulas are supplemented with bifidobacteria or complex oligosaccharides, notably galacto-oligosaccharides (GOS), to mimic breast milk. To compare microbiota development across feeding modes, this randomized controlled intervention study (German Clinical Trial DRKS00012313) longitudinally sampled infant stool during the first year of life, revealing similar fecal bacterial communities between formula- and breast-fed infants (N = 210) but differences across age. Infant formula containing GOS sustained high levels of bifidobacteria compared with formula containing B. longum and B. breve or placebo. Metabolite and bacterial profiling revealed 24-h oscillations and circadian networks. Rhythmicity in bacterial diversity, specific taxa, and functional pathways increased with age and was strongest following breastfeeding and GOS supplementation. Circadian rhythms in dominant taxa were further maintained ex vivo in a chemostat model. Hence, microbiota rhythmicity develops early in life and is impacted by diet.PMID:38569545 | DOI:10.1016/j.chom.2024.02.015

Gut microbiome and metabolome profiling in Framingham heart study reveals cholesterol-metabolizing bacteria

Wed, 03/04/2024 - 12:00
Cell. 2024 Mar 21:S0092-8674(24)00305-2. doi: 10.1016/j.cell.2024.03.014. Online ahead of print.ABSTRACTAccumulating evidence suggests that cardiovascular disease (CVD) is associated with an altered gut microbiome. Our understanding of the underlying mechanisms has been hindered by lack of matched multi-omic data with diagnostic biomarkers. To comprehensively profile gut microbiome contributions to CVD, we generated stool metagenomics and metabolomics from 1,429 Framingham Heart Study participants. We identified blood lipids and cardiovascular health measurements associated with microbiome and metabolome composition. Integrated analysis revealed microbial pathways implicated in CVD, including flavonoid, γ-butyrobetaine, and cholesterol metabolism. Species from the Oscillibacter genus were associated with decreased fecal and plasma cholesterol levels. Using functional prediction and in vitro characterization of multiple representative human gut Oscillibacter isolates, we uncovered conserved cholesterol-metabolizing capabilities, including glycosylation and dehydrogenation. These findings suggest that cholesterol metabolism is a broad property of phylogenetically diverse Oscillibacter spp., with potential benefits for lipid homeostasis and cardiovascular health.PMID:38569543 | DOI:10.1016/j.cell.2024.03.014

Our extended microbiome: The human-relevant metabolites and biology of fermented foods

Wed, 03/04/2024 - 12:00
Cell Metab. 2024 Apr 2;36(4):684-701. doi: 10.1016/j.cmet.2024.03.007.ABSTRACTOne of the key modes of microbial metabolism occurring in the gut microbiome is fermentation. This energy-yielding process transforms common macromolecules like polysaccharides and amino acids into a wide variety of chemicals, many of which are relevant to microbe-microbe and microbe-host interactions. Analogous transformations occur during the production of fermented foods, resulting in an abundance of bioactive metabolites. In foods, the products of fermentation can influence food safety and preservation, nutrient availability, and palatability and, once consumed, may impact immune and metabolic status, disease expression, and severity. Human signaling pathways perceive and respond to many of the currently known fermented food metabolites, though expansive chemical novelty remains to be defined. Here we discuss several aspects of fermented food-associated microbes and metabolites, including a condensed history, current understanding of their interactions with hosts and host-resident microbes, connections with commercial probiotics, and opportunities for future research on human health and disease and food sustainability.PMID:38569469 | DOI:10.1016/j.cmet.2024.03.007

Metals/bisulfite system involved generation of 24-sulfonic-25-ene ginsenoside Rg1, a potential quality control marker for sulfur-fumigated ginseng

Wed, 03/04/2024 - 12:00
Food Chem. 2024 Mar 30;448:139112. doi: 10.1016/j.foodchem.2024.139112. Online ahead of print.ABSTRACTGinseng is a most popular health-promoting food with ginsenosides as its main bioactive ingredients. Illegal sulfur-fumigation causes ginsenosides convert to toxic sulfur-containing derivatives, and reduced the efficacy/safety of ginseng. 24-sulfo-25-ene ginsenoside Rg1 (25-ene SRg1), one of the sulfur-containing derivatives, is a potential quality control marker of fumigated ginseng, but with low accessibility owing to its unknown generation mechanism. In this study, metals/bisulfite system involved generation mechanism was investigated and verified. The generation of 25-ene SRg1 in sulfur-fumigated ginseng is that SO2, formed during sulfur-fumigation, reacted with water and ionized into HSO3-. On the one hand, under the metals/bisulfite system, HSO3- generates HSO5- and free radicals which converted ginsenoside Rg1 to 24,25-epoxide Rg1; on the other hand, as a nucleophilic group, HSO3- reacted with 24,25-epoxide Rg1 and further dehydrated to 25-ene SRg1. This study provided a technical support for the promotion of 25-ene SRg1 as the characteristic quality control marker of sulfur-fumigated ginseng.PMID:38569404 | DOI:10.1016/j.foodchem.2024.139112

Xianlian Jiedu Decoction alleviates colorectal cancer by regulating metabolic profiles, intestinal microbiota and metabolites

Wed, 03/04/2024 - 12:00
Phytomedicine. 2024 Jan 27;128:155385. doi: 10.1016/j.phymed.2024.155385. Online ahead of print.ABSTRACTBACKGROUND: Xianlian Jiedu Decoction (XLJDD) has been used for the treatment of colorectal cancer (CRC) for several decades because of the prominent efficacy of the prescription. Despite the clear clinical efficacy of XLJDD, the anti-CRC mechanism of action is still unclear.PURPOSE: The inhibitory effect and mechanism of XLJDD on CRC were investigated in the azoxymethane/dextran sulfate sodium (AOM/DSS)-induced mice.METHODS: The AOM/DSS-induced mice model was adopted to evaluate the efficacy after administering the different doses of XLJDD. The therapeutic effects of XLJDD in treating AOM/DSS-induced CRC were investigated through histopathology, immunofluorescence and ELISA analysis methods. In addition, metabolomics profile and 16S rRNA analysis were used to explore the effective mechanisms of XLJDD on CRC.RESULTS: The results stated that the XLJDD reduced the number of tumor growth on the inner wall of the colon and the colorectal weight/length ratio, and suppressed the disease activity index (DAI) score, meanwhile XLJDD also increased body weight, colorectal length, and overall survival rate. The treatment of XLJDD also exhibited the ability to lower the level of inflammatory cytokines in serum and reduce the expression levels of β-catenin, COX-2, and iNOS protein in colorectal tissue. The findings suggested that XLJDD has anti-inflammatory properties and may provide relief for those suffering from inflammation-related conditions. Mechanistically, XLJDD improved gut microbiota dysbiosis and associated metabolic levels of short chain fatty acids (SCFAs), sphingolipid, and glycerophospholipid. This was achieved by reducing the abundance of Turicibacter, Clostridium_sensu_stricto_1, and the levels of sphinganine, LPCs, and PCs. Additionally, XLJDD increased the abundance of Enterorhabdus and Alistipes probiotics, as well as the content of butyric acid and isovaleric acid.CONCLUSION: The data presented in this article demonstrated that XLJDD can effectively inhibit the occurrence of colon inner wall tumors by reducing the level of inflammation and alleviating intestinal microbial flora imbalance and metabolic disorders. It provides a scientific basis for clinical prevention and treatment of CRC.PMID:38569292 | DOI:10.1016/j.phymed.2024.155385

Host-microbiota interactions in collagen-induced arthritis rats treated with human umbilical cord mesenchymal stem cell exosome and ginsenoside Rh2

Wed, 03/04/2024 - 12:00
Biomed Pharmacother. 2024 Apr 2;174:116515. doi: 10.1016/j.biopha.2024.116515. Online ahead of print.ABSTRACTMesenchymal stem cell exosome (MSCs-exo) is a class of products secreted by mesenchymal stem cells (MSCs) that contain various biologically active substances. MSCs-exo is a promising alternative to MSCs due to their lower immunogenicity and lack of ethical constraints. Ginsenoside Rh2 (Rh2) is a hydrolyzed component of the primary active substance of ginsenosides. Rh2 has a variety of pharmacological functions, including anti-inflammatory, anti-tumor, and antioxidant. Studies have demonstrated that gut microbiota and metabolites are critical in developing rheumatoid arthritis (RA). In this study, we constructed a collagen-induced arthritis (CIA) model in rats. We used MSCs-exo combined with Rh2 to treat CIA rats. To observe the effect of MSCs-exo combined with Rh2 on joint inflammation, rat feces were collected for 16 rRNA amplicon sequencing and untargeted metabolomics analysis. The results showed that the arthritis index score and joint swelling of CIA rats treated with MSCs-exo in combination with Rh2 were significantly lower than those of the model and MSCs-exo alone groups. MSCs-exo and Rh2 significantly ameliorated the disturbed gut microbiota in CIA rats. The regulation of Candidatus_Saccharibacteria and Clostridium_XlVb regulation may be the most critical. Rh2 enhanced the therapeutic effect of MSCs-exo compared with the MSCs-exo -alone group. Furthermore, significant changes in gut metabolites were observed in the CIA rat group, and these differentially altered metabolites may act as messengers for host-microbiota interactions. These differential metabolites were enriched into relevant critical metabolic pathways, revealing possible pathways for host-microbiota interactions.PMID:38569276 | DOI:10.1016/j.biopha.2024.116515

Using machine learning to identify proteomic and metabolomic signatures of stroke in atrial fibrillation

Wed, 03/04/2024 - 12:00
Comput Biol Med. 2024 Mar 26;173:108375. doi: 10.1016/j.compbiomed.2024.108375. Online ahead of print.ABSTRACTAtrial fibrillation (AF) is a common cardiac arrhythmia, with stroke being its most detrimental comorbidity. The exact mechanism of AF related stroke (AFS) still needs to be explored. In this study, we integrated proteomics and metabolomics platform to explore disordered plasma proteins and metabolites between AF patients and AFS patients. There were 22 up-regulated and 31 down-regulated differentially expressed proteins (DEPs) in AFS plasma samples. Moreover, 63 up-regulated and 51 down-regulated differentially expressed metabolites (DEMs) were discovered in AFS plasma samples. We integrated proteomics and metabolomics based on the topological interactions of DEPs and DEMs, which yielded revealed several related pathways such as arachidonic acid metabolism, serotonergic synapse, purine metabolism, tyrosine metabolism and steroid hormone biosynthesis. We then performed a machine learning model to identify potential biomarkers of stroke in AF. Finally, we selected 6 proteins and 6 metabolites as candidate biomarkers for predicting stroke in AF by random forest, the area under the curve being 0.976. In conclusion, this study provides new perspectives for understanding the progressive mechanisms of AF related stroke and discovering innovative biomarkers for determining the prognosis of stroke in AF.PMID:38569232 | DOI:10.1016/j.compbiomed.2024.108375

Addition of inflammation-related biomarkers to the CAIDE model for risk prediction of all-cause dementia, Alzheimer's disease and vascular dementia in a prospective study

Wed, 03/04/2024 - 12:00
Immun Ageing. 2024 Apr 3;21(1):23. doi: 10.1186/s12979-024-00427-2.ABSTRACTBACKGROUND: It is of interest whether inflammatory biomarkers can improve dementia prediction models, such as the widely used Cardiovascular Risk Factors, Aging and Dementia (CAIDE) model.METHODS: The Olink Target 96 Inflammation panel was assessed in a nested case-cohort design within a large, population-based German cohort study (n = 9940; age-range: 50-75 years). All study participants who developed dementia over 20 years of follow-up and had complete CAIDE variable data (n = 562, including 173 Alzheimer's disease (AD) and 199 vascular dementia (VD) cases) as well as n = 1,356 controls were selected for measurements. 69 inflammation-related biomarkers were eligible for use. LASSO logistic regression and bootstrapping were utilized to select relevant biomarkers and determine areas under the curve (AUCs).RESULTS: The CAIDE model 2 (including Apolipoprotein E (APOE) ε4 carrier status) predicted all-cause dementia, AD, and VD better than CAIDE model 1 (without APOE ε4) with AUCs of 0.725, 0.752 and 0.707, respectively. Although 20, 7, and 4 inflammation-related biomarkers were selected by LASSO regression to improve CAIDE model 2, the AUCs did not increase markedly. CAIDE models 1 and 2 generally performed better in mid-life (50-64 years) than in late-life (65-75 years) sub-samples of our cohort, but again, inflammation-related biomarkers did not improve their predictive abilities.CONCLUSIONS: Despite a lack of improvement in dementia risk prediction, the selected inflammation-related biomarkers were significantly associated with dementia outcomes and may serve as a starting point to further elucidate the pathogenesis of dementia.PMID:38570813 | DOI:10.1186/s12979-024-00427-2

Pages