Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Multi-omics analysis of fecal samples in colorectal cancer Egyptians patients: a pilot study

Tue, 29/08/2023 - 12:00
BMC Microbiol. 2023 Aug 29;23(1):238. doi: 10.1186/s12866-023-02991-x.ABSTRACTBACKGROUND: Colorectal cancer (CRC) is a public health concern and the second most common disease worldwide. This is due to genetic coding and is influenced by environmental aspects, in which the gut microbiota plays a significant role. The purpose of this study was to compare the microbiota makeup of CRC patients with that of healthy control and to identify upregulated and downregulated proteins and metabolites in CRC patients. Using a next-generation sequencing approach, fecal samples of five females (4 CRC patients and one healthy control) were analyzed by BGI DNBSEQ-T7, Hong Kong, China. Furthermore, proteomics and metabolomics analysis were performed using LC-MS/MS technique.RESULTS: Dysbiosis of gut microbiota has been observed in patients with CRC, with an increase in microbiota diversity at all taxonomic levels relative to healthy control. Where, at the functional level the bacterial species participate in many different pathways among them de novo nucleotide synthesis and amino acids pathways were aberrantly upregulated in CRC patients. Proteomics and metabolomics profiles of CRC patients showed different proteins and metabolites, a total of 360 and 158 proteins and metabolites, respectively were highly expressed compared to healthy control with fold change ≥ 1.2. Among the highly expressed proteins were transketolase, sushi domain-containing protein, sulfide quinone oxidoreductase protein, AAA family ATPase protein, carbonic anhydrase, IgG Fc-binding protein, nucleoside diphosphate kinase protein, arylsulfatase, alkaline phosphatase protein, phosphoglycerate kinase, protein kinase domain-containing protein, non-specific serine/threonine protein kinase, Acyl-CoA synthetase and EF-hand domain-containing protein. Some of the differential metabolites, Taurine, Taurocholic acid, 7-ketodeoxycholic acid, Glycochenodeoxycholic acid, Glycocholic acid, and Taurochenodeoxycholic acid that belong to bile acids metabolites.CONCLUSIONS: Some bacterial species, proteins, and metabolites could be used as diagnostic biomarkers for CRC. Our study paves an insight into using multi-omics technology to address the relationship between gut microbiota and CRC.PMID:37644393 | DOI:10.1186/s12866-023-02991-x

Metabolomics of head and neck cancer in biofluids: an integrative systematic review

Tue, 29/08/2023 - 12:00
Metabolomics. 2023 Aug 29;19(9):77. doi: 10.1007/s11306-023-02038-2.ABSTRACTINTRODUCTION: Head and neck cancer (HNC) is the fifth most common cancer globally. Diagnosis at early stages are critical to reduce mortality and improve functional and esthetic outcomes associated with HNC. Metabolomics is a promising approach for discovery of biomarkers and metabolic pathways for risk assessment and early detection of HNC.OBJECTIVES: To summarize and consolidate the available evidence on metabolomics and HNC in plasma/serum, saliva, and urine.METHODS: A systematic search of experimental research was executed using PubMed and Web of Science. Available data on areas under the curve was extracted. Metabolic pathway enrichment analysis were performed to identify metabolic pathways altered in HNC. Fifty-four studies were eligible for data extraction (33 performed in plasma/serum, 15 in saliva and 6 in urine).RESULTS: Metabolites with high discriminatory performance for detection of HNC included single metabolites and combination panels of several lysoPCs, pyroglutamate, glutamic acid, glucose, tartronic acid, arachidonic acid, norvaline, linoleic acid, propionate, acetone, acetate, choline, glutamate and others. The glucose-alanine cycle and the urea cycle were the most altered pathways in HNC, among other pathways (i.e. gluconeogenesis, glycine and serine metabolism, alanine metabolism, etc.). Specific metabolites that can potentially serve as complementary less- or non-invasive biomarkers, as well as metabolic pathways integrating the data from the available studies, are presented.CONCLUSION: The present work highlights utility of metabolite-based biomarkers for risk assessment, early detection, and prognostication of HNC, as well as facilitates incorporation of available metabolomics studies into multi-omics data integration and big data analytics for personalized health.PMID:37644353 | DOI:10.1007/s11306-023-02038-2

Metabolic profiling of urinary exosomes for systemic lupus erythematosus discrimination based on HPL-SEC/MALDI-TOF MS

Tue, 29/08/2023 - 12:00
Anal Bioanal Chem. 2023 Aug 30. doi: 10.1007/s00216-023-04916-z. Online ahead of print.ABSTRACTSystemic lupus erythematosus (SLE) is a chronic autoimmune disease which leads to the formation of immune complex deposits in multiple organs and has heterogeneous clinical manifestations. Currently, exosomes for liquid biopsy have been applied in diagnosis and monitoring of diseases, whereas SLE discrimination based on exosomes at the metabolic level is rarely reported. Herein, we constructed a protocol for metabolomic study of urinary exosomes from SLE patients and healthy controls (HCs) with high efficiency and throughput. Exosomes were first obtained by high-performance liquid size-exclusion chromatography (HPL-SEC), and then metabolic fingerprints of urinary exosomes were extracted by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with high throughput and high efficency. With the statistical analysis by orthogonal partial least-squares discriminant analysis (OPLS-DA) model, SLE patients were efficiently distinguished from HCs, the area under the curve (AUC) of the receiver characteristic curve (ROC) was 1.00, and the accuracy of the unsupervised clustering heatmap was 90.32%. In addition, potential biomarkers and related metabolic pathways were analyzed. This method, with the characteristics of high throughput, high efficiency, and high accuracy, will provide the broad prospect of exosome-driven precision medicine and large-scale screening in clinical applications.PMID:37644324 | DOI:10.1007/s00216-023-04916-z

Sterol and lipid metabolism in bees

Tue, 29/08/2023 - 12:00
Metabolomics. 2023 Aug 29;19(9):78. doi: 10.1007/s11306-023-02039-1.ABSTRACTBACKGROUND: Bees provide essential pollination services for many food crops and are critical in supporting wild plant diversity. However, the dietary landscape of pollen food sources for social and solitary bees has changed because of agricultural intensification and habitat loss. For this reason, understanding the basic nutrient metabolism and meeting the nutritional needs of bees is becoming an urgent requirement for agriculture and conservation. We know that pollen is the principal source of dietary fat and sterols for pollinators, but a precise understanding of what the essential nutrients are and how much is needed is not yet clear. Sterols are key for producing the hormones that control development and may be present in cell membranes, where fatty-acid-containing species are important structural and signalling molecules (phospholipids) or to supply, store and distribute energy (glycerides).AIM OF THE REVIEW: In this critical review, we examine the current general understanding of sterol and lipid metabolism of social and solitary bees from a variety of literature sources and discuss implications for bee health.KEY SCIENTIFIC CONCEPTS OF REVIEW: We found that while eusocial bees are resilient to some dietary variation in sterol supply the scope for this is limited. The evidence of both de novo lipogenesis and a dietary need for particular fatty acids (FAs) shows that FA metabolism in insects is analogous to mammals but with distinct features. Bees rely on their dietary intake for essential sterols and lipids in a way that is dependent upon pollen availability.PMID:37644282 | DOI:10.1007/s11306-023-02039-1

Discrimination of blood metabolomics profiles in neonates with idiopathic polyhydramnios

Tue, 29/08/2023 - 12:00
Eur J Pediatr. 2023 Aug 30. doi: 10.1007/s00431-023-05171-1. Online ahead of print.ABSTRACTThis study aimed to compare the blood metabolic status of neonates with idiopathic polyhydramnios (IPH) and those with normal amniotic fluid, and to explore the relationship between IPH and fetal health. Blood metabolites of 32 patients with IPH and 32 normal controls admitted to the Sixth Affiliated Hospital of Sun Yat-sen University between January 2017 and December 2022 were analyzed using liquid chromatography-mass spectrometry (LC-MS/MS). Orthogonal partial least squares discriminant analysis (OPLS-DA) and metabolite enrichment analyses were performed to identify the differential metabolites and metabolic pathways. There was a significant difference in the blood metabolism between newborns with IPH and those with normal amniotic fluid. Six discriminant metabolites were identified: glutamate, serine, asparagine, aspartic acid, homocysteine, and phenylalanine. Differential metabolites were mainly enriched in two pathways: aminoacyl-tRNA biosynthesis, and alanine, aspartate, and glutamate metabolism.CONCLUSIONS: This study is the first to investigate metabolomic profiles in newborns with IPH and examine the correlation between IPH and fetal health. Differential metabolites and pathways may affect amino acid synthesis and the nervous system. Continuous attention to the development of the nervous system in children with IPH is necessary.WHAT IS KNOWN: • There is an increased risk of adverse pregnancy outcomes with IPH, such as perinatal death, neonatal asphyxia, neonatal intensive care admission, cesarean section rates, and postpartum hemorrhage. • Children with a history of IPH have a higher proportion of defects than the general population, particularly central nervous system problems, neuromuscular disorders, and other malformations.WHAT IS NEW: • In neonates with IPH, six differential metabolites were identified with significant differences and good AUC values using LC-MS/MS analysis: glutamic acid, serine, asparagine, aspartic acid, homocysteine, and phenylalanine, which were mainly enriched in two metabolic pathways: aminoacyl-tRNA biosynthesis and alanine, aspartate, and glutamate metabolism. • These differential metabolites and pathways may affect amino acid synthesis and development of the nervous system in neonates with IPH.PMID:37644170 | DOI:10.1007/s00431-023-05171-1

Delayed gut microbiota maturation in the first year of life is a hallmark of pediatric allergic disease

Tue, 29/08/2023 - 12:00
Nat Commun. 2023 Aug 29;14(1):4785. doi: 10.1038/s41467-023-40336-4.ABSTRACTAllergic diseases affect millions of people worldwide. An increase in their prevalence has been associated with alterations in the gut microbiome, i.e., the microorganisms and their genes within the gastrointestinal tract. Maturation of the infant immune system and gut microbiota occur in parallel; thus, the conformation of the microbiome may determine if tolerant immune programming arises within the infant. Here we show, using deeply phenotyped participants in the CHILD birth cohort (n = 1115), that there are early-life influences and microbiome features which are uniformly associated with four distinct allergic diagnoses at 5 years: atopic dermatitis (AD, n = 367), asthma (As, n = 165), food allergy (FA, n = 136), and allergic rhinitis (AR, n = 187). In a subset with shotgun metagenomic and metabolomic profiling (n = 589), we discover that impaired 1-year microbiota maturation may be universal to pediatric allergies (AD p = 0.000014; As p = 0.0073; FA p = 0.00083; and AR p = 0.0021). Extending this, we find a core set of functional and metabolic imbalances characterized by compromised mucous integrity, elevated oxidative activity, decreased secondary fermentation, and elevated trace amines, to be a significant mediator between microbiota maturation at age 1 year and allergic diagnoses at age 5 years (βindirect = -2.28; p = 0.0020). Microbiota maturation thus provides a focal point to identify deviations from normative development to predict and prevent allergic disease.PMID:37644001 | DOI:10.1038/s41467-023-40336-4

Mapping temperature-sensitive mutations at a genome scale to engineer growth switches in Escherichia coli

Tue, 29/08/2023 - 12:00
Mol Syst Biol. 2023 Aug 29:e11596. doi: 10.15252/msb.202311596. Online ahead of print.ABSTRACTTemperature-sensitive (TS) mutants are a unique tool to perturb and engineer cellular systems. Here, we constructed a CRISPR library with 15,120 Escherichia coli mutants, each with a single amino acid change in one of 346 essential proteins. 1,269 of these mutants showed temperature-sensitive growth in a time-resolved competition assay. We reconstructed 94 TS mutants and measured their metabolism under growth arrest at 42°C using metabolomics. Metabolome changes were strong and mutant-specific, showing that metabolism of nongrowing E. coli is perturbation-dependent. For example, 24 TS mutants of metabolic enzymes overproduced the direct substrate metabolite due to a bottleneck in their associated pathway. A strain with TS homoserine kinase (ThrBF267D ) produced homoserine for 24 h, and production was tunable by temperature. Finally, we used a TS subunit of DNA polymerase III (DnaXL289Q ) to decouple growth from arginine overproduction in engineered E. coli. These results provide a strategy to identify TS mutants en masse and demonstrate their large potential to produce bacterial metabolites with nongrowing cells.PMID:37642940 | DOI:10.15252/msb.202311596

Antitumor and antibacterial activity of metabolites of endophytic Colletotrichum siamense isolated from coffee (Coffea arabica L. cv IAPAR-59)

Tue, 29/08/2023 - 12:00
Braz J Microbiol. 2023 Aug 29. doi: 10.1007/s42770-023-01104-0. Online ahead of print.ABSTRACTEndophytic fungi produce a range of known metabolites and several others, not yet explored, which present important biological activities from the pharmaceutical and industrial perspective. Several studies have reported the diversity of endophytes in Coffea arabica plants, although few have been described in organic cultures. In the current paper, we describe the chemical profile of specialized metabolites in the ethyl acetate phase in a strain of the endophytic fungus Colletotrichum siamense associated with coffee (Coffea arabica L.) (Rubiaceae) and its potential against tumor cells and bacteria of medical and food importance. Cytotoxicity assays in tumor cells MCF-7 and HepG2/C3A were performed by MTT and microdilution in broth to evaluate the antibacterial action of metabolic extract. The antiproliferative assay showed promising results after 24 h of treatment, with 50% injunction concentrations for the two cell types. UHPLC-MS/MS analyses with an electrospray ionization source were used to analyze the extracts and identify compounds of species Colletotrichum siamense, which is still little explored as a source of active metabolites. Many of these compounds observed in the endophytic need to be chemically synthesized in industry, at high costs, while production by the fungus becomes a chemically and economically more viable alternative. Pyrocatechol, gentisyl alcohol, and alpha-linolenic acid, associated with different mechanisms of action against tumor cells, were detected among the main compounds. The extract of the endophytic fungus Colletotrichum siamense presented several compounds with pharmacological potential and antibacterial activity, corroborating its potential in biotechnological applications.PMID:37642890 | DOI:10.1007/s42770-023-01104-0

Gut microbiota and metabolome in sporadic Creutzfeldt-Jakob disease

Tue, 29/08/2023 - 12:00
J Neurol. 2023 Aug 29. doi: 10.1007/s00415-023-11961-2. Online ahead of print.ABSTRACTBACKGROUND: Gut dysbiosis and the resulting changes in the metabolites have been associated with neurological diseases. However, the relationship between the gut microbiota and sporadic Creutzfeldt-Jakob disease (sCJD) need to be clarified. The aim of this study was to evaluate the changes in the composition of gut microbiota and metabolome accompanying sCJD, and determine their correlation with disease severity.METHODS: Fecal samples were collected from 25 sCJD patients and 23 healthy controls. The composition of the fecal microbiota and metabolites was respectively analyzed by 16S ribosomal RNA sequencing and untargeted metabolomics. The correlation of gut microbiota and metabolites with MMSE, MoCA and MRC scores was analyzed.RESULTS: The sCJD patients showed significant differences in the composition of gut microbiota and metabolites relative to the healthy controls. Several bacteria taxa in sCJD patients were increased at genus level, such as Turicibacter, norank_f_Christensenellaceae, Eisenbergiella, Bilophila and Holdemania. A total of 547 differential metabolites were identified between these two groups (VIP > 1, FDR p < 0.05). As per KEGG analysis, the metabolites related to the biosynthesis of phenylpropanoids, especially biochanin A, showed the most obvious decrease in the sCJD group. In addition, most metabolites involved in the pathways related to linoleic acid metabolism and steroid hormone biosynthesis were associated with MRC scale.CONCLUSION: Our findings provide new insights into the relationship between gut microbiota and metabolites and sCJD. Some compounds, especially those related to the biosynthesis of phenylpropanoids were significantly altered in patients with sCJD, and those related to linoleic acid metabolism and steroid hormone biosynthesis might be biomarkers of evaluating disease severity.PMID:37642736 | DOI:10.1007/s00415-023-11961-2

Cellular Validation of a Chemically Improved Inhibitor Identifies Monoubiquitination on OTUB2

Tue, 29/08/2023 - 12:00
ACS Chem Biol. 2023 Aug 29. doi: 10.1021/acschembio.3c00227. Online ahead of print.ABSTRACTUbiquitin thioesterase OTUB2, a cysteine protease from the ovarian tumor (OTU) deubiquitinase superfamily, is often overexpressed during tumor progression and metastasis. Development of OTUB2 inhibitors is therefore believed to be therapeutically important, yet potent and selective small-molecule inhibitors targeting OTUB2 are scarce. Here, we describe the development of an improved OTUB2 inhibitor, LN5P45, comprising a chloroacethydrazide moiety that covalently reacts to the active-site cysteine residue. LN5P45 shows outstanding target engagement and proteome-wide selectivity in living cells. Importantly, LN5P45 as well as other OTUB2 inhibitors strongly induce monoubiquitination of OTUB2 on lysine 31. We present a route to future OTUB2-related therapeutics and have shown that the OTUB2 inhibitor developed in this study can help to uncover new aspects of the related biology and open new questions regarding the understanding of OTUB2 regulation at the post-translational modification level.PMID:37642399 | DOI:10.1021/acschembio.3c00227

Past or present; which exposures predict metabolomic ageing better? The Doetinchem Cohort Study

Tue, 29/08/2023 - 12:00
J Gerontol A Biol Sci Med Sci. 2023 Aug 29:glad202. doi: 10.1093/gerona/glad202. Online ahead of print.ABSTRACTPeople age differently. Differences in ageing might be reflected by metabolites, also known as metabolomic ageing. Predicting metabolomic ageing is of interest in public health research. However, the added value of longitudinal over cross-sectional predictors of metabolomic ageing is unknown. We studied exposome-related exposures as potential predictors of metabolomic ageing, both cross-sectionally and longitudinally in men and women. We used data from 4459 participants, aged 36-75 of round 4 (2003-2008) of the long-running Doetinchem Cohort Study (DCS). Metabolomic age was calculated with the MetaboHealth algorithm. Cross-sectional exposures were demographic, biological, lifestyle, and environmental at round 4. Longitudinal exposures were based on the average exposure over 15 years (round 1 (1987-1991) to 4), and trend in these exposure over time. Random Forest was performed to identify model performance and important predictors. Prediction performances were similar for cross-sectional and longitudinal exposures in both men (R 2 6.8 and 5.8 respectively) and women (R 2 14.8 and 14.4 respectively). Biological and diet exposures were most predictive for metabolomic ageing in both men and women. Other important predictors were smoking behavior for men and contraceptive use and menopausal status for women. Taking into account history of exposure levels (longitudinal) had no added value over cross-sectionally measured exposures in predicting metabolomic ageing in the current study. However, the prediction performances of both models were rather low. The most important predictors for metabolomic ageing were from the biological and lifestyle domain and differed slightly between men and women.PMID:37642222 | DOI:10.1093/gerona/glad202

Melatonin suppresses Akt/mTOR/S6K activity, induces cell apoptosis, and synergistically inhibits cell growth with sunitinib in renal carcinoma cells via reversing Warburg effect

Tue, 29/08/2023 - 12:00
Redox Rep. 2023 Dec;28(1):2251234. doi: 10.1080/13510002.2023.2251234.ABSTRACTBACKGROUND: Metabolic alteration drives renal cell carcinoma (RCC) development, while the impact of melatonin (MLT), a neurohormone secreted during darkness, on RCC cell growth and underlying mechanisms remains unclear.METHODS: We detected concentration of metabolites through metabolomic analyses using UPLC-MS/MS, and the oxygen consumption rate was determined using the Seahorse Extracellular Flux analyzer.RESULTS: We observed that MLT effectively inhibited RCC cell growth both in vitro and in vivo. Additionally, MLT increased ROS levels, suppressed antioxidant enzyme activity, and induced apoptosis. Furthermore, MLT treatment upregulated key TCA cycle metabolites while reducing aerobic glycolysis products, leading to higher oxygen consumption rate, ATP production, and membrane potential. Moreover, MLT treatment suppressed phosphorylation of Akt, mTOR, and p70 S6 Kinase as well as the expression of HIF-1α/VEGFA in RCC cells; these effects were reversed by NAC (ROS inhibitors). Conversely, MLT synergistically inhibited cell growth with sunitinib and counteracted the Warburg effect induced by sunitinib in RCC cells.CONCLUSIONS: In conclusion, our results indicate that MLT treatment reverses the Warburg effect and promotes intracellular ROS production, which leads to the suppression of Akt/mTOR/S6K signaling pathway, induction of cell apoptosis, and synergistically inhibition of cell growth with sunitinib in RCC cells. Overall, this study provides new insights into the mechanisms underlying anti-tumor effect of MLT in RCC cells, and suggests that MLT might be a promising therapeutic for RCC.PMID:37642220 | DOI:10.1080/13510002.2023.2251234

Integrated proteomic and metabolomic analysis of plasma reveals regulatory pathways and key elements in thyroid cancer

Tue, 29/08/2023 - 12:00
Mol Omics. 2023 Aug 29. doi: 10.1039/d3mo00142c. Online ahead of print.ABSTRACTThyroid cancer (TC) is the most common endocrine malignancy with increasing incidence in recent years. Fine-needle aspiration biopsy (FNAB), as a gold standard for the initial evaluation of thyroid nodules, fails to cover all the cytopathologic conditions resulting in overdiagnosis. There is an urgent need for a better classification of thyroid cancer from benign thyroid nodules (BTNs). Here, data independent acquisition (DIA)-based proteomics and untargeted metabolomics in plasma samples of 10 patients with TC and 15 patients with BTNs were performed. Key proteins and metabolites were identified specific to TC, and an independent cohort was used to validate the potential biomarkers using enzyme-linked immunosorbent assay (ELISA). In total, 1429 proteins and 1172 metabolites were identified. Principal component analysis showed a strong overlap at the proteomic level and a significant discrimination at the metabolomic level between the two groups, indicating a more drastic disturbance in the metabolome of thyroid cancer. Integrated analysis of proteomics and metabolomics shows glycerophospholipid metabolism and arachidonic acid metabolism as key regulatory pathways. Furthermore, a multi-omics biomarker panel was developed consisting of LCAT, GPX3 and leukotriene B4. Based on the AUC value for the discovery set, the classification performance was 0.960. The AUC value of the external validation set was 0.930. Altogether, our results will contribute to the clinical application of potential biomarkers in the diagnosis of thyroid cancer.PMID:37642188 | DOI:10.1039/d3mo00142c

Immunoglobulin A Glycosylation Differs between Crohn's Disease and Ulcerative Colitis

Tue, 29/08/2023 - 12:00
J Proteome Res. 2023 Aug 28. doi: 10.1021/acs.jproteome.3c00260. Online ahead of print.ABSTRACTInflammatory bowel diseases (IBD), such as Crohn's disease (CD) and ulcerative colitis (UC), are chronic and relapsing inflammations of the digestive tract with increasing prevalence, yet they have unknown origins or cure. CD and UC have similar symptoms but respond differently to surgery and medication. Current diagnostic tools often involve invasive procedures, while laboratory markers for patient stratification are lacking. Large glycomic studies of immunoglobulin G and total plasma glycosylation have shown biomarker potential in IBD and could help determine disease mechanisms and therapeutic treatment choice. Hitherto, the glycosylation signatures of plasma immunoglobulin A, an important immunoglobulin secreted into the intestinal mucin, have remained undetermined in the context of IBD. Our study investigated the associations of immunoglobulin A1 and A2 glycosylation with IBD in 442 IBD cases (188 CD and 254 UC) and 120 healthy controls by reversed-phase liquid chromatography electrospray-ionization mass spectrometry of tryptic glycopeptides. Differences of IgA O- and N-glycosylation (including galactosylation, bisection, sialylation, and antennarity) between patient groups were associated with the diseases, and these findings led to the construction of a statistical model to predict the disease group of the patients without the need of invasive procedures. This study expands the current knowledge about CD and UC and could help in the development of noninvasive biomarkers and better patient care.PMID:37641533 | DOI:10.1021/acs.jproteome.3c00260

Proteomic and metabolomic analyses illustrate the mechanisms of expression of the O<sup>6</sup> -methylguanine-DNA methyltransferase gene in glioblastoma

Tue, 29/08/2023 - 12:00
CNS Neurosci Ther. 2023 Aug 28. doi: 10.1111/cns.14415. Online ahead of print.ABSTRACTAIM: Glioblastoma (GBM) has been reported to be the most common high-grade primary malignant brain tumor in clinical practice and has a poor prognosis. O6 -methylguanine-DNA methyltransferase (MGMT) promoter methylation has been related to prolonged overall survival (OS) in GBM patients after temozolomide treatment.METHODS: Proteomics and metabolomics were combined to explore the dysregulated metabolites and possible protein expression alterations in white matter (control group), MGMT promoter unmethylated GBM (GBM group) or MGMT promoter methylation positive GBM (MGMT group).RESULTS: In total, 2745 upregulated and 969 downregulated proteins were identified in the GBM group compared to the control group, and 131 upregulated and 299 downregulated proteins were identified in the MGMT group compared to the GBM group. Furthermore, 131 upregulated and 299 downregulated metabolites were identified in the GBM group compared to the control group, and 187 upregulated and 147 downregulated metabolites were identified in the MGMT group compared to the GBM group. The results showed that 94 upregulated and 19 downregulated proteins and 20 upregulated and 16 downregulated metabolites in the MGMT group were associated with DNA repair. KEGG pathway enrichment analysis illustrated that the dysregulated proteins and metabolites were involved in multiple metabolic pathways, including the synthesis and degradation of ketone bodies, amino sugar and nucleotide sugar metabolism. Moreover, integrated metabolomics and proteomics analysis was performed, and six key proteins were identified in the MGMT group and GBM group. Three key pathways were recognized as potential biomarkers for recognizing MGMT promoter unmethylated GBM and MGMT promoter methylation positive GBM from GBM patient samples, with areas under the curve of 0.7895, 0.7326 and 0.7026, respectively.CONCLUSION: This study provides novel mechanisms to understand methylation in GBM and identifies some biomarkers for the prognosis of two different GBM types, MGMT promoter unmethylated or methylated GBM, by using metabolomics and proteomics analyses.PMID:37641495 | DOI:10.1111/cns.14415

Blood metabolomics and impacted cellular mechanisms during transition into lactation in dairy cows that develop metritis

Tue, 29/08/2023 - 12:00
J Dairy Sci. 2023 Aug 23:S0022-0302(23)00525-8. doi: 10.3168/jds.2023-23433. Online ahead of print.ABSTRACTThe objective of this study was to identify metabolites associated with metritis and use them for identification of cellular mechanisms affected during transition into lactation. Holstein cows (n = 104) had blood collected in the prepartum period (d 14 ± 6), at calving (d 0), and at the day of metritis diagnosis (d 7 ± 2). Cows with reddish or brownish, watery, and fetid discharge were diagnosed with metritis (n = 52). Cows with metritis were paired with herdmates without metritis (n = 52) based on days in milk. The metabolome of plasma samples was evaluated using untargeted gas chromatography time-of-flight mass spectrometry. Univariate analyses included t-tests and fold change analyses. Metabolites with false discovery rate adjusted P ≤ 0.10 on t-tests were used for partial least squares - discriminant analysis PLS-DA coupled with permutational analysis using 2,000 permutations. Metabolites with false discovery rate adjusted P ≤ 0.10 on t-tests were also used for enriched pathway analyses and identification of cellular processes. Cows that developed metritis had affected cellular processes associated with lower amino acid metabolism in the prepartum period, greater lipolysis, cell death, and oxidative stress at calving and at metritis diagnosis, and greater leukocyte activation at calving, but lower immune cell activation at metritis diagnosis. In summary, cows that developed metritis had plasma metabolomic changes associated with greater lipolysis, oxidative stress, and a dysregulated immune response which may predispose cows to metritis development.PMID:37641346 | DOI:10.3168/jds.2023-23433

Post-ruminal choline supply during negative nutrient balance alters components of hepatic mTOR signaling and plasma amino acids in lactating Holstein cows

Tue, 29/08/2023 - 12:00
J Dairy Sci. 2023 Aug 23:S0022-0302(23)00485-X. doi: 10.3168/jds.2023-23239. Online ahead of print.ABSTRACTCholine requirements for dairy cattle are unknown. However, enhanced post-ruminal supply of choline may increase flux through the methionine cycle to spare Met for other functions such as protein synthesis and phosphatidylcholine (PC) synthesis during periods of negative nutrient balance (NNB). The objective was to investigate the effects of post-ruminal choline supply during a feed restriction-induced NNB on hepatic abundance and phosphorylation of mTOR (mechanistic target of rapamycin)-related signaling proteins, hepatic lipidome and plasma amino acids (AA). Ten primiparous rumen-cannulated Holstein cows (158 ± 24 DIM) were used in a replicated 5 × 5 Latin square design with 4 d of treatment and 10 d of recovery (14 d/period). Treatments were unrestricted intake with abomasal infusion of water, restricted intake (R; 60% of net energy for lactation requirements to induce NNB) with abomasal infusion of water (R0) or restriction plus abomasal infusion of 6.25, 12.5, or 25 g/d choline ion. Liver tissue was collected via biopsy on d 5 after infusions ended and used for Western blot analysis to measure proteins involved in mTOR signaling and untargeted lipidomics. Blood was collected on d 1-5 for plasma AA analysis. Statistical contrasts for protein and AA data were A0 vs. R0 (CONT1), R0 vs. the average of choline dose (CONT2) and tests of linear and quadratic effects of choline dose. Analysis of lipidomic data was performed with the web-based metabolomic processing tool MetaboAnalyst 5.0. Ratios of p-RPS6KB1:tRPS6KB1, p-EEF2:tEEF2, and p-EIF2:tEIF2 were greater with R (CONT1). Among those, supply of choline led to decreases in p-EEF2:tEEF2 (CONT2), p-EIF2:tEIF2 and tended to decrease p-EIF4BP1:tEIF4BP1. However, the effect was quadratic only for p-EEF2:tEEF2 and p-EIF2A:tEIF2A, reaching a nadir at 6.25 to 12.5 g/d choline ion. The ratio of p-RPS6KB1:tRPS6KB1 was not affected by supply of choline and was close to 2-fold greater at 25 g/d choline vs. A0. Plasma Met concentration decreased with R (CONT1), but increased linearly with choline. Restriction also increased plasma 3-methyl-histidine (CONT1). The partial least squares discriminant analysis model of liver lipids distinguished treatments, with 13.4% of lipids being modified by treatment. One-way ANOVA identified 109 lipids with a false discovery rate ≤0.05. The largest group identified was PC species; all 35 detected decreased with R vs. A0, but there were few differences among choline treatments. Overall, data suggested that dephosphorylation of EEF2 and EIF2A due to enhanced choline supply potentially helped maintain or increase protein synthesis during NNB. While activation of mTOR was not altered by choline, this idea is partly supported by the increased circulating Met. However, enhanced post-ruminal choline had limited effects on the species of lipid produced during a period of NNB.PMID:37641280 | DOI:10.3168/jds.2023-23239

Rumen-protected choline reduces hepatic lipidosis by increasing hepatic triacylglycerol-rich lipoprotein secretion in dairy cows

Tue, 29/08/2023 - 12:00
J Dairy Sci. 2023 Aug 23:S0022-0302(23)00477-0. doi: 10.3168/jds.2022-23182. Online ahead of print.ABSTRACTObjectives were to determine the effects of supplementing rumen-protected choline (RPC) on hepatic composition and secretion of triacylglycerol-rich lipoprotein when cows were subjected to feed restriction to develop fatty liver. It was hypothesized that RPC reduces hepatic triacylglycerol by enhancing secretion of hepatic lipoprotein. Pregnant, nonlactating parous Holstein cows (n = 33) at mean (±SD) 234 ± 2.2 d of gestation were blocked by body condition (3.79 ± 0.49) and assigned to receive 0 g/d (CON), 25.8 g/d choline ion from a RPC product containing 28.8% choline chloride (CC; treatment L25.8), or 25.8 g/d of choline ion from a RPC product containing 60.0% CC (H25.8). Cows were fed for ad libitum intake for the first 5 d and restricted to 41% of the net energy for lactation required for maintenance and pregnancy from d 6 to 13. Intake of metabolizable methionine was maintained at 18 g/d during feed restriction by supplying rumen-protected methionine. Hepatic tissue was sampled on d 6 and 13 and analyzed for triacylglycerol and glycogen, and mRNA expression of hepatic tissue was investigated. On d 14, cows were not fed and received a 10% solution of tyloxapol intravenously at 120 mg/kg of body weight to block hydrolysis of triacylglycerols in very low density lipoprotein (VLDL). Blood was sampled sequentially for 720 min and analyzed for concentration of triacylglycerol and total cholesterol. Lymph was sampled 6 h after tyloxapol infusion, and analyzed for concentrations of fatty acids, β-hydroxybutyrate, glucose, triacylglycerol, and total cholesterol. A sample of serum collected at 720 min after tyloxapol was assayed for the metabolome composition. The area under the curve (AUC) of serum triacylglycerol, VLDL cholesterol, and total cholesterol were calculated. Orthogonal contrasts evaluated the effect of supplementing RPC (CON vs. [1/2 L25.8 + 1/2 H25.8]) and source of RPC (L25.8 vs. H25.8). Least squares means and standard errors of the means are presented in sequence as CON, L25.8, H25.8. During feed restriction, supplementation of RPC reduced hepatic triacylglycerol (9.0 vs. 4.1 vs. 4.5 ± 0.6%) and increased glycogen contents (1.9 vs. 3.5 vs. 4.1 ± 0.2%). Similarly, supplementation of RPC increased the expression of transcripts involved in the synthesis and assembly of lipoproteins (MTTP), cellular autophagy (ATG3), and inflammation (TNFA), and reduced the expression of transcripts associated with mitochondrial oxidation of fatty acids (HADHA, MLYCD) and stabilization of lipid droplets (PLIN2). After infusion of tyloxapol, RPC increased the AUC for serum triacylglycerol (21,741 vs. 32,323 vs. 28,699 ± 3,706 mg/dL per minute) and VLDL cholesterol (4,348 vs. 6,465 vs. 5,740 ± 741 mg/dL per minute) but tended to reduce the concentrations of triacylglycerol in lymph (16.7 vs. 13.8 vs. 11.9 ± 1.9 mg/dL). Feeding RPC tended to increase the concentrations of 89 metabolites in serum, after adjusting for false discovery, including 3 acylcarnitines, 1 AA-related metabolite, 11 bile acids, 1 ceramide, 6 diacylglycerols, 2 dihydroceramides, 1 glycerophospholipid, and 64 triacylglycerols compared with CON. Feeding 25.8 g/d of choline ion as RPC mediated increased hepatic triacylglycerol secretion to promote lipotropic effects that reduced hepatic lipidosis in dairy cows.PMID:37641262 | DOI:10.3168/jds.2022-23182

Call for next-generation drugs that remove the uptake barrier to combat antibiotic resistance

Mon, 28/08/2023 - 12:00
Drug Discov Today. 2023 Aug 26:103753. doi: 10.1016/j.drudis.2023.103753. Online ahead of print.ABSTRACTExisting antibacterial agents can be categorized into two generations, but bacterial insensitivity towards both of these classes poses a serious public health challenge worldwide. Thus, novel approaches and/or novel antibacterials are urgently needed to maintain a concentration of antibacterials that is lethal to bacteria that are resistant to existing antibiotic treatments. Metabolite(s)-based adjuvants that promote antibiotic uptake and enhance antibiotic efficacy are an effective strategy that is unlikely to develop resistance. Thus, we propose a metabolite(s)-based approach, in which metabolites and antibacterials are combined, as a promising strategy for the development of next-generation agents to combat a variety of antibiotic-resistant pathogens.PMID:37640151 | DOI:10.1016/j.drudis.2023.103753

Metabolomics and lipidomics strategies in modern drug discovery and development

Mon, 28/08/2023 - 12:00
Drug Discov Today. 2023 Aug 26:103751. doi: 10.1016/j.drudis.2023.103751. Online ahead of print.ABSTRACTMetabolomics and lipidomics have an increasingly pivotal role in drug discovery and development. In the context of drug discovery, monitoring changes in the levels or composition of metabolites and lipids relative to genetic variations yields functional insights, bolstering human genetics and (meta)genomic methodologies. This approach also sheds light on potential novel targets for therapeutic intervention. In the context of drug development, metabolite and lipid biomarkers contribute to enhance success rates, promising a transformative impact on precision medicine. In this review, we deviate from analytical chemist-focused perspectives, offering an overview tailored to drug discovery. We provide introductory insight into state-of-the-art mass spectrometry (MS)-based metabolomics and lipidomics techniques utilized in drug discovery and development, drawing from the collective expertise of our research teams. We comprehensively outline the application of metabolomics and lipidomics in advancing drug discovery and development, spanning fundamental research, target identification, mechanisms of action, and the exploration of biomarkers.PMID:37640150 | DOI:10.1016/j.drudis.2023.103751

Pages