PubMed
Comprehensive metabolomics analysis reveals novel biomarkers and pathways in falsely suspected glutaric aciduria Type-1 newborns
Clin Chim Acta. 2024 Mar 13:117861. doi: 10.1016/j.cca.2024.117861. Online ahead of print.ABSTRACTBACKGROUND: Glutaric aciduria type-1 (GA-1) is a rare metabolic disorder due to glutaryl coenzyme A dehydrogenase deficiency, causing elevated levels of glutaryl-CoA and its derivatives. GA-1 exhibits symptoms like macrocephaly, developmental delays, and movement disorders. Timely diagnosis through genetic testing and newborn screening is crucial. However, in some cases, transiently elevated level of glutarylcarnitine (C5DC) challenges accurate diagnosis, highlighting the need for alternative diagnostic methods, like mass spectrometry-based untargeted metabolomics, to identify additional biomarkers for distinguishing falsely suspected GA-1 from healthy newborns.METHODOLOGY: DBS samples from falsely suspected GA-1 newborns (n = 47) and matched control were collected through the NBS program. Untargeted metabolomics using liquid chromatography-high-resolution mass spectrometry (LC-HRMS) was performed to enable biomarker and pathway investigations for significantly altered metabolites.RESULTS: 582 and 546 were up- and down-regulated metabolites in transient GA-1. 155 endogenous metabolites displayed significant variations compared to the control group. Furthermore, our data identified novel altered metabolic biomarkers, such as N-palmitoylcysteine, heptacarboxyporphyrin, 3-hydroxylinoleoylcarnitine, and monoacylglyceride (MG) (0:0/20:1/0:0), along with perturbed metabolic pathways like sphingolipid and thiamine metabolism associated with the transient elevated C5DC levels in DBS samples.CONCLUSIONS: A distinct metabolic pattern linked to the transient C5DC elevation in newborns was reported to enhance the prediction of the falsely positive cases, which could help avoiding unnecessary medical treatments and minimizing the financial burdens in the health sector.PMID:38490341 | DOI:10.1016/j.cca.2024.117861
Sudden Death with Cardiac Involvement in a Neonate with Carnitine-Acylcarnitine Translocase Deficiency
Cardiovasc Pathol. 2024 Mar 13:107630. doi: 10.1016/j.carpath.2024.107630. Online ahead of print.ABSTRACTA female neonate born with normal Apgar scores at 38+2 weeks of gestational age unexpectedly passed away within less than 30 hours after birth. The situation mirrors her brother's earlier demise within 24 hours post-delivery, suggesting a possible genetic disorder. A gross examination revealed widespread cyanosis and distinct yellowish changes on the cardiac ventricles. Histopathological analysis disclosed lipid accumulation in the liver, heart, and kidney. Tandem mass spectrometry detected elevated levels of 10 amino acids and 14 carnitines in cardiac blood. Trio-whole genome sequencing (Trio-WGS) identified the SLC25A20 c.199-10T>G mutation associated with carnitine-acylcarnitine translocase disease (CACTD), a type of fatty acid oxidation disorders (FAODs) with a potential for sudden death. Further validation of gene expression confirmed the functional deficiency of SLC25A20, ultimately diagnosing CACTD as the underlying cause of the neonate's demise. This case highlights the importance of prenatal metabolic and genetic screening for prospective parents and emphasizes the need for forensic doctors to integrate metabolomic and genomic investigations into autopsies for suspected inherited metabolic diseases.PMID:38490313 | DOI:10.1016/j.carpath.2024.107630
Yinhuang buccal tablet alters airway microbiota composition and metabolite profile in healthy humans
J Ethnopharmacol. 2024 Mar 13:118043. doi: 10.1016/j.jep.2024.118043. Online ahead of print.ABSTRACTETHNOPHARMACOLOGICAL RELEVANCE: Perturbations in airway microbiota composition and disruption of microbe-metabolite interactions have been observed in respiratory infectious diseases (RIDs). The Yinhuang (YH) buccal tablet, as an ancient Chinese medicinal formula, has been traditionally employed for the management of upper RIDs. However, there is a lack of evidence for the effects of YH buccal tablets on upper respiratory tract microbiota and circulating metabolites.AIM OF THE STUDY: The aim of this study was to analyze the changes in respiratory microbiota composition and circulating metabolite profile after YH buccal tablets administration.MATERIALS AND METHODS: Throat swab samples and serum samples were collected from 60 healthy subjects for high-throughput 16S ribosomal RNA gene (16S rRNA) sequencing and non-targeted Ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis.RESULTS: Airway microbial composition changed significantly after YH administration. The abundance of Actinomyces and Prevotella_7 increased, while the abundance of potentially pathogenic Pseudomonas and Corynebacterium decreased. A total of 168 significant HMDB taxonomic metabolites were identified in serum samples, of which lipid metabolites accounted for the largest proportion. Correlation analysis showed that circulatory metabolites were significantly correlated with changes in airway microbiota composition.CONCLUSIONS: YH buccal tablets can inhibit opportunistic pathogens, increase beneficial microorganisms in the upper respiratory tract, and regulate the body's metabolic pathways. These findings provide insights into the mechanism of action of YH buccal tablets in the treatment and prevention of respiratory diseases.PMID:38490289 | DOI:10.1016/j.jep.2024.118043
Acetyl-CoA carboxylase obstructs CD8<sup>+</sup> T cell lipid utilization in the tumor microenvironment
Cell Metab. 2024 Mar 11:S1550-4131(24)00055-X. doi: 10.1016/j.cmet.2024.02.009. Online ahead of print.ABSTRACTThe solid tumor microenvironment (TME) imprints a compromised metabolic state in tumor-infiltrating T cells (TILs), hallmarked by the inability to maintain effective energy synthesis for antitumor function and survival. T cells in the TME must catabolize lipids via mitochondrial fatty acid oxidation (FAO) to supply energy in nutrient stress, and it is established that T cells enriched in FAO are adept at cancer control. However, endogenous TILs and unmodified cellular therapy products fail to sustain bioenergetics in tumors. We reveal that the solid TME imposes perpetual acetyl-coenzyme A (CoA) carboxylase (ACC) activity, invoking lipid biogenesis and storage in TILs that opposes FAO. Using metabolic, lipidomic, and confocal imaging strategies, we find that restricting ACC rewires T cell metabolism, enabling energy maintenance in TME stress. Limiting ACC activity potentiates a gene and phenotypic program indicative of T cell longevity, engendering T cells with increased survival and polyfunctionality, which sustains cancer control.PMID:38490211 | DOI:10.1016/j.cmet.2024.02.009
The acute neurotoxicity of inorganic mercury in Mactra chinensis philippi
Aquat Toxicol. 2024 Mar 12;270:106896. doi: 10.1016/j.aquatox.2024.106896. Online ahead of print.ABSTRACTInorganic mercury (IHg) is hazardous to marine organisms especially resulting in neurotoxicity, bivalves are sensitive to pollutants as "ocean sentinel", but data on the neurotoxicity of IHg in bivalves are sparse. So we chosed M. chinensis philippi with typical neural structures in bivalves to investigate the neurotoxicity of IHg, which could be helpful to understand the specificity of neural regulation and the response characteristics of bivalves. After acute exposed to IHg (HgCl2) for 24 h, the metabolites of ganglion tissues in M. chinensis philippi were evaluated using 1H-nuclear magnetic resonance based metabolomics; Ca2+, neurotransmitters (nitric oxide, glutamate, acetylcholine) and related enzymes (calcineurin, nitric oxide synthase and acetylcholinesterase) were measured using biochemical detection. Compared to the control group, the levels of the nitric oxide (81.04 ± 12.84 μmol/g prot) and acetylcholine (30.93 ± 12.57 μg/mg prot) in M. chinensis philippi of IHg-treated were decreased, while glutamate (2.11 ± 0.61 mmol/L) increased significantly; the activity of nitric oxide synthase (679.34 ± 135.33 U/mg prot) was increased, while acetylcholinesterase (1.39 ± 0.44 U/mg prot) decreased significantly, and the activity of calcineurin (0.52 ± 0.02 U/mg prot) had a statistically insignificant increasing tendency. The concentration of Ca2+ (0.92 ± 0.46 mmol/g prot) in the IHg-treated group was significantly higher than that in the control group. OPLS-DA was performed to reveal the difference in metabolites between the control and IHg-challenged groups, the metabolites of glucose, glutamine, inosine, succinate, glutamate, homarine, and alanine were sensitive to IHg, subsequently metabolic pathways that were affected including glucose metabolism, glutamine metabolism, nucleotide metabolism, Krebs cycle, amino acid metabolism and osmotic regulation. In our study, IHg interfered with metabolites in M. chinensis philippi, thus the corresponding metabolic pathways were changed, which influenced the neurotransmitters subsequently. Furthermore, Ca2+overload affected the synthesis or degradation of the neurotransmitters, and then the altered neurotransmitters involved in changes in metabolic pathways again. Overall, we hypothesized that the neurotoxic effects of IHg on bivalve were in close contact with metabolism, neurotransmitters, related enzymes and Ca2+, which could be effective neurotoxic biomarkers for marine environmental quality assessment, and also provide effective data for the study of the regulatory mechanism of the nervous system in response to IHg in bivalves.PMID:38490093 | DOI:10.1016/j.aquatox.2024.106896
Glycosphingolipids in congenital disorders of glycosylation (CDG)
Mol Genet Metab. 2024 Mar 5;142(1):108434. doi: 10.1016/j.ymgme.2024.108434. Online ahead of print.ABSTRACTCongenital disorders of glycosylation (CDG) are a large family of rare disorders affecting the different glycosylation pathways. Defective glycosylation can affect any organ, with varying symptoms among the different CDG. Even between individuals with the same CDG there is quite variable severity. Associating specific symptoms to deficiencies of certain glycoproteins or glycolipids is thus a challenging task. In this review, we focus on the glycosphingolipid (GSL) synthesis pathway, which is still rather unexplored in the context of CDG, and outline the functions of the main GSLs, including gangliosides, and their role in the central nervous system. We provide an overview of GSL studies that have been performed in CDG and show that abnormal GSL levels are not only observed in CDG directly affecting GSL synthesis, but also in better known CDG, such as PMM2-CDG. We highlight the importance of studying GSLs in CDG in order to better understand the pathophysiology of these disorders.PMID:38489976 | DOI:10.1016/j.ymgme.2024.108434
Integration of transcriptomics and metabolomics identify biomarkers of aberrant lipid metabolism in ulcerative colitis
Int Immunopharmacol. 2024 Mar 14;131:111865. doi: 10.1016/j.intimp.2024.111865. Online ahead of print.ABSTRACTBACKGROUND: The incidence of ulcerative colitis (UC) continues to rise globally, but effective therapeutic targets are still lacking. In recent years, numerous studies have indicated that lipid therapies could offer a novel perspective for UC treatment. Given the absence of prior research utilizing high-throughput data to identify target genes associated with lipid metabolism, we conducted this work.METHODS: The training set for this study was derived from four datasets within the Gene Expression Omnibus (GEO), encompassing a total of 357 UC patients. We employed four machine learning methods (LASSO, SVM, RF, and Boruta) to jointly identify core biomarkers in these patients, whose aberrant expression needed to be validated in independent datasets and in dextrose sulfate sodium salt (DSS)-induced UC mouse models. Regarding metabolomics, we detected abnormal oxidized lipids in the serum of UC mouse using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in conjunction with orthogonal partial least squares-discriminant analysis (OPLS-DA).RESULTS: Phospholipase A2 Group IIA (PLA2G2A) was first identified as a possible biomarker for UC, with AUC values of 0.810 and 1.000 in the two validation sets, while in animal models the gene showed similarly significant up-regulation in damaged intestinal mucosa. Further analysis of this gene showed that it was positively correlated with 17 immune cell types and histological severity. Additionally, we pioneered the development of a lipid metabolism score in UC research, which outperformed all individual genes in terms of disease diagnostic efficacy (AUC values of 0.980 and 1.000 for the two validation sets, respectively). Finally, the metabolomics study also identified 31 significantly abnormal oxidized lipids, including 12-HHT and DHA.CONCLUSIONS: PLA2G2A is a key therapeutic target for UC, and oxidized lipids such as 12-HHT can serve as potential serologic indicators for diagnosis.PMID:38489972 | DOI:10.1016/j.intimp.2024.111865
Mechanistic insights into chemical conditioning on transformation of dissolved organic matter and plant biostimulants production during sludge aerobic composting
Water Res. 2024 Mar 14;255:121446. doi: 10.1016/j.watres.2024.121446. Online ahead of print.ABSTRACTInorganic coagulants (aluminum and iron salt) are widely used to improve sludge dewaterability, resulting in numerous residues in dewatered sludge. Composting refers to the controlled microbial process that converts organic wastes into fertilizer, and coagulant residues in dewatered sludge can affect subsequent compost efficiency and resource recycling, which remains unclear. This work investigated the effects of two typical metal salt coagulants (poly aluminum chloride [PAC] and poly ferric sulfate [PFS]) conditioning on sludge compost. Our results revealed that PAC conditioning inhibited composting with decreased peak temperature, microbial richness, enzymatic reaction intensities, and compost quality, associated with decreased pH and microbial toxicity of aluminum. Nevertheless, PFS conditioning selectively enriched Pseudoxanthomonas sp. and resulted in more fertile compost with increased peak temperature, enzymatic reaction intensities, and humification degree. Spectroscopy and mass difference analyses indicated that PFS conditioning enhanced reaction intensities of labile biopolymers at the thermophilic stage, mainly comprising hydrolyzation (H2O), dehydrogenation (-H2, -H4), oxidation (+O1H2), and other reactions (i.e., +CH2, C2H4O1, C2H6O1). Unlike the common composting process primarily conducts humification at the cooling stage, PFS conditioning changed the main occurrence stage to the thermophilic stage. Non-targeted metabolomics revealed that indole (a humification intermediate) is responsible for the increased humification degree and indoleacetic acid content in the PFS-conditioned compost, which then promoted compost quality. Plant growth experiments further confirmed that the dissolved organic matter (DOM) in PFS-conditioned compost produced the maximum plant biomass. This study provided molecular-level evidence that PFS conditioning can promote humification and compost fertility during sludge composting, enabling chemical conditioning optimization for sustainable management of sludge.PMID:38489963 | DOI:10.1016/j.watres.2024.121446
Plasma metabolomics identifies S-adenosylmethionine as a biomarker and potential therapeutic target for vascular aging in older adult males
J Pharm Biomed Anal. 2024 Mar 12;243:116097. doi: 10.1016/j.jpba.2024.116097. Online ahead of print.ABSTRACTBrachial-ankle pulse wave velocity (baPWV) is a noninvasive index of vascular aging. However, the metabolic profile underlying vascular aging has not yet been fully elucidated. The current study aimed to identify circulating markers of vascular aging as assessed by baPWV and to elucidate its mechanism from a metabolomic perspective in older adults. A total of 60 and 61 Chinese male participants aged ≥80 years were recruited to the metabolome and validation cohorts, respectively. The baPWV of participants was measured using an automatic waveform analyzer. Plasma metabolic profile was investigated using ultra-performance liquid chromatography coupled with triple quadrupole linear ion trap tandem mass spectrometry. Orthogonal partial least squares (OPLS) regression modeling established the association between metabolic profile and baPWV to determine important metabolites predictive of vascular aging. Additionally, an enzyme-linked immunosorbent assay was employed to validate the metabolites in plasma and culture media of vascular smooth muscle cells in vitro. OPLS modeling identified 14 and 22 metabolites inversely and positively associated with baPWV, respectively. These 36 biomarkers were significantly enriched in seven metabolite sets, especially in cysteine and methionine metabolism (p <0.05). Notably, among metabolites involved in cysteine and methionine metabolism, S-adenosylmethionine (SAM) level was inversely related to baPWV, with a significant correlation coefficient in the OPLS model (p <0.05). Furthermore, the relationship between SAM and vascular aging was reconfirmed in an independent cohort and at the cellular level in vitro. SAM was independently associated with baPWV after adjustments for clinical covariates (β = -0.448, p <0.001) in the validation cohort. In summary, plasma metabolomics identified an inverse correlation between SAM and baPWV in older males. SAM has the potential to be a novel biomarker and therapeutic target for vascular aging.PMID:38489960 | DOI:10.1016/j.jpba.2024.116097
Fulvic Acid Promotes Legume-Rhizobium Symbiosis by Stimulating Endogenous Flavonoids Synthesis and Secretion
J Agric Food Chem. 2024 Mar 15. doi: 10.1021/acs.jafc.3c08837. Online ahead of print.ABSTRACTFulvic acid (FA) promotes symbiosis between legumes and rhizobia. To elucidate from the aspect of symbiosis, the effects of root irrigation of water-soluble humic materials (WSHM) or foliar spraying of its highly active component, FA, on soybean root exudates and on rhizosphere microorganisms were investigated. As a result, WSHM/FA treatments significantly altered root exudate metabolite composition, and isoflavonoids were identified as key contributors in both treatments compared to the control. Increased expression of genes related to the isoflavonoid biosynthesis were validated by RT-qPCR in both treatments, which notably elevated the synthesis of symbiotic signals genistein, daidzin, coumestrol, and biochanin A. Moreover, the WSHM/FA treatments induced a change in rhizosphere microbial community, coupled with an increase in the relative abundance of rhizobia. Our findings showed that WSHM/FA promotes symbiosis by stimulating the endogenous flavonoid synthesis and leads to rhizobia accumulation in the rhizosphere. This study provides new insights into mechanisms underlying the FA-mediated promotion of symbiosis.PMID:38489511 | DOI:10.1021/acs.jafc.3c08837
Gut bacteria-derived serotonin promotes immune tolerance in early life
Sci Immunol. 2024 Mar 15;9(93):eadj4775. doi: 10.1126/sciimmunol.adj4775. Epub 2024 Mar 15.ABSTRACTThe gut microbiota promotes immune system development in early life, but the interactions between the gut metabolome and immune cells in the neonatal gut remain largely undefined. Here, we demonstrate that the neonatal gut is uniquely enriched with neurotransmitters, including serotonin, and that specific gut bacteria directly produce serotonin while down-regulating monoamine oxidase A to limit serotonin breakdown. We found that serotonin directly signals to T cells to increase intracellular indole-3-acetaldehdye and inhibit mTOR activation, thereby promoting the differentiation of regulatory T cells, both ex vivo and in vivo in the neonatal intestine. Oral gavage of serotonin into neonatal mice resulted in long-term T cell-mediated antigen-specific immune tolerance toward both dietary antigens and commensal bacteria. Together, our study has uncovered an important role for specific gut bacteria to increase serotonin availability in the neonatal gut and identified a function of gut serotonin in shaping T cell response to dietary antigens and commensal bacteria to promote immune tolerance in early life.PMID:38489352 | DOI:10.1126/sciimmunol.adj4775
Single-cell NAD(H) levels predict clonal lymphocyte expansion dynamics
Sci Immunol. 2024 Mar 15;9(93):eadj7238. doi: 10.1126/sciimmunol.adj7238. Epub 2024 Mar 15.ABSTRACTAdaptive immunity requires the expansion of high-affinity lymphocytes from a heterogeneous pool. Whereas current models explain this through signal transduction, we hypothesized that antigen affinity tunes discrete metabolic pathways to license clonal lymphocyte dynamics. Here, we identify nicotinamide adenine dinucleotide (NAD) biosynthesis as a biochemical hub for the T cell receptor affinity-dependent metabolome. Through this central anabolic role, we found that NAD biosynthesis governs a quiescence exit checkpoint, thereby pacing proliferation. Normalizing cellular NAD(H) likewise normalizes proliferation across affinities, and enhancing NAD biosynthesis permits the expansion of lower affinity clones. Furthermore, single-cell differences in NAD(H) could predict division potential for both T and B cells, before the first division, unmixing proliferative heterogeneity. We believe that this supports a broader paradigm in which complex signaling networks converge on metabolic pathways to control single-cell behavior.PMID:38489349 | DOI:10.1126/sciimmunol.adj7238
Description of the fasted serum metabolomic signature of lean and obese cats at maintenance and of obese cats under energy restriction
PLoS One. 2024 Mar 15;19(3):e0299375. doi: 10.1371/journal.pone.0299375. eCollection 2024.ABSTRACTThis study aimed to investigate the serum metabolomic profile of obese and lean cats as well as obese cats before and after energy restriction for weight loss. Thirty cats, 16 obese (body condition score 8 to 9/9) and 14 lean (body condition score 4 to 5/9), were fed a veterinary weight loss food during a 4-week period of weight maintenance (L-MAINT and O-MAINT). The 16 obese cats were then energy restricted by a 60% energy intake reduction with the same food for a 10-week period (O-RESTRICT). Fasted serum metabolites were measured using nuclear magnetic resonance and direct infusion mass spectrometry after the maintenance period for L-MAINT and O-MAINT cats and after the energy restriction period for O-RESTRICT and compared between groups using a two-sided t-test. Obese cats lost 672 g ± 303 g over the 10-week restriction period, representing a weight loss rate of 0.94 ± 0.28% per week. Glycine, l-alanine, l-histidine, l-glutamine, 2-hydroxybutyrate, isobutryric acid, citric acid, creatine, and methanol were greater in O-RESTRICT compared to O-MAINT. There was a greater concentration of long-chain acylcarnitines in O-RESTRICT compared to both O-MAINT and L-MAINT, and greater total amino acids compared to O-MAINT. Glycerol and 3-hydroxybutyric acid were greater in O-MAINT compared to L-MAINT, as were several lysophosphatidylcholines. Thus, energy restriction resulted in increased dispensable amino acids in feline serum which could indicate alterations in amino acid partitioning. An increase in lipolysis was not evident, though greater circulating acylcarnitines were observed, suggesting that fatty acid oxidation rates may have been greater under calorie restriction. More research is needed to elucidate energy metabolism and substrate utilization, specifically fatty acid oxidation and methyl status, during energy restriction in strict carnivorous cats to optimize weight loss.PMID:38489282 | DOI:10.1371/journal.pone.0299375
Protocol for identifying metabolite biomarkers in patient uterine fluid for early ovarian cancer detection
STAR Protoc. 2024 Mar 13;5(2):102953. doi: 10.1016/j.xpro.2024.102953. Online ahead of print.ABSTRACTHigh mortality of ovarian cancer (OC) is primarily attributed to the lack of effective early detection methods. Uterine fluid, pooling molecules from neighboring ovaries, presents an organ-specific advantage over conventional blood samples. Here, we present a protocol for identifying metabolite biomarkers in uterine fluid for early OC detection. We describe steps for uterine fluid collection from patients, metabolite extraction, metabolomics experiments, and candidate metabolite biomarker screening. This standardized workflow holds the potential to achieve early OC diagnosis in clinical practice. For complete details on the use and execution of this protocol, please refer to Wang et al.1.PMID:38489270 | DOI:10.1016/j.xpro.2024.102953
Metabolic reprogramming of cancer cells by JMJD6-mediated pre-mRNA splicing associated with therapeutic response to splicing inhibitor
Elife. 2024 Mar 15;12:RP90993. doi: 10.7554/eLife.90993.ABSTRACTDysregulated pre-mRNA splicing and metabolism are two hallmarks of MYC-driven cancers. Pharmacological inhibition of both processes has been extensively investigated as potential therapeutic avenues in preclinical and clinical studies. However, how pre-mRNA splicing and metabolism are orchestrated in response to oncogenic stress and therapies is poorly understood. Here, we demonstrate that jumonji domain containing 6, arginine demethylase, and lysine hydroxylase, JMJD6, acts as a hub connecting splicing and metabolism in MYC-driven human neuroblastoma. JMJD6 cooperates with MYC in cellular transformation of murine neural crest cells by physically interacting with RNA binding proteins involved in pre-mRNA splicing and protein homeostasis. Notably, JMJD6 controls the alternative splicing of two isoforms of glutaminase (GLS), namely kidney-type glutaminase (KGA) and glutaminase C (GAC), which are rate-limiting enzymes of glutaminolysis in the central carbon metabolism in neuroblastoma. Further, we show that JMJD6 is correlated with the anti-cancer activity of indisulam, a 'molecular glue' that degrades splicing factor RBM39, which complexes with JMJD6. The indisulam-mediated cancer cell killing is at least partly dependent on the glutamine-related metabolic pathway mediated by JMJD6. Our findings reveal a cancer-promoting metabolic program is associated with alternative pre-mRNA splicing through JMJD6, providing a rationale to target JMJD6 as a therapeutic avenue for treating MYC-driven cancers.PMID:38488852 | DOI:10.7554/eLife.90993
Data processing solutions to render metabolomics more quantitative: case studies in food and clinical metabolomics using Metabox 2.0
Gigascience. 2024 Jan 2;13:giae005. doi: 10.1093/gigascience/giae005.ABSTRACTIn classic semiquantitative metabolomics, metabolite intensities are affected by biological factors and other unwanted variations. A systematic evaluation of the data processing methods is crucial to identify adequate processing procedures for a given experimental setup. Current comparative studies are mostly focused on peak area data but not on absolute concentrations. In this study, we evaluated data processing methods to produce outputs that were most similar to the corresponding absolute quantified data. We examined the data distribution characteristics, fold difference patterns between 2 metabolites, and sample variance. We used 2 metabolomic datasets from a retail milk study and a lupus nephritis cohort as test cases. When studying the impact of data normalization, transformation, scaling, and combinations of these methods, we found that the cross-contribution compensating multiple standard normalization (ccmn) method, followed by square root data transformation, was most appropriate for a well-controlled study such as the milk study dataset. Regarding the lupus nephritis cohort study, only ccmn normalization could slightly improve the data quality of the noisy cohort. Since the assessment accounted for the resemblance between processed data and the corresponding absolute quantified data, our results denote a helpful guideline for processing metabolomic datasets within a similar context (food and clinical metabolomics). Finally, we introduce Metabox 2.0, which enables thorough analysis of metabolomic data, including data processing, biomarker analysis, integrative analysis, and data interpretation. It was successfully used to process and analyze the data in this study. An online web version is available at http://metsysbio.com/metabox.PMID:38488666 | DOI:10.1093/gigascience/giae005
Magnesium-L-threonate treats Alzheimer's disease by modulating the microbiota-gut-brain axis
Neural Regen Res. 2024 Oct 1;19(10):2281-2289. doi: 10.4103/1673-5374.391310. Epub 2023 Dec 21.ABSTRACTJOURNAL/nrgr/04.03/01300535-202410000-00029/figure1/v/2024-02-06T055622Z/r/image-tiff Disturbances in the microbiota-gut-brain axis may contribute to the development of Alzheimer's disease. Magnesium-L-threonate has recently been found to have protective effects on learning and memory in aged and Alzheimer's disease model mice. However, the effects of magnesium-L-threonate on the gut microbiota in Alzheimer's disease remain unknown. Previously, we reported that magnesium-L-threonate treatment improved cognition and reduced oxidative stress and inflammation in a double-transgenic line of Alzheimer's disease model mice expressing the amyloid-β precursor protein and mutant human presenilin 1 (APP/PS1). Here, we performed 16S rRNA amplicon sequencing and liquid chromatography-mass spectrometry to analyze changes in the microbiome and serum metabolome following magnesium-L-threonate exposure in a similar mouse model. Magnesium-L-threonate modulated the abundance of three genera in the gut microbiota, decreasing Allobaculum and increasing Bifidobacterium and Turicibacter. We also found that differential metabolites in the magnesium-L-threonate-regulated serum were enriched in various pathways associated with neurodegenerative diseases. The western blotting detection on intestinal tight junction proteins (zona occludens 1, occludin, and claudin-5) showed that magnesium-L-threonate repaired the intestinal barrier dysfunction of APP/PS1 mice. These findings suggest that magnesium-L-threonate may reduce the clinical manifestations of Alzheimer's disease through the microbiota-gut-brain axis in model mice, providing an experimental basis for the clinical treatment of Alzheimer's disease.PMID:38488562 | DOI:10.4103/1673-5374.391310
Metabolic Profiles and Microbial Synergy Mechanism of Anammox Biomass Enrichment and Membrane Fouling Alleviation in the Anammox Dynamic Membrane Bioreactor
Environ Sci Technol. 2024 Mar 15. doi: 10.1021/acs.est.3c10030. Online ahead of print.ABSTRACTThe anammox dynamic membrane bioreactor (DMBR) is promising in applications with enhanced anammox biomass enrichment and fouling alleviation. However, the metabolic mechanism underlying the functional features of anammox sludge and the biofilm membrane is still obscure. We investigated the metabolic networks of anammox sludge and membrane biofilm in the DMBR. The cooperation between anammox and dissimilatory nitrate reduction to ammonium processes favored the robust anammox process in the DMBR. The rapid bacterial growth occurred in the DMBR sludge with 1.33 times higher biomass yield compared to the MBR sludge, linked to the higher activities of lipid metabolism, nucleotide metabolism, and B vitamin-related metabolism of the DMBR sludge. The metabolism of the DMBR biofilm microbial community benefited the fouling alleviation that the abundant fermentative bacteria and their cooperation with the anammox sludge microbial community promoted organics degradation. The intensified degradation of foulants by the DMBR biofilm community was further evidenced by the active carbohydrate metabolism and the upregulated vitamin B intermediates in the biofilms of the DMBR. Our findings provide insights into key metabolic mechanisms for enhanced biomass enrichment and fouling control of the anammox DMBR, guiding manipulations and applications for overcoming anammox biomass loss in the treatment of wastewater under detrimental environmental conditions.PMID:38488464 | DOI:10.1021/acs.est.3c10030
Erythropoietin-derived peptide ARA290 mediates brain tissue protection through the β-common receptor in mice with cerebral ischemic stroke
CNS Neurosci Ther. 2024 Mar;30(3):e14676. doi: 10.1111/cns.14676.ABSTRACTAIM: To explore the neuroprotective effects of ARA290 and the role of β-common receptor (βCR) in a mouse model of middle cerebral artery occlusion (MCAO).METHODS: This study included male C57BL/6J mice that underwent MCAO and reperfusion. The neuroprotective effect of ARA290 on MCAO-induced brain injury was investigated using neurological function tests (Longa and modified neurological severity score). Cerebral infarction was examined by 2, 3, 5-triphenyl tetrazolium chloride staining, neuronal apoptosis was assessed by immunofluorescence staining, blood parameters were measured using a flow cytometry-based automated hematology analyzer, liquid chromatography with tandem mass spectrometry was used to identify the serum metabolomics signature, inflammatory cytokines and liver index were detected by commercially available kits, and the protein levels of the erythropoietin (EPO) receptor and βCR were measured by western blot.RESULTS: ARA290 exerted a qualitatively similar neuroprotective effect after MCAO as EPO. ARA290 significantly reduced neuronal apoptosis and the level of inflammatory cytokines in the brain tissue. However, ARA290's neuroprotective effect was significantly suppressed following the injection of siRNA against βCR.CONCLUSION: ARA290 provided a neuroprotective effect via βCR in cerebral ischemic mice without causing erythropoiesis. This study provides novel insights into the role of ARA290 in ischemic stroke intervention.PMID:38488446 | DOI:10.1111/cns.14676
Metabolome and Transcriptome Reveal Chlorophyll, Carotenoid, and Anthocyanin Jointly Regulate the Color Formation of Triadica sebifera
Physiol Plant. 2024 Mar-Apr;176(2):e14248. doi: 10.1111/ppl.14248.ABSTRACTThe Chinese tallow tree (Triadica sebifera) is an economically important plant on account of its ornamental value and oil-producing seeds. Leaf colour is a key characteristic of T. sebifera, with yellow-, red- and purple-leaved varieties providing visually impressive displays during autumn. In this study, we performed metabolomic and transcriptomic analyses to gain a better understanding of the mechanisms underlying leaf colour development in purple-leaved T. sebifera at three stages during the autumnal colour transition, namely, green, hemi-purple, and purple leaves. We accordingly detected 370 flavonoid metabolites and 10 anthocyanins, among the latter of which, cyanidin-3-xyloside and peonidin-3-O-glucoside were identified as the predominant compounds in hemi-purple and purple leaves. Transcriptomic analysis revealed that structural genes associated with the anthocyanin biosynthetic pathway, chlorophyll synthesis pathway and carotenoid synthesis pathway were significantly differential expressed at the three assessed colour stages. Additionally, transcription factors associated with the MYB-bHLH-WD40 complex, including 22 R2R3-MYBs, 79 bHLHs and 44 WD40 genes, were identified as candidate regulators of the anthocyanin biosynthetic pathway. Moreover, on the basis of the identified differentially accumulated anthocyanins and key genes, we generated genetic and metabolic regulatory networks for anthocyanin biosynthesis in T. sebifera. These findings provide comprehensive information on the leaf transcriptome and three pigments of T. sebifera, thereby shedding new light on the mechanisms underlying the autumnal colouring of the leaves of this tree.PMID:38488424 | DOI:10.1111/ppl.14248