Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

A serine metabolic enzyme is flexing its muscle to help repair skeletal muscle

Thu, 14/03/2024 - 11:00
Genes Dev. 2024 Mar 14. doi: 10.1101/gad.351666.124. Online ahead of print.ABSTRACTMetabolic reprogramming of stem cells is a targetable pathway to control regeneration. Activation of stem cells results in down-regulation of oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO) and turns on glycolysis to provide fuel for proliferation and specific signaling events. How cell type-specific events are regulated is unknown. In this issue of Genes & Development Ciuffoli and colleagues (pp. XXX-XXX) use metabolomic, gene inactivation, and functional approaches to show that phosphoserine aminotransferase (Psat1), an enzyme in serine biosynthesis, is activated in muscle stem cells and contributes to cell expansion and skeletal muscle regeneration via the production of α-ketoglutarate and glutamine.PMID:38485266 | DOI:10.1101/gad.351666.124

The Longitudinal Microbial and Metabolic Landscape of infant Cystic Fibrosis: The gut-lung axis

Thu, 14/03/2024 - 11:00
Eur Respir J. 2024 Mar 14:2302290. doi: 10.1183/13993003.02290-2023. Online ahead of print.ABSTRACTBACKGROUND AND AIM: : In cystic fibrosis (CF), gastrointestinal dysfunction and lower airway infection occur early and are independently associated with poorer outcomes in childhood. This study aimed to define the relationship between the microbiota at each niche during the first 2-years of life, its association with growth and airway inflammation, and explanatory features in the metabolome.MATERIALS AND METHODS: Sixty-seven bronchoalveolar lavage (BAL), 62 plasma and 105 stool samples were collected from 39 infants with CF between 0-24-months who were treated with prophylactic antibiotics. 16S rRNA amplicon and shotgun metagenomic sequencing were performed on BAL and stool respectively; metabolomic analyses were performed on all sample types. Sequencing data from healthy age-matched infants were used as controls.RESULTS: Bacterial diversity increased over the first 2-years in both BAL and stool, and microbial maturation was delayed in comparison to healthy controls from the RESONANCE cohort. Correlations between their respective abundances in both sites suggest stool may serve as a non-invasive alternative for detecting BAL Pseudomonas and Veillonella. Multi-site metabolomic analyses revealed age- and growth-related changes, associations with neutrophilic airway inflammation, and a set of core systemic metabolites. BAL Pseudomonas abundance was correlated with altered stool microbiome composition and systemic metabolite alterations, highlighting a complex gut-plasma-lung interplay and new targets with therapeutic potential.CONCLUSION: Exploration of the gut-lung microbiome and metabolome reveals diverse multi-site interactions in CF that emerge in early life. Gut-lung metabolomic links with airway inflammation and Pseudomonas abundance warrant further investigation for clinical utility, particularly in non-expectorating patients.PMID:38485151 | DOI:10.1183/13993003.02290-2023

Probiotic Consortia Protect the Intestine Against Radiation Injury by Improving Intestinal Epithelial Homeostasis

Thu, 14/03/2024 - 11:00
Int J Radiat Oncol Biol Phys. 2024 Mar 12:S0360-3016(24)00395-X. doi: 10.1016/j.ijrobp.2024.03.003. Online ahead of print.ABSTRACTPURPOSE: Radiation-induced intestinal injuries (RIII) commonly occur during abdomin-pelvic cancer radiotherapy; however, no effective prophylactic or therapeutic agents are available to manage RIII currently. This study aimed to clarify the potential of probiotic consortium supplementation in alleviating RIII.MATERIALS AND METHODS: Male C57BL/6J mice were orally administered a probiotic mixture comprising Bifidobacterium longum BL21, Lactobacillus paracasei LC86, and Lactobacillus plantarum Lp90 for 30 days before exposure to 13 Gy of whole abdominal irradiation (WAI). The survival rates, clinical scores, and histological changes in the intestines of mice were assessed. The impacts of probiotic consortium treatment on intestinal stem cells (ISCs) proliferation, differentiation, and epithelial barrier function, oxidative stress, and inflammatory cytokines were evaluated. A comprehensive examination of the gut microbiota composition was conducted through 16S rRNA sequencing, while changes in metabolites were identified using liquid chromatography-mass spectrometry.RESULTS: The probiotic consortium alleviated RIII, as reflected by increased survival rates, improved clinical scores, and mitigated mucosal injury. The probiotic consortium treatment exhibited enhanced therapeutic effects at the histological level when compared to individual probiotic strains, although there was no corresponding improvement in survival rates and colon length. Moreover, probiotic consortium stimulated ISCs proliferation and differentiation, enhanced the integrity of the intestinal epithelial barrier, and regulated redox imbalance and inflammatory responses in irradiated mice. Notably, the treatment induced a restructuring of gut microbiota composition, particularly enriching short-chain fatty acid-producing bacteria. Metabolomic analysis revealed distinctive metabolic changes associated with probiotic consortium, including elevated levels of anti-inflammatory and anti-radiation metabolites.CONCLUSIONS: The probiotic consortium attenuated RIII by modulating the gut microbiota and metabolites, improving inflammatory symptoms, and regulating oxidative stress. These findings provide new insights into the maintenance of intestinal health with the probiotic consortium supplementation and will facilitate the development of probiotic-based therapeutic strategies for RIII in clinical practice.PMID:38485099 | DOI:10.1016/j.ijrobp.2024.03.003

Identification of an epilepsy-linked gut microbiota signature in a pediatric rat model of acquired epilepsy

Thu, 14/03/2024 - 11:00
Neurobiol Dis. 2024 Mar 12:106469. doi: 10.1016/j.nbd.2024.106469. Online ahead of print.ABSTRACTA dysfunctional gut microbiota-brain axis is emerging as a potential pathogenic mechanism in epilepsy, particularly in pediatric forms of epilepsy. To add new insights into gut-related changes in acquired epilepsy that develops early in life, we used a multi-omics approach in a rat model with a 56% incidence of epilepsy. The presence of spontaneous seizures was assessed in adult rats (n = 46) 5 months after status epilepticus induced by intra-amygdala kainate at postnatal day 13, by 2 weeks (24/7) ECoG monitoring. Twenty-six rats developed epilepsy (Epi) while the remaining 20 rats (No-Epi) did not show spontaneous seizures. At the end of ECoG monitoring, all rats and their sham controls (n = 20) were sacrificed for quantitative histopathological and immunohistochemical analyses of the gut structure, glia and macrophages, as well as RTqPCR analysis of inflammation/oxidative stress markers. By comparing Epi, No-Epi rats, and sham controls, we found structural, cellular, and molecular alterations reflecting a dysfunctional gut, which were specifically associated with epilepsy. In particular, the villus height-to-crypt depth ratio and number of Goblet cells were reduced in the duodenum of Epi rats vs both No-Epi rats and sham controls (p < 0.01). Villus height and crypt depth in the duodenum and jejunum (p < 0.01) were increased in No-Epi vs both Epi and sham controls. We also detected enhanced Iba1-positive macrophages, together with increased IL1b and NFE2L2 transcripts and TNF protein, in the small intestine of Epi vs both No-Epi and sham control rats (p < 0.01), denoting the presence of inflammation and oxidative stress. Astroglial GFAP-immunostaining was similar in all experimental groups. Metagenomic analysis in the feces collected 5 months after status epilepticus showed that the ratio of two dominant phyla (Bacteroidota-to-Firmicutes) was similarly increased in Epi and No-Epi rats vs sham control rats. Notably, the relative abundance of families, genera and species associated with SCFA production differed in Epi vs No-Epi rats, describing a bacterial imprint associated with epilepsy. Furthermore, Epi rats showed a blood metabolic signature characterized by changes in lipid metabolism compared to both No-Epi and sham control rats. Our study provides new evidence of long-term gut alterations, along with microbiota-related metabolic changes, occurring specifically in rats that develop epilepsy after brain injury early in life.PMID:38485093 | DOI:10.1016/j.nbd.2024.106469

Extract of Silphium perfoliatum L. improve lipid accumulation in NAFLD mice by regulating AMPK/FXR signaling pathway

Thu, 14/03/2024 - 11:00
J Ethnopharmacol. 2024 Mar 12:118054. doi: 10.1016/j.jep.2024.118054. Online ahead of print.ABSTRACTETHNOPHARMACOLOGICAL RELEVANCE: Globally, the incidence rate and number of patients with nonalcoholic fatty liver disease are increasing, which has become one of the greatest threats to human health. However, there is still no effective therapy and medicine so far. Silphium perfoliatum L. is a perennial herb native to North America, which is used to improve physical fitness and treat liver and spleen related diseases in the traditional medicinal herbs of Indian tribes. This herb is rich in chlorogenic acids, which have the functions of reducing blood lipids, losing weight and protecting liver. However, the effect of these compounds on nonalcoholic fatty liver disease remains unclear.AIM OF THE STUDY: Clarify the therapeutic effects and mechanism of the extract (CY-10) rich in chlorogenic acid and its analogues from Silphium perfoliatum L. on non-alcoholic fatty liver disease, and to determine the active compounds.MATERIALS AND METHODS: A free fatty acid-induced steatosis model of HepG2 cells was established to evaluate the in vitro activity of CY-10 in promoting lipid metabolism. Further, a high-fat diet-induced NAFLD model in C57BL/6 mice was established to detect the effects of CY-10 on various physiological and biochemical indexes in mice, and to elucidate the in vivo effects of the extract on regulating lipid metabolism, anti-inflammation and hepatoprotection, and nontarget lipid metabolomics was performed to analyze differential metabolites of fatty acids in the liver. Subsequently, western blotting and immunohistochemistry were used to analyze the target of the extract and elucidate its mechanism of action. Finally, the active compounds in CY-10 were elucidated through in vitro activity screening.RESULTS: The results indicated that CY-10 significantly attenuated lipid droplet deposition in HepG2 cells. The results of in vivo experiments showed that CY-10 significantly reduce HFD-induced mouse body weight and organ index, improve biochemical indexes, oxidation levels and inflammatory responses in the liver and serum, thereby protecting the liver tissue. It can promote the metabolism of unsaturated fatty acids in the liver and reduce the generation of saturated fatty acids. Furthermore, it is clarified that CY-10 can promote lipid metabolism balance by regulating AMPK/FXR/SREPB-1c/PPAR-γ signal pathway. Ultimately, the main active compound was proved to be cryptochlorogenic acid, which has a strong promoting effect on the metabolism of fatty acids in cells. Impressively, the activities of CY-10 and cryptochlorogenic acid were stronger than simvastatin in vitro and in vivo.CONCLUSION: For the first time, it is clarified that the extract rich in chlorogenic acids and its analogues in Silphium perfoliatum L. have good therapeutic effects on non-alcoholic fatty liver disease. It is confirmed that cryptochlorogenic acid is the main active compound and has good potential for medicine.PMID:38484950 | DOI:10.1016/j.jep.2024.118054

Multi-OMICS approaches in cancer biology: New era in cancer therapy

Thu, 14/03/2024 - 11:00
Biochim Biophys Acta Mol Basis Dis. 2024 Mar 12:167120. doi: 10.1016/j.bbadis.2024.167120. Online ahead of print.ABSTRACTInnovative multi-omics frameworks integrate diverse datasets from the same patients to enhance our understanding of the molecular and clinical aspects of cancers. Advanced omics and multi-view clustering algorithms present unprecedented opportunities for classifying cancers into subtypes, refining survival predictions and treatment outcomes, and unravelling key pathophysiological processes across various molecular layers. However, with the increasing availability of cost-effective high-throughput technologies (HTT) that generate vast amounts of data, analyzing single layers often falls short of establishing causal relations. Integrating multi-omics data spanning genomes, epigenomes, transcriptomes, proteomes, metabolomes, and microbiomes offers unique prospects to comprehend the underlying biology of complex diseases like cancer. This discussion explores algorithmic frameworks designed to uncover cancer subtypes, disease mechanisms, and methods for identifying pivotal genomic alterations. It also underscores the significance of multi-omics in tumor classifications, diagnostics, and prognostications. Despite its unparalleled advantages, the integration of multi-omics data has been slow to find its way into everyday clinics. A major hurdle is the uneven maturity of different omics approaches and the widening gap between the generation of large datasets and the capacity to process this data. Initiatives promoting the standardization of sample processing and analytical pipelines, as well as multidisciplinary training for experts in data analysis and interpretation, are crucial for translating theoretical findings into practical applications.PMID:38484941 | DOI:10.1016/j.bbadis.2024.167120

Identification of potential serum biomarkers associated with HbA1c levels in Indian type 2 diabetic subjects using NMR-based metabolomics

Thu, 14/03/2024 - 11:00
Clin Chim Acta. 2024 Mar 12:117857. doi: 10.1016/j.cca.2024.117857. Online ahead of print.ABSTRACTBACKGROUND: The prevalence of type 2 diabetes mellitus (T2DM), a progressive metabolic disorder characterized by chronic hyperglycemia and the development of insulin resistance, has increased globally, with worrying statistics coming from children, adolescents, and young adults from developing countries like India. Here, we investigated unique circulating metabolic signatures associated with prediabetes and T2DM in an Indian cohort using NMR-based metabolomics.MATERIALS AND METHODS: The study subjects included healthy volunteers (N = 101), prediabetic subjects (N = 75), and T2DM patients (N = 108). Serum metabolic profiling was performed using 1H NMR and major perturbed metabolites were identified by multivariate analysis and Receiver operating characteristic (ROC) modules.RESULTS: Of the 36 aqueous abundant metabolites, 24 showed a statistically significant difference between healthy volunteers, prediabetics, and established T2DM subjects. On performing multivariate ROC curve analysis with 5 commonly dysregulated metabolites (namely, glucose, pyroglutamate, o-phosphocholine, serine, and methionine) in prediabetes and T2DM, AUC values obtained were 0.96 (95 % confidence interval (CI) = 0.93, 0.98) for T2DM; and 0.88 (95 % CI = 0.81, 0.93) for prediabetic subjects, respectively.CONCLUSION: We propose that the identified metabolite panel can be used in the future as a biomarker for clinical diagnosis, patient surveillance, and for predicting individuals at risk for developing diabetes.PMID:38484908 | DOI:10.1016/j.cca.2024.117857

Associations between cord blood acetaminophen biomarkers and childhood asthma with and without allergic comorbidities

Thu, 14/03/2024 - 11:00
Ann Allergy Asthma Immunol. 2024 Mar 12:S1081-1206(24)00143-1. doi: 10.1016/j.anai.2024.03.001. Online ahead of print.ABSTRACTBACKGROUND: Previous studies have linked prenatal acetaminophen use to increased asthma risk in children. However, none have explored this association while differentiating between asthma cases with and without other allergic conditions or by employing objective biomarkers to assess acetaminophen exposure.OBJECTIVE: Examine whether the detection of acetaminophen biomarkers in cord blood is associated with the subgroups of asthma both with and without allergic comorbidities in children.METHODS: Acetaminophen biomarkers, including unchanged acetaminophen and acetaminophen glucuronide, were measured in neonatal cord blood samples from the Boston Birth Cohort. Asthma subgroups were defined based on physician diagnoses of asthma and other allergic conditions (atopic dermatitis, allergic rhinitis). Multinomial regressions were used to examine the associations between acetaminophen biomarkers and asthma subgroups, adjusting for multiple confounders, including potential indications for maternal acetaminophen use such as maternal fever.RESULTS: The study included 142 children with asthma and at least one other allergic condition, 55 children with asthma but no other allergic condition, and 613 children free of asthma. Detection of acetaminophen in cord blood, reflecting maternal exposure to acetaminophen shortly before delivery, was associated with a 3.73 times the odds of developing asthma without allergic comorbidities (95% CI: 1.79, 7.80, p=0.0004). In contrast, detection of acetaminophen in cord blood was not associated with elevated risk of asthma with allergic comorbidities. Analysis of acetaminophen glucuronide yielded consistent results.CONCLUSION: In a prospective birth cohort, cord blood acetaminophen biomarkers were associated with an increased risk of childhood asthma without allergic comorbidities, but were not associated with childhood asthma with allergic comorbidities.PMID:38484838 | DOI:10.1016/j.anai.2024.03.001

Alterations in serum metabolic profiles of early-stage hepatocellular carcinoma patients after radiofrequency ablation therapy

Thu, 14/03/2024 - 11:00
J Pharm Biomed Anal. 2024 Mar 2;243:116073. doi: 10.1016/j.jpba.2024.116073. Online ahead of print.ABSTRACTOBJECTIVE: To investigate the alterations in serum metabolic profiles and early-stage hepatocellular carcinoma (HCC) patient characteristics after radiofrequency ablation (RFA) therapy. This evaluation aimed to assess treatment effectiveness and identify potential novel approaches and targets for HCC treatment and prognosis monitoring.METHODS: Untargeted metabolomics technology was employed to analyze serum metabolic profiles in healthy volunteer controls (NCs) and early stage HCC patients before and after RFA therapy. Additionally, Human Metabolome Database and Kyoto Encyclopedia of Genes and Genomes database were used to identify the differential metabolites (DMs) and metabolic pathways. Cystoscape was utilized to construct DM gene networks. Amino acid analyses were performed to validate our findings.RESULTS: We identified 11, 14, and six DMs between the NC and HCC groups, HCC patients before and after RFA therapy, and post-RFA HCC and NC groups, respectively. The expression levels of these DMs, particularly those of amino acids and lipids, significantly changed. Compared with the NC group, higher levels of L-tyrosine, aspartate, and 18-oxo-oleate were observed in HCC patients, which were significantly reduced in patients after RFA therapy. Meanwhile, HCC patients after RFA therapy had increased levels of L-arginine, phosphatidic acid (20:3), and lysophosphatidyl choline (LPC) (20:4) compared to those before therapy, while their levels before therapy were lower than those of NC. Moreover, most metabolites in the post-RFA and NC groups showed no significant changes in expression, except for L-tyrosine and LPC (16:0). These metabolites could potentially serve as characteristic factors of early-stage HCC patients after RFA therapy. Joint pathway analysis revealed striking changes, mainly in phenylalanine, tyrosine, and tryptophan biosynthesis; alanine, aspartate, and glutamate metabolism; and arginine and aminoacyl-tRNA biosynthesis. Bioinformatics analysis of publicly available data preliminarily identified 187 DM-related metabolic enzymes.CONCLUSION: Our study proposed novel targets for early-stage HCC treatment, laying the groundwork for improving treatment efficacy and prognosis of early-stage HCC patients.PMID:38484637 | DOI:10.1016/j.jpba.2024.116073

Tangshen formula targets the gut microbiota to treat non-alcoholic fatty liver disease in HFD mice: A 16S rRNA and non-targeted metabolomics analyses

Thu, 14/03/2024 - 11:00
Biomed Pharmacother. 2024 Mar 13;173:116405. doi: 10.1016/j.biopha.2024.116405. Online ahead of print.ABSTRACTBACKGROUND: Tangshen formula (TSF) has an ameliorative effect on hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD), but the role played by the gut microbiota in this process is unknown.METHOD: We conducted three batches of experiments to explore the role played by the gut microbiota: TSF administration, antibiotic treatment, and fecal microbial transplantation. NAFLD mice were induced with a high-fat diet to investigate the ameliorative effects of TSF on NAFLD features and intestinal barrier function. 16S rRNA sequencing and serum untargeted metabolomics were performed to further investigate the modulatory effects of TSF on the gut microbiota and metabolic dysregulation in the body.RESULTS: TSF ameliorated insulin resistance, hypercholesterolemia, lipid metabolism disorders, inflammation, and impairment of intestinal barrier function. 16S rRNA sequencing analysis revealed that TSF regulated the composition of the gut microbiota and increased the abundance of beneficial bacteria. Antibiotic treatment and fecal microbiota transplantation confirmed the importance of the gut microbiota in the treatment of NAFLD with TSF. Subsequently, untargeted metabolomics identified 172 differential metabolites due to the treatment of TSF. Functional predictions suggest that metabolisms of choline, glycerophospholipid, linoleic acid, alpha-linolenic acid, and arachidonic acid are the key metabolic pathways by which TSF ameliorates NAFLD and this may be influenced by the gut microbiota.CONCLUSION: TSF treats the NAFLD phenotype by remodeling the gut microbiota and improving metabolic profile, suggesting that TSF is a functional gut microbial and metabolic modulator for the treatment of NAFLD.PMID:38484559 | DOI:10.1016/j.biopha.2024.116405

Desulfovibrio desulfuricans and its derived metabolites confer resistance to FOLFOX through METTL3

Thu, 14/03/2024 - 11:00
EBioMedicine. 2024 Mar 13;102:105041. doi: 10.1016/j.ebiom.2024.105041. Online ahead of print.ABSTRACTBACKGROUND: Chemoresistance is a critical factor contributing to poor prognosis in clinical patients with cancer undergoing postoperative adjuvant chemotherapy. The role of gut microbiota in mediating resistance to tumour chemotherapy remains to be investigated.METHODS: Patients with CRC were categorised into clinical benefit responders (CBR) and no clinical benefit responders (NCB) based on chemotherapy efficacy. Differential bacterial analysis using 16S rRNA sequencing revealed Desulfovibrio as a distinct microbe between the two groups. Employing a syngeneic transplantation model, we assessed the effect of Desulfovibrio on chemotherapy by measuring tumour burden, weight, and Ki-67 expression. We further explored the mechanisms underlying the compromised chemotherapeutic efficacy of Desulfovibrio using metabolomics, western blotting, colony formation, and cell apoptosis assays.FINDINGS: In comparison, Desulfovibrio was more abundant in the NCB group. In vivo experiments revealed that Desulfovibrio colonisation in the gut weakened the efficacy of FOLFOX. Treatment with Desulfovibrio desulfuricans elevates serum S-adenosylmethionine (SAM) levels. Interestingly, SAM reduced the sensitivity of CRC cells to FOLFOX, thereby promoting the growth of CRC tumours. These experiments suggest that SAM promotes the growth and metastasis of CRC by driving the expression of methyltransferase-like 3 (METTL3).INTERPRETATION: A high abundance of Desulfovibrio in the intestines indicates poor therapeutic outcomes for postoperative neoadjuvant FOLFOX chemotherapy in CRC. Desulfovibrio drives the manifestation of METTL3 in CRC, promoting resistance to FOLFOX chemotherapy by increasing the concentration of SAM.FUNDING: This study is supported by Wuxi City Social Development Science and Technology Demonstration Project (N20201005).PMID:38484555 | DOI:10.1016/j.ebiom.2024.105041

The Sanbi Decoction alleviates intervertebral disc degeneration in rats through intestinal flora and serum metabolic homeostasis modulation

Thu, 14/03/2024 - 11:00
Phytomedicine. 2024 Feb 24;127:155480. doi: 10.1016/j.phymed.2024.155480. Online ahead of print.ABSTRACTBACKGROUND: Intervertebral disc degeneration (IVDD) is an essential cause of low back pain (LBP), the incidence of which has risen in recent years and is progressively younger, but treatment options are limited, placing a serious economic burden on society. Sanbi decoction (SBD) is an important classical formula for the treatment of IVDD, which can significantly improve patients' symptoms and is a promising alternative therapy.PURPOSE: The aim of this study is to investigate the safety and efficacy of SBD in the treatment of IVDD and to explore the underlying mechanisms by using an integrated analytical approach of microbiomics and serum metabolomics, as well as by using molecular biology.METHODS: A rat IVDD puncture model was established and treated by gavage with different concentrations of SBD, and clean faeces, serum, liver, kidney, and intervertebral disc (IVD) were collected after 4 weeks. We assessed the safety by liver and kidney weighing, functional tests and tissue staining, the expression of tumor necrosis factor-alpha (TNF-ɑ), interleukin 1β (IL-1β) and interleukin 6 (IL-6) inflammatory factors in serum was detected by ELISA kits, and X-ray test, magnetic resonance imaging (MRI) examination, immunohistochemistry (IHC), western blotting (WB), hematoxylin-eosin (HE) staining and safranin O-fast green (SO/FG) staining were used to assess the efficacy. Finally, we performed 16S rRNA sequencing analysis on the faeces of different groups and untargeted metabolomics on serum and analyzed the association between them.RESULTS: SBD can effectively reduce the inflammatory response, regulate the metabolic balance of extracellular matrix (ECM), improve symptoms, and restore IVD function. In addition, SBD can significantly improve the diversity of intestinal flora and maintain the balance. At the phylum level, SBD greatly increased the relative abundance of Patescibacteria and Actinobacteriota and decreased the relative abundance of Bacteroidota. At the genus level, SBD significantly increased the relative abundance of Clostridia_UCG-014, Enterorhabdus, and Adlercreutzia, and decreased the relative abundance of Ruminococcaceae_UCG-005 (p < 0.05). Untargeted metabolomics indicated that SBD significantly improved serum metabolites and altered serum expression of 4alpha-phorbol 12,13-didecanoate (4alphaPDD), euscaphic acid (EA), alpha-muricholic acid (α-MCA), 5-hydroxyindoleacetic acid (5-HIAA), and kynurenine (Kyn) (p < 0.05), and the metabolic pathways were mainly lipid metabolism and amino acid metabolism.CONCLUSIONS: This study demonstrated that SBD can extensively regulate intestinal flora and serum metabolic homeostasis to reduce inflammatory response, inhibit the degradation of ECM, restore IVD height and water content to achieve apparent therapeutic effect for IVDD.PMID:38484462 | DOI:10.1016/j.phymed.2024.155480

Targeted metabolomic analysis of serum amino acids in heart failure patients

Thu, 14/03/2024 - 11:00
Amino Acids. 2024 Mar 14;56(1):22. doi: 10.1007/s00726-024-03385-7.ABSTRACTHeart failure (HF) has been recognized as a global epidemic with high rates of morbidity, hospitalization, and mortality. The role of amino acids, which provide the body with energy, in the development of HF is still unclear. The aim of this study was to explore changes in serum amino acids in patients with HF and identify potential biomarkers. First, the serum amino acid metabolism profiles of 44 patients with HF and 30 healthy controls (Con) were quantitatively measured. Then, candidate markers were identified through the utilization of T test, multivariate statistical analysis, and receiver operating characteristic (ROC) curve analysis. The results found that there were 11 amino acid levels that were significantly different between patients with HF and Con. Based on ROC curve analysis, the biomarkers of eight amino acids (Glutamic acid, Taurine, L-aspartic acid, L-ornithine, Ethanolamine, L-Serine, L-Sarcosine, and Cysteine) showed high sensitivity and specificity (AUC > 0.90), and binary logistic regression analysis was used in MetaboAnalyst 5.0. Among the amino acids examined, six exhibited notable alterations in accordance with the severity of HF. In conclusion, this study cannot only provide clinicians with an objective diagnostic approach for the early identification of HF, but also enhances comprehension of the underlying mechanisms involved in the pathogenesis of HF.PMID:38483649 | DOI:10.1007/s00726-024-03385-7

Metabolomics-based study of chemical compositions in cellulase additives derived from a tobacco-origin Bacillus subtilis and their impact on tobacco sensory attributes

Thu, 14/03/2024 - 11:00
Arch Microbiol. 2024 Mar 14;206(4):163. doi: 10.1007/s00203-024-03876-x.ABSTRACTTo enhance the quality of tobacco leaves and optimize the smoking experience, diverse strains of functional bacteria and their associated metabolites have been used in tobacco aging. Exogenous cellulase additives are frequently employed to facilitate the degradation of cellulose and other macromolecular matrices and enhance the quality of the tobacco product. However, little is known about how microbial metabolites present in exogenous enzyme additives affect tobacco quality. In this study, crude cellulase solutions, produced by a tobacco-originating bacterium Bacillus subtilis FX-1 were employed on flue-cured tobacco. The incorporation of cellulase solutions resulted in the reduction of cellulose crystallinity in tobacco and the enhancement of the overall sensory quality of tobacco. Notably, tobacco treated with cellulase obtained from laboratory flask fermentation demonstrated superior scent and flavor attributes in comparison to tobacco treated with enzymes derived from industrial bioreactor fermentation. The targeted and untargeted metabolomic analysis revealed the presence of diverse flavor-related precursors and components in the cellulase additives, encompassing sugars, alcohols, amino acids, organic acids, and others. The majority of these metabolites exhibited significantly higher levels in the flask group compared to the bioreactor group, probably contributing to a pronounced enhancement in the sensory quality of tobacco. Our findings suggest that the utilization of metabolic products derived from B. subtilis FX-1 as additives in flue-cured tobacco holds promise as a viable approach for enhancing sensory attributes, establishing a solid theoretical foundation for the potential development of innovative tobacco aging additives.PMID:38483624 | DOI:10.1007/s00203-024-03876-x

OGDH and Bcl-xL loss causes synthetic lethality in glioblastoma

Thu, 14/03/2024 - 11:00
JCI Insight. 2024 Mar 14:e172565. doi: 10.1172/jci.insight.172565. Online ahead of print.ABSTRACTGlioblastoma (GBM) remains an incurable disease, requiring more effective therapies. Through interrogation of publicly available CRISPR and RNAi library screens, we identified the alpha-ketoglutarate dehydrogenase (OGDH) gene, which encodes for an enzyme that is part of the tricarboxylic acid cycle (TCA cycle) as essential for GBM growth. Moreover, by combining a transcriptome and metabolite screening analyses we discovered that loss of function of OGDH by the clinically validated drug compound, CPI-613, was synthetically lethal with Bcl-xL inhibition (genetically and through the clinically validated BH3-mimetic, ABT263) in patient-derived xenograft as well neurosphere GBM cultures. CPI-613 mediated energy deprivation drove an integrated stress response with an up-regulation of the BH3-only domain protein, Noxa in an ATF4 dependent manner as demonstrated by genetic loss of function experiments. Consistently, silencing of Noxa attenuated cell death induced by CPI-613 in model systems of GBM. In patient-derived xenograft models of GBM in mice, the combination treatment of ABT263 and CPI-613 suppressed tumor growth and extended animal survival more potently than each compound on its own. Therefore, combined inhibition of Bcl-xL along with interference of the TCA-cycle might be a treatment strategy for GBM.PMID:38483541 | DOI:10.1172/jci.insight.172565

m6A RNA methylation regulates mitochondrial function

Thu, 14/03/2024 - 11:00
Hum Mol Genet. 2024 Mar 14:ddae029. doi: 10.1093/hmg/ddae029. Online ahead of print.ABSTRACTRNA methylation of N6-methyladenosine (m6A) is emerging as a fundamental regulator of every aspect of RNA biology. RNA methylation directly impacts protein production to achieve quick modulation of dynamic biological processes. However, whether RNA methylation regulates mitochondrial function is not known, especially in neuronal cells which require a high energy supply and quick reactive responses. Here we show that m6A RNA methylation regulates mitochondrial function through promoting nuclear-encoded mitochondrial complex subunit RNA translation. Conditional genetic knockout of m6A RNA methyltransferase Mettl14 (Methyltransferase like 14) by Nestin-Cre together with metabolomic analysis reveals that Mettl14 knockout-induced m6A depletion significantly downregulates metabolites related to energy metabolism. Furthermore, transcriptome-wide RNA methylation profiling of wild type and Mettl14 knockout mouse brains by m6A-Seq shows enrichment of methylation on mitochondria-related RNA. Importantly, loss of m6A leads to a significant reduction in mitochondrial respiratory capacity and membrane potential. These functional defects are paralleled by the reduced expression of mitochondrial electron transport chain complexes, as well as decreased mitochondrial super-complex assembly and activity. Mechanistically, m6A depletion decreases the translational efficiency of methylated RNA encoding mitochondrial complex subunits through reducing their association with polysomes, while not affecting RNA stability. Together, these findings reveal a novel role for RNA methylation in regulating mitochondrial function. Given that mitochondrial dysfunction and RNA methylation have been increasingly implicate in neurodegenerative disorders, our findings not only provide insights into fundamental mechanisms regulating mitochondrial function, but also open up new avenues for understanding the pathogenesis of neurological diseases.PMID:38483349 | DOI:10.1093/hmg/ddae029

Validation of Salamander Dermal Mucus Swabs as a Novel, Nonlethal Approach for Amphibian Metabolomics and Glutathione Analysis Following Pesticide Exposure

Thu, 14/03/2024 - 11:00
Environ Toxicol Chem. 2024 Mar 14. doi: 10.1002/etc.5848. Online ahead of print.ABSTRACTEvaluating biomarkers of stress in amphibians is critical to conservation, yet current techniques are often destructive and/or time-consuming, which limits ease of use. In the present study, we validate the use of dermal swabs in spotted salamanders (Ambystoma maculatum) for biochemical profiling, as well as glutathione (GSH) stress response following pesticide exposure. Thirty-three purchased spotted salamanders were acclimated to laboratory conditions at Washington College (Chestertown, MD, USA) for 4 weeks. Following acclimation, salamanders were randomly sorted into three groups for an 8-h pesticide exposure on soil: control with no pesticide, 2,4-dichlorophenoxyacetic acid (2,4-D), or chlorpyrifos. Before and after exposure, mucus samples were obtained by gently rubbing a polyester-tipped swab 50 times across the ventral and dorsal surfaces. Salamanders were humanely euthanized and dissected to remove the brain for acetylcholinesterase and liver for GSH and hepatic metabolome analyses, and a whole-body tissue homogenate was used for pesticide quantification. Levels of GSH were present in lower quantities on dermal swabs relative to liver tissues for chlorpyrifos, 2,4-D, and control treatments. However, 2,4-D exposures demonstrated a large effect size increase for GSH levels in livers (Cohen's d = 0.925, p = 0.036). Other GSH increases were statistically insignificant, and effect sizes were characterized as small for 2,4-D mucosal swabs (d = 0.36), medium for chlorpyrifos mucosal swabs (d = 0.713), and negligible for chlorpyrifos liver levels (d = 0.012). The metabolomics analyses indicated that the urea cycle, alanine, and glutamate metabolism biological pathways were perturbed by both sets of pesticide exposures. Obtaining mucus samples through dermal swabbing in amphibians is a viable technique for evaluating health in these imperiled taxa. Environ Toxicol Chem 2024;00:1-12. © 2024 SETAC.PMID:38483077 | DOI:10.1002/etc.5848

Integrated analysis of gut microbiota and metabolomic profiling in colorectal cancer metastasis

Thu, 14/03/2024 - 11:00
Environ Toxicol. 2024 Mar 14. doi: 10.1002/tox.24228. Online ahead of print.ABSTRACTColorectal cancer (CRC) is characterized by its heterogeneity and complex metastatic mechanisms, presenting significant challenges in treatment and prognosis. This study aimed to unravel the intricate interplay between the gut microbiota and metabolic alterations associated with CRC metastasis. By employing high-throughput sequencing and advanced metabolomic techniques, we identified distinct patterns in the gut microbiome and fecal metabolites across different CRC metastatic sites. The differential gene analysis highlighted significant enrichment in biological processes related to immune response and extracellular matrix organization, with key genes playing roles in the complement and clotting cascades, and staphylococcus aureus infections. Protein-protein interaction networks further elucidated the potential mechanisms driving CRC spread, emphasizing the importance of extracellular vesicles and the PPAR signaling pathway in tumor metastasis. Our comprehensive microbiota analysis revealed a relatively stable alpha diversity across groups but identified specific bacterial genera associated with metastatic stages. Metabolomic profiling using OPLS-DA models unveiled distinct metabolic signatures, with differential metabolites enriched in pathways crucial for cancer metabolism and immune modulation. Integrative analysis of the gut microbiota and metabolic profiles highlighted significant correlations, suggesting a complex interplay that may influence CRC progression and metastasis. These findings offer novel insights into the microbial and metabolic underpinnings of CRC metastasis, paving the way for innovative diagnostic and therapeutic strategies targeting the gut microbiome and metabolic pathways.PMID:38483004 | DOI:10.1002/tox.24228

Metabolomics profiling for diagnosis of acute renal failure after cardiopulmonary bypass

Thu, 14/03/2024 - 11:00
Rapid Commun Mass Spectrom. 2024 May 15;38(9):e9728. doi: 10.1002/rcm.9728.ABSTRACTRATIONALE: Acute renal failure (ARF) is one of the most serious complications of cardiopulmonary bypass (CPB) surgery. Serum creatinine level is a key compound examined to understand whether renal function is normal. However, its level may vary based on age, gender, race, muscle mass, nutrition, and drugs taken by an individual. In addition, it may not be detected without a 50% reduction in renal function and may lead to delays in treatment. New markers are needed for early diagnosis of ARF. They were determined for early diagnosis of ARF after CPB. Metabolic differences in plasma samples of individuals who developed and did not develop ARF after cardiopulmonary bypass were determined.METHODS: This study was the first to perform an untargeted metabolomics analysis for early diagnosis of ARF after CPB surgery. Plasma samples were taken from 105 patients (9 ARF patients) at five time points to identify the time at which a more accurate ARF diagnosis can be made. A total of 687 samples, including quality control samples, were analyzed.RESULTS: Two hundred twenty-six metabolites were identified using retention index libraries. Based on the statistical evaluations, tryptophan, threonine, and methionine were found in lower concentrations in patients with ARF compared to the control group at all time points. Whereas gluconic acid, hypoxanthine, and lactic acid showed a decreasing trend over time, longitudinal analysis showed that cysteine, hippuric acid, and uric acid levels increased over time in the ARF group.CONCLUSIONS: These metabolites are candidate biomarkers for early diagnosis of ARF as well as biomarkers for tracking the recovery of ARF patients.PMID:38482917 | DOI:10.1002/rcm.9728

Plasma Metabolites and Life's Simple 7 in REGARDS

Thu, 14/03/2024 - 11:00
Stroke. 2024 Mar 14. doi: 10.1161/STROKEAHA.123.044714. Online ahead of print.ABSTRACTBACKGROUND: The American Heart Association's Life's Simple 7 (LS7) is a health metric that captures important factors associated with cardiovascular and cerebrovascular health. Previous studies highlight the potential of plasma metabolites to serve as a marker for lifestyle and health behavior that could be a target for stroke prevention. The objectives of this study were to identify metabolites that were associated with LS7 and incident ischemic stroke and mediate the relationship between the two.METHODS: Targeted metabolomic profiling of 162 metabolites by liquid chromatography-tandem mass spectrometry was used to identify candidate metabolites in a stroke case-cohort nested within the REGARDS study (Reasons for Geographic and Racial Differences in Stroke). Weighted linear regression and weighted Cox proportional hazard models were used to identify metabolites that were associated with LS7 and incident ischemic stroke, respectively. Effect measures were based on a 1-SD change in metabolite level. Metabolite mediators were examined using inverse odds ratio weighting mediation analysis.RESULTS: The study comprised 1075 ischemic stroke cases and 968 participants in the random cohort sample. Three out of 162 metabolites were associated with the overall LS7 score including guanosine (β, -0.46 [95% CI, -0.65 to -0.27]; P=2.87×10-6), cotinine (β, -0.49 [95% CI, -0.70 to -0.28]; P=7.74×10-6), and acetylneuraminic acid (β, -0.59 [95% CI, -0.77 to -0.42]; P=4.29×10-11). Guanosine (hazard ratio, 1.47 [95% CI, 1.31-1.65]; P=6.97×10-11), cotinine (hazard ratio, 1.30 [95% CI, 1.16-1.44]; P=2.09×10-6), and acetylneuraminic acid (hazard ratio, 1.29 [95% CI, 1.15-1.45]; P=9.24×10-6) were associated with incident ischemic stroke. The mediation analysis identified guanosine (27% mediation, indirect effect; P=0.002), cotinine (30% mediation, indirect effect; P=0.004), and acetylneurminic acid (22% mediation, indirect effect; P=0.041) partially mediated the relationship between LS7 and ischemic stroke.CONCLUSIONS: We identified guanosine, cotinine, and acetylneuraminic acid that were associated with LS7, incident ischemic stroke, and mediated the relationship between LS7 and ischemic stroke.PMID:38482689 | DOI:10.1161/STROKEAHA.123.044714

Pages