Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

The effects of polylactic acid bioplastic exposure on midgut microbiota and metabolite profiles in silkworm (Bombyx mori): An integrated multi-omics analysis

Sun, 16/07/2023 - 12:00
Environ Pollut. 2023 Jul 14:122210. doi: 10.1016/j.envpol.2023.122210. Online ahead of print.ABSTRACTPolylactic acid (PLA) is a highly common biodegradable plastic and a potential threat to health and the environment. However, limited data are available on the effects of PLA exposure in the silkworm (Bombyx mori), a model organism used in toxicity studies. In this study, silkworms with or without PLA exposure (P1: 1 mg/L, P5: 5 mg/L, P25: 25 mg/L, and P0: 0 mg/L) for the entire 5th instar period were used to investigate the impact of PLA exposure on midgut morphology, larvae growth, and survival. Mitochondrial damage was observed in the P5 and P25 groups. The weights of the P25 posterior silk gland (5th day in the 5th instar), mature larvae and pupae were all significantly lower than those of the controls (P < 0.05). Dead worm cocoon rates and larva-pupa to 5th instar larvae ratios showed a positive and negative dose-dependent manner with respect to PLA concentrations, respectively. Additionally, reactive oxygen species levels and superoxide dismutase activity of the P25 midgut were significantly higher and lower when compared with controls, respectively (P < 0.05). The molecular mechanisms underlying the effects of PLA and associated physiological responses were also investigated. In the midgut metabolome, 127 significantly different metabolites (variable importance projection >1 and P < 0.05) were identified between the P0 and P25 groups and were mainly enriched for amino acid metabolism and energy supply pathways. The 16 S rDNA data showed that PLA altered microbial richness and structural composition. Microbiota, classified into 34 genera and 63 species, were significantly altered after 25 mg/L PLA exposure (P < 0.05). Spearman's correlation results showed that Bifidobacterium catenulatum and Schaalia odontolytica played potentially vital roles during exposure, as they demonstrated stronger correlations with the significantly different metabolites than other bacterial species. In sum, PLA induced toxic effects on silkworms, especially on energy- and protein-relevant metabolism, but at high concentrations (25 mg/L). This prospective mechanistic investigation on the effects of PLA on larval toxicity provides novel insight regarding the ecological risks of biodegradable plastics in the environment.PMID:37454715 | DOI:10.1016/j.envpol.2023.122210

Uncovering mechanisms governing stem growth in peanut (Arachis hypogaea L.) with varying plant heights through integrated transcriptome and metabolomics analyses

Sun, 16/07/2023 - 12:00
J Plant Physiol. 2023 Jul 10;287:154052. doi: 10.1016/j.jplph.2023.154052. Online ahead of print.ABSTRACTThe mechanisms responsible for stem growth in peanut (Arachis hypogaea L.) cultivars with varying plant heights remain unclear, despite the significant impact of plant height on peanut yield. Therefore, this study aimed to investigate the underlying mechanisms of peanut stem growth using phenotypic, physiological, transcriptomic, and metabolomic analyses. The findings revealed that the tallest cultivar, HY33, exhibited the highest rate of stem growth and accumulated the most stem dry matter, followed by the intermediate cultivar, SH108, while the dwarf cultivar, Df216, displayed the lowest values. Furthermore, SH108 exhibited a higher harvest index, as well as superior pod and kernel yields compared to both HY33 and Df216. Transcriptome and metabolome analyses identified differentially expressed genes (DEGs) and differentially expressed metabolites (DEMs) associated with phenylpropanoid and flavonoid biosynthesis. Notably, downregulated DEGs in Df216/HY33 and Df216/SH108 included phenylalanine ammonia-lyase (PAL), caffeoyl-CoA O-methyltransferase (COMT), and ferulate-5-hydroxylase (F5H), while downregulated DEMs included p-coumaryl alcohol, chlorogenic acid, and L-epicatechin. Compared to HY33, the reduced activities of PAL, COMT, and F5H resulted in a decreased stem lignin content in Df216. Additionally, downregulated DEGs involved in gibberellin (GA) and brassinosteroid (BR) biosynthesis were identified in Df216/HY33, which contributed to the lowest levels of GA1, GA3, and BR contents in Df216. The results suggest that the dwarf phenotype arises from impaired GA and BR biosynthesis and signaling, resulting in a slower stem growth rate and reduced lignin accumulation.PMID:37454530 | DOI:10.1016/j.jplph.2023.154052

DA-SRN: Omics data analysis based on the sample network optimization for complex diseases

Sun, 16/07/2023 - 12:00
Comput Biol Med. 2023 Jul 8;164:107252. doi: 10.1016/j.compbiomed.2023.107252. Online ahead of print.ABSTRACTEffective biomarker identification and accurate sample label prediction are still challenging for complex diseases. Patient similarity network (PSN) analysis is a powerful tool in disease omics data analysis. The topology of PSN can reflect the discriminative ability of the corresponding feature space on which the sample network is built. In this study, a novel omics data analysis method based on the sample reference network (DA-SRN) is proposed to identify the potential biomarkers and predict the sample categories. DA-SRN defines the informative features and the sample reference network in optimizing the network structure by genetic algorithm. It labels the samples based on the graph neural network, the reference network and the selected informative features. DA-SRN was compared with nine efficient omics data analysis methods on the genomics, metabolomics and transcriptomics datasets to show its validation. The comparison results showed that it outperformed the other methods in area under receiver operating characteristic curve (AUROC), sensitivity, specificity and area under precision-recall curve (AUPRC) in most cases. Besides, the important metabolites identified by DA-SRN for the type 2 diabetes (T2D) metabolomics data were further examined. The pathway analysis revealed the close relationships between the identified metabolites and the critical metabolic pathways related to the occurrence and development of T2D. The experimental results illustrate that DA-SRN can extract the valuable information from the complex omics data by analyzing the sample relationship, and is promising in biomarker identification and sample discrimination for complex diseases.PMID:37454504 | DOI:10.1016/j.compbiomed.2023.107252

CPNE1 mediates glycolysis and metastasis of breast cancer through activation of PI3K/AKT/HIF-1α signaling

Sun, 16/07/2023 - 12:00
Pathol Res Pract. 2023 Jun 20;248:154634. doi: 10.1016/j.prp.2023.154634. Online ahead of print.ABSTRACTCPNE1 regulates multiple signaling pathways and can stimulate cell proliferation and differentiation by activating the AKT-mTOR signaling pathway. In addition, CPNE1 is associated with various cancers; however, its role in breast cancer, particularly in TNBC, has not been fully elucidated. Our study aimed to reveal the impact of the CPNE1/PI3K/AKT/HIF-1α axis on TNBC. We first measured the expression of CPNE1 in the tumor tissues of TNBC patients and examined its prognostic value. Subsequently, we used sh-CPNE1 and overexpression vectors to transfect TNBC cell lines and analyzed cell viability, migration, and invasive abilities using colony formation and CCK-8 assays. Metabolites were analyzed through metabolomics. We found that higher expression of CPNE1 predicted poor prognosis in TNBC patients. Knockdown of CPNE1 reduced the viability, migration, invasion, and proliferation capabilities of TNBC cells. Furthermore, metabolomics analysis showed that glucose metabolism was the most dominant pathway, and knockdown of CPNE1 significantly limited the glycolytic activity of TNBC cells. We verified these conclusions in mouse models. Additionally, we overexpressed CPNE1 and treated TNBC cell lines with a PI3K inhibitor (LY294002). The results indicated that CPNE1 promoted aerobic glycolysis in TNBC cells through the PI3K/AKT/HIF-1α signaling pathway. This suggests that CPNE1 regulates cell glycolysis and participates in the development of TNBC. Our study may provide a new therapeutic target for TNBC treatment.PMID:37454492 | DOI:10.1016/j.prp.2023.154634

Metal mixture and osteoporosis risk: Insights from plasma metabolite profiling

Sun, 16/07/2023 - 12:00
Ecotoxicol Environ Saf. 2023 Jul 14;263:115256. doi: 10.1016/j.ecoenv.2023.115256. Online ahead of print.ABSTRACTThe pathophysiology of osteoporosis (OP) is influenced by exposure to nonessential harmful metals and insufficient or excessive intake of necessary metals. Investigating multiple plasma metals, metabolites, and OP risk among older adults may reveal novel clues of underlying mechanisms for metal toxicity on bone mass. A total of 294 adults ≥ 55 years from Wuhan communities were included. Plasma concentrations of 23 metals and metabolites were measured via inductively coupled plasma-mass spectrometry and global metabolite detection. To investigate the relationships between plasma metals, OP risk, and OP-related metabolites, three different statistical techniques were used: generalized linear regression model, two-way orthogonal partial least-squares analysis (O2PLS), and weighted quantile sum (WQS). The mean ages were 66.82 and 66.21 years in OP (n = 115) and non-OP (n = 179) groups, respectively. Of all 2999 metabolites detected, 111 differential between-group members were observed. The OP risk decreased by 58.5% (OR=0.415, 95% CI: 0.237, 0.727) per quartile increment in the WQS index indicative of metal mixture exposure. Consistency remained for bone mineral density (BMD) measurements. The O2PLS model identified the top five OP-related metabolites, namely, DG(18:2_22:6), 3-phenoxybenzoic acid, TG(16:1_16:1_22:6), TG(16:0_16:0_20:4), and TG(14:1_18:2_18:3), contributing most to the joint covariation between the metal mixture and metabolites. Significant correlations between each of them and the metal mixture were found using WQS regression. Furthermore, the five metabolites mediated the associations of the metal mixtures, BMD, and OP risk. Our findings shed additional light on the mediation functions of plasma metabolites in the connection between multiple metal co-exposure and OP pathogenesis and offer new insights into the probable mechanisms underpinning the bone effects of the metal mixture.PMID:37454484 | DOI:10.1016/j.ecoenv.2023.115256

Gegen-Qinlian decoction alleviates anxiety-like behaviors in methamphetamine-withdrawn mice by regulating Akkermansia and metabolism in the colon

Sun, 16/07/2023 - 12:00
Chin Med. 2023 Jul 16;18(1):85. doi: 10.1186/s13020-023-00794-w.ABSTRACTBACKGROUND: Anxiety is a prominent withdrawal symptom of methamphetamine (Meth) addiction. Recently, the gut microbiota has been regarded as a promising target for modulating anxiety. Gegen-Qinlian decoction (GQD) is a classical Traditional Chinese Medicine applied in interventions of various gut disorders by balancing the gut microbiome. We aim to investigate whether GQD could alleviate Meth withdrawal anxiety through balancing gut microbiota and gut microenvironment.METHODS: Meth withdrawal anxiety models were established in mice. GQD were intragastric administrated into Meth-withdrawn mice and controls. Gut permeability and inflammatory status were examined in mice. Germ-free (GF) and antibiotics-treated (Abx) mice were used to evaluate the role of gut bacteria in withdrawal anxiety. Gut microbiota was profiled with 16s rRNA sequencing in feces. Metabolomics in colon tissue and in Akkermansia culture medium were performed.RESULTS: Meth withdrawal enhanced anxiety-like behaviors in wild-type mice, and altered gut permeability, and inflammatory status, while GQD treatment during the withdrawal period efficiently alleviated anxiety-like behaviors and improved gut microenvironment. Next, we found Germ-free (GF) and antibiotics-treated (Abx) mice did not develop anxiety-like behaviors by Meth withdrawal, indicating the essential role of gut bacteria in Meth withdrawal induced anxiety. Then, it was observed that gut microbiota was greatly affected in Meth-withdrawn mice, especially the reduction in Akkermansia. GQD can rescue the gut microbiota and reverse Akkermansia abundance in Meth-withdrawn mice. Meanwhile, GQD can also restore the Meth-impaired Akkermansia growth in vitro. Further, GQD restored several common metabolite levels both in colon in vivo and in Akkermansia in vitro.CONCLUSIONS: We revealed a novel effect of GQD on Meth withdrawal anxiety and identified its pharmacological target axis as "Akkermansia-Akkermansia metabolites-gut metabolites-gut microenvironment". Our findings indicated that targeting gut bacteria with TCM, such as GQD, might be a promising therapeutic strategy for addiction and related withdrawal symptoms.PMID:37455317 | DOI:10.1186/s13020-023-00794-w

Maresin1 alleviates liver ischemia/reperfusion injury by reducing liver macrophage pyroptosis

Sun, 16/07/2023 - 12:00
J Transl Med. 2023 Jul 16;21(1):472. doi: 10.1186/s12967-023-04327-9.ABSTRACTBACKGROUND: Cell pyroptosis has a strong proinflammatory effect, but it is unclear whether pyroptosis of liver macrophages exacerbates liver tissue damage during liver ischemia‒reperfusion (I/R) injury. Maresin1 (MaR1) has a strong anti-inflammatory effect, and whether it can suppress liver macrophage pyroptosis needs further study.METHODS: This study aimed to investigate whether MaR1 can alleviate liver I/R injury by inhibiting macrophage pyroptosis. The effects of MaR1 on cell pyroptosis and mitochondrial damage were studied by dividing cells into control, hypoxia/reoxygenation, and hypoxia/reoxygenation + MaR1 groups. Knocking out RORa was used to study the mechanism by which MaR1 exert its protective effects. Transcriptome analysis, qRT‒PCR and Western blotting were used to analyze gene expression. Untargeted metabolomics techniques were used to analyze metabolite profiles in mice. Flow cytometry was used to assess cell death and mitochondrial damage.RESULTS: We first found that MaR1 significantly reduced liver I/R injury. We observed that MaR1 decreased liver I/R injury by inhibiting liver macrophage pyroptosis. Then, we discovered that MaR1 promotes mitochondrial oxidative phosphorylation, increases the synthesis of ATP, reduces the generation of ROS, decreases the impairment of mitochondrial membrane potential and inhibits the opening of mitochondrial membrane permeability transition pores. MaR1 inhibits liver macrophage pyroptosis by protecting mitochondria. Finally, we found that MaR1 exerts mitochondrial protective effects through activation of its nuclear receptor RORa and the PI3K/AKT signaling pathway.CONCLUSIONS: During liver I/R injury, MaR1 can reduce liver macrophage pyroptosis by reducing mitochondrial damage, thereby reducing liver damage.PMID:37455316 | DOI:10.1186/s12967-023-04327-9

Protective mechanisms of Tuina therapy against lipopolysaccharide-induced fever in young rabbits based on untargeted metabolomics analysis

Sun, 16/07/2023 - 12:00
J Tradit Chin Med. 2023 Aug;43(4):725-733. doi: 10.19852/j.cnki.jtcm.2023.04.007.ABSTRACTOBJECTIVE: To investigate the effect of Tuina on the plasma metabolites of lipopolysaccharide-induced febrile in infant rabbits.METHODS: Twenty-four infant New Zealand rabbits were selected and randomly divided into three groups: saline, model, and Tuina. The fever model was established by injecting LPS intravenously through the ear margin vein in the model group and Tuina group, respectively. The modeling was considered successful when the anal temperature increased by 0.5℃ or above within 1 h. In the Tuina group, six Tuina techniques (i.e., opening Tianmen / the heaven gate, pushing Kangong / the superciliary arch, kneading Taiyang and the prominent bone behind the ears, clearing Tianheshui, spine pinching) that alleviate fever were performed on the young rabbits 1 h after the modeling, whereas the model and saline groups were not given Tuina treatment, with the real-time anal temperature monitored during the experiment. The plasma was taken 3 h after the modeling for liquid chromatography-mass spectrometry (LC-MS) untargeted metabolomics study.RESULTS: Our results showed a fever-reducing effects of Tuina therapy on lipopolysaccharide-induced fever in young rabbits, as indicated by a significantly lower anal temperature, maximum rise in body temperature, and body response index at 2 and 3 h after modeling in the Tuina group compared to the model group, with reductions in the PGE2 expression observed in the blood and hypothalamus. The differential metabolites including riboflavin, nicotinamide N-oxide, porphobilinogen, 5-hydroxyindoleacetic acid, gamma-aminobutyric acid, and lysoPC (16:1 (9Z)/0:0) were found following the Tuina intervention. Tuina primarily involves glycine-serine-threonine, arginine-proline, porphyrin-chlorophyll, pyrimidine, primary bile acid biosynthesis, and cyanoamino acid metabolic pathways.CONCLUSION: Tuina therapy has proven to be effective in reducing body temperature and down-regulating PGE2 expression in LPS-induced febrile young rabbits, with its mechanism of fever-reducing action possibly associated with the changes in plasma metabolites and metabolic pathways.PMID:37454257 | DOI:10.19852/j.cnki.jtcm.2023.04.007

Independent flavonoid and anthocyanin biosynthesis in the flesh of a red-fleshed table grape revealed by metabolome and transcriptome co-analysis

Sat, 15/07/2023 - 12:00
BMC Plant Biol. 2023 Jul 15;23(1):361. doi: 10.1186/s12870-023-04368-8.ABSTRACTBACKGROUND: Red flesh is a desired fruit trait, but the regulation of red flesh formation in grape is not well understood. 'Mio Red' is a seedless table grape variety with light-red flesh and blue-purple skin. The skin color develops at veraison whereas the flesh color develops at a later stage of berry development. The flesh and skin flavonoid metabolomes and transcriptomes were analyzed.RESULTS: A total of 161 flavonoids were identified, including 16 anthocyanins. A total of 66 flavonoids were found at significantly different levels in the flesh and skin (fold change ≥ 2 or ≤ 0.5, variable importance in projection (VIP) ≥ 1). The main anthocyanins in the flesh were pelargonidin and peonidin, and in the skin were peonidin, delphinidin, and petunidin. Transcriptome comparison revealed 57 differentially expressed structural genes of the flavonoid-metabolism pathway (log2fold change ≥ 1, FDR < 0.05, FPKM ≥ 1). Two differentially expressed anthocyanin synthase (ANS) genes were annotated, ANS2 (Vitvi02g00435) with high expression in flesh and ANS1 (Vitvi11g00565) in skin, respectively. One dihydro flavonol 4-reductase (DFR, Vitvi18g00988) gene was differentially expressed although high in both skin and flesh. Screened and correlation analysis of 12 ERF, 9 MYB and 3 bHLH genes. The Y1H and dual luciferase assays showed that MYBA1 highly activates the ANS2 promoter in flesh and that ERFCBF6 was an inhibitory, EFR23 and bHLH93 may activate the DFR gene. These genes may be involved in the regulation of berry flesh color.CONCLUSIONS: Our study revealed that anthocyanin biosynthesis in grape flesh is independent of that in the skin. Differentially expressed ANS, MYB and ERF transcription factors provide new clues for the future breeding of table grapes that will provide the health benefits as red wine.PMID:37454071 | DOI:10.1186/s12870-023-04368-8

Mechanism of Xiaojianzhong decoction in alleviating aspirin-induced gastric mucosal injury revealed by transcriptomics and metabolomics

Sat, 15/07/2023 - 12:00
J Ethnopharmacol. 2023 Jul 13:116910. doi: 10.1016/j.jep.2023.116910. Online ahead of print.ABSTRACTETHNOPHARMACOLOGICAL RELEVANCE: Aspirin, as a first-line drug for the treatment of cardiovascular diseases, currently has high clinical usage. However, reports of aspirin-induced gastric mucosal injury are increasing. Xiaojianzhong decoction (XJZD), a classic traditional Chinese medicine formula, has been shown to alleviate gastric mucosal injury, although its potential mechanism of action requires further study.AIM OF THE STUDY: This study aimed to explore the effect and mechanism of XJZD in preventing aspirin-induced gastric mucosal injury.MATERIALS AND METHODS: Aspirin was used to induce damage in the morning, while XJZD was applied as an intervention in the afternoon. The compounds in the XJZD were analyzed by means of both high-performance liquid chromatography and ultra-performance liquid chromatography-tandem mass spectrometry. The overall condition of the aspirin-related gastric mucosal injury was evaluated. The expressions of inflammatory factors and tight-junction-related proteins and apoptosis were observed via immunohistochemistry and immunofluorescence. The expression levels of the apoptosis-related proteins were detected using Western blot. Transcriptomics was used to perform the integrative analysis of gastric tissues, which was then validated. Molecular dynamics was used to explore the interaction of key compounds within the XJZD with relevant targets. Finally, non-targeted metabolomics was used to observe any metabolic changes and construct a network between the differentially expressed genes and the differential metabolites to elucidate their potential relationship.RESULTS: XJZD can alleviate inflammation response, maintain the gastric mucosal barrier's integrity, reduce apoptosis and necroptosis levels, and promote the proliferation and repair of gastric mucosal tissues. Its mechanism of action may be related to the regulation of TNF-α signaling. Furthermore, molecular docking showed that the cinnamaldehyde within XJZD played an important role in its effects. In addition, XJZD can correct metabolic disorders, mainly regulating amino acid metabolism pathways. Moreover, six differential genes (Cyp1a2, Cyp1a1, Pla2g4c, etc.) were determined to alleviate both gastric mucosal injury and inflammation by regulating arachidonic acid metabolism, Tryptophan metabolism, etc. CONCLUSIONS: This study is the first to report that XJZD can inhibit necroptosis and gastric mucosal injury induced by aspirin, thereby revealing the complex mechanism of XJZD in relation to alleviating gastric mucosal injury from multiple levels and perspectives.PMID:37453623 | DOI:10.1016/j.jep.2023.116910

Root causes of long-term complications of gestational diabetes mellitus: metabolic disturbances of the host and gut microbiota

Sat, 15/07/2023 - 12:00
Clin Chim Acta. 2023 Jul 13:117490. doi: 10.1016/j.cca.2023.117490. Online ahead of print.ABSTRACTBACKGROUND: Gestational diabetes mellitus (GDM) poses a risk of short-term and long-term complications for both mother and fetus. However, there is a lack of consensus on the screening approach and pathophysiology of GDM.METHODS: Women were screened at 24 to 28 weeks gestation using the one-step screening approach and serum samples were collected for metabolomics based on 1H-NMR spectroscopy. A random forest classifier was developed to evaluate its diagnostic efficacy on GDM.RESULTS: Serum metabolic fingerprints of women with GDM differed significantly from those with normoglycemic. Of the 59 differential metabolites identified, 25 were well-known risk metabolites associated with type 2 diabetes or cardiovascular diseases, such as branched-chain amino acids and trimethylamine N-oxide. In addition, most of the differential metabolites were microbial metabolites or could be metabolized by gut microbes. The correlation between serum metabolites and maternal 75 g OGTT glucose values supported the establishment of a random forest classifier, which selected 21 metabolites to predict GDM with an AUC of 0.988.CONCLUSIONS: Metabolic disturbances in the host and gut microbiota may be a persistent contributor to the risk of developing type 2 diabetes or cardiovascular diseases in GDM. Targeting microbiota is one intervention that needs to be considered.PMID:37453553 | DOI:10.1016/j.cca.2023.117490

The potential role of drug transporters and amikacin modifying enzymes in M. avium

Sat, 15/07/2023 - 12:00
J Glob Antimicrob Resist. 2023 Jul 13:S2213-7165(23)00111-X. doi: 10.1016/j.jgar.2023.07.007. Online ahead of print.ABSTRACTBACKGROUND: Mycobacterium avium complex bacteria cause opportunistic infections in humans. Treatment yields cure rates of 60% and is comprised of a macrolide, a rifamycin and ethambutol; and in severe cases amikacin. Mechanisms of antibiotic tolerance remain mostly unknown. Therefore, we studied the contribution of efflux and amikacin modification to antibiotic susceptibility.METHODS: We characterized M. avium ABC transporters and studied their expression together with other transporters following exposure to clarithromycin, amikacin, ethambutol and rifampicin. We determined the effect of combining the efflux pump inhibitors berberine, verapamil and CCCP, to study the role of efflux on susceptibility. Finally, we studied the modification of amikacin by M. avium using metabolomic analysis.RESULTS: Clustering shows conservation between M. avium and M. tuberculosis and transporters from most bacterial sub-families (2-6, 7a/b, 10, 11 and 12) are found. The largest number of transporter encoding genes was upregulated after clarithromycin exposure and the least following amikacin exposure. Only berberine increased the susceptibility to clarithromycin. Finally, due to the limited effect of amikacin on transporter expression we study amikacin modification and show that M. avium, in contrast to M. abscessus, is not able to modify amikacin.CONCLUSION: We show M. avium carries ABC transporters from all major families important for antibiotic efflux, including homologues shown to have affinity for drugs included in treatment. Efflux inhibition in M. avium is able to increase susceptibility but this effect is EPI and antibiotic specific. Finally, the lack of amikacin modifying activity in M. avium is important for its activity.PMID:37453496 | DOI:10.1016/j.jgar.2023.07.007

Immunological and metabolic characterization of environmental Mycobacterium chimaera infection in a murine model

Sat, 15/07/2023 - 12:00
Microbes Infect. 2023 Jul 13:105184. doi: 10.1016/j.micinf.2023.105184. Online ahead of print.ABSTRACTMycobacterium chimaera causes pulmonary disease, but little is known of gradations in isolate virulence. Previously, 17 M. chimaera isolates were screened for survival in THP1 macrophages. "M. chimaera 1" was categorized as "more virulent" because it showed the greatest survival in macrophages, whereas "M. chimaera 2" was categorized as "less virulent" with reduced survival. Herein, we infected C3HeB/FeJ mice to compare the in vivo immune responses to M. chimaera 1 and 2. Unlike macrophages, significantly lower M. chimaera 1 counts were recovered from mouse lung tissue and BAL cells with less lung histopathologic changes compared to M. chimaera 2. Compared to M. chimaera 2, significantly more IL-1β, IL-6, and TNFα was produced early after M. chimaera 1 infection. LC-MS metabolomics analyses of BAL fluid revealed divergence in sphingolipid, phospholipid metabolism between M. chimaera 1 versus M. chimaera 2 mice. From pan-GWAS analyses, virulence and organizing DNA/molecular structure genes were associated with more virulent M. chimaera isolates. Vigorous lung-specific immune responses to M. chimaera 1 may influence effective bacterial control, but for a different isolate M. chimaera 2, subvert immune control. Continued studies of the gradations in virulence among the same NTM species will advance our understanding of NTM pathogenesis.PMID:37453489 | DOI:10.1016/j.micinf.2023.105184

Extensive evaluation of plasma metabolic sample preparation process based on liquid chromatography-mass spectrometry and its application in the in vivo metabolism of Shuang-Huang-Lian powder injection

Sat, 15/07/2023 - 12:00
J Chromatogr B Analyt Technol Biomed Life Sci. 2023 Jun 22;1228:123808. doi: 10.1016/j.jchromb.2023.123808. Online ahead of print.ABSTRACTShuang-Huang-Lian powder injection (SHLPI) is a natural drug injection made of honeysuckle, scutellaria baicalensis and forsythia suspensa. It has the characteristics of complex chemical composition and difficult metabolism research in vivo. LC-MS platform has been proven to be an important analytical technology in plasma metabolomics. Unfortunately, the lack of an effective sample preparation strategy before analysis often significantly impacts experimental results. In this work, twenty-one extraction protocols including eight protein precipitation (PPT), eight liquid-liquid extractions (LLE), four solid-phase extractions (SPE), and one ultrafiltration (U) were simultaneously evaluated using plasma metabolism of SHLPI in vivo. In addition, a strategy of "feature ion extraction of the multi-component metabolic platform of traditional Chinese medicine" (FMM strategy) was proposed for the in-depth characterization of metabolites after intravenous injection of SHLPI in rats. The results showed that the LLE-3 protocol (Pentanol:Tetrahydrofuran:H2O, 1:4:35, v:v:v) was the most effective strategy in the in vivo metabolic detection of SHLPI. Furthermore, we used the FMM strategy to elaborate the in vivo metabolic pathways of six representative substances in SHLPI components. This research was completed by ion migration quadrupole time of flight mass spectrometer combined with ultra high performance liquid chromatography (UPLC/Vion™-IMS-QTof-MS) and UNIFI™ metabolic platform. The results showed that 114 metabolites were identified or preliminarily identified in rat plasma. This work provides relevant data and information for further research on the pharmacodynamic substances and in vivo mechanisms of SHLPI. Meanwhile, it also proves that LLE-3 and FMM strategies could achieve the in-depth characterization of complex natural drug metabolites related to Shuang-Huang-Lian in vivo.PMID:37453388 | DOI:10.1016/j.jchromb.2023.123808

LC-MS/MS method for proline-glycine-proline and acetylated proline-glycine-proline in human plasma

Sat, 15/07/2023 - 12:00
J Chromatogr B Analyt Technol Biomed Life Sci. 2023 Jul 5;1228:123815. doi: 10.1016/j.jchromb.2023.123815. Online ahead of print.ABSTRACTThe extracellular cellular matrix (ECM) maintains tissue structure and regulates signaling functions by continuous degradation and remodeling. Inflammation or other disease conditions activate proteases including matrix metalloproteinases (MMPs) that degrade ECM proteins and in particular generate fragments of collagen and elastin, some of which are biologically active ECM peptides or matrikines. Stepwise degradation of collagen by MMP 8, 9 and prolyl endopeptidase release the matrikine proline-glycine-proline (PGP) and its product acetyl-PGP (AcPGP). These peptides are considered as potential biomarkers and therapeutic targets for many disease conditions such as chronic lung disease, heart disease, and cancer. However, there is no published, validated method for the measurement of PGP and AcPGP in plasma and therefore, we developed a sensitive, selective and reliable, isotope dilution LC-multiple reaction monitoring MS method for their determination in human plasma. The chromatographic separation of PGP and AcPGP was achieved in 3 min using Jupiter column with a gradient consisting of acidified acetonitrile and water at a flow rate of 0.5 ml/min. The limit of detection (LOD) for PGP and AcPGP was 0.01 ng/ml and the limit of quantification (LOQ) was 0.05 ng/ml and 0.1 ng/ml, respectively. Precision and accuracy values for all analytes were within 20 % except for the lowest QC of 0.01 ng/ml. The mean extraction recoveries of these analytes were > 90 % using a Phenomenex Phree cartridge and the matrix effect was < 15 % for all the QCs for PGP and AcPGP except the lowest QC. The stability of PGP and AcPGP was > 90 % in several tested conditions including autosampler use, storage at -80 °C, and after 6 times freeze-thaw cycles. Using this method, we successfully extracted and determined PGP levels in human plasma from healthy and COPD subjects. Therefore, this method is suitable for quantification of these peptides in the clinical setting.PMID:37453387 | DOI:10.1016/j.jchromb.2023.123815

Identifying potential toxic organic substances in leachates from tire wear particles and their mechanisms of toxicity to Scenedesmus obliquus

Sat, 15/07/2023 - 12:00
J Hazard Mater. 2023 Jul 10;458:132022. doi: 10.1016/j.jhazmat.2023.132022. Online ahead of print.ABSTRACTTire wear particles (TWPs) are increasingly being found in the aquatic environment. However, there is limited information available on the environmental consequences of TWP constituents that may be release into water. In this study, TWP leachate samples were obtained by immersing TWPs in ultrapure water. Using high-resolution mass spectrometry and toxicity identification, we identified potentially toxic organic substances in the TWP leachates. Additionally, we investigated their toxicity and underlying mechanisms. Through our established workflow, we structurally identified 13 substances using reference standards. The median effective concentration (EC50) of TWP leachates on Scenedesmus obliquus growth was comparable to that of simulated TWP leachates prepared with consistent concentrations of the 13 identified substances, indicating their dominance in the toxicity of TWP leachates. Among these substances, cyclic amines (EC50: 1.04-3.65 mg/L) were found to be toxic to S. obliquus. We observed significant differential metabolites in TWP leachate-exposed S. obliquus, primarily associated with linoleic acid metabolism and purine metabolism. Oxidative stress was identified as a crucial factor in algal growth inhibition. Our findings shed light on the risk posed by TWP leachable substances to aquatic organisms.PMID:37453356 | DOI:10.1016/j.jhazmat.2023.132022

Metagenomics combined with metabolomics reveals the effect of Enterobacter sp. inoculation on the rhizosphere microenvironment of Bidens pilosa L. in heavy metal contaminated soil

Sat, 15/07/2023 - 12:00
J Hazard Mater. 2023 Jul 11;458:132033. doi: 10.1016/j.jhazmat.2023.132033. Online ahead of print.ABSTRACTMetagenomics analysis was performed to determine the effects of Enterobacter sp. FM-1 (FM-1) on key genera as well as functional genes in the rhizosphere of Bidens pilosa L. (B. pilosa L.). Moreover, metabolomics was used to reveal the differences among rhizosphere metabolites after FM-1 inoculation. FM-1 inoculation significantly increased the activity of enzymes associated with the carbon cycle in soil; among them, invertase activity increased by 5.52 units compared to a control. Specifically, the relative abundance of beneficial genera increased significantly, such as Lysobacter (0.45-2.58 unit increase) in low-contamination soils (LC) and Pseudomonas (31.17-45.99 unit increase) in high-contamination soils (HC). Comparison of different transformation processes of the C cycle revealed that inoculation of FM-1 increased the abundance of functional genes related to the carbon cycle in LC soil. In contrast, the nitrogen cycling pathway was significantly elevated in both the LC and HC soils. FM-1 inoculation reduced HM resistance gene abundance in the rhizosphere soil of B. pilosa L. in the LC soil. Moreover, FM-1 and B. pilosa L. interactions promoted the secretion of rhizosphere metabolites, in which lipids and amino acids played important roles in the phytoremediation process. Overall, we explored the rhizosphere effects induced by plantmicrobe interactions, providing new insights into the functional microbes and rhizosphere metabolites involved in phytoremediation.PMID:37453352 | DOI:10.1016/j.jhazmat.2023.132033

Recent advances in neurometabolic diseases: The genetic role in the modern era

Sat, 15/07/2023 - 12:00
Epilepsy Behav. 2023 Jul 13;145:109338. doi: 10.1016/j.yebeh.2023.109338. Online ahead of print.ABSTRACTThe global birth prevalence of all inborn errors of metabolism (IEMs) in children (49 studies, 1980-2017) is approximately 50.9/100,000 live births. Regional pooled birth prevalence showed higher rates in Eastern Mediterranean regions (75.7/100,000 live births) and highest in Saudi Arabia (169/100,000) with higher parental consanguinity rates of ∼60%. Case fatality rates globally are estimated to be 33% or higher. IEMs are a group of >600 heterogeneous disorders often presenting in newborns and infants with drug-resistant seizures and/or encephalopathy. Early diagnosis and treatments are key in the prevention of morbidity, early mortality, and high lifetime health care costs, such as the early recognition of the newborn with pyridoxine- or pyridoxal-L-phosphate-dependent seizures which do not respond to standard antiepileptic drugs. The earlier the recognition and intervention in the specific cofactor- or vitamin-responsive epilepsies, the better the outcome and prevention of intractable seizures and encephalopathy leading to irreversible neurologic injury. In recent years, the genetics of IEMs has been transformed by the emergence of new molecular genetic technologies. Depending upon the clinical phenotype, current genetic testing may include chromosomal microarray (deletion/duplication analysis), single target gene sequencing, gene panels (sequencing and deletion/duplication analysis), DNA methylation analysis, mitochondrial nuclear gene panel, and mtDNA sequencing and/or trio WES or WGS (which have reduced in costs). A meta-analysis, showed WES and epilepsy gene panels to be the most cost-effective genetic tests for unknown epilepsies versus chromosomal microarray. Most recently, rapid genomic sequencing (RGS) has been associated with a shorter time to diagnosis (3 days) and increased diagnostic yield when compared with standard-of-care testing, including gene panels and microarrays. A randomized controlled trial (RCT) of rapid(r) WGS or rWES in acutely ill infants with diseases of unknown etiology in pediatric ICUs in San Diego, California found RGS to be highly clinically useful for 77% of 201 infants. RGS changed clinical management in 28% of infants and outcomes in 15%. An Australian study of ultra-rapid (ur) exome sequencing (mean time to genomic test report of 3.3 days) in 108 critically ill infants and children with suspected monogenic conditions, had a molecular diagnostic yield of 51% with 20% requiring further genetic analysis. In 42/55 (76%), ur exome sequencing was felt to have influenced clinical management for targeted treatments, surveillance, or palliative care, however, the study was not designed or powered to measure differences in major clinical outcomes compared to standard care of critically ill patients. Further research is needed to understand this tool's clinical value and generalizability balanced against its high costs. A paradigm shift is evolving from pattern- and evidence-based medicine toward algorithm-based, precision medicine targeted to individual mutations. Meticulous clinical phenotyping and pedigree analysis, combined with advances in high-throughput metabolomics, proteomics, transcriptomics (RNAseq in clinically relevant tissues), and genomics, have expedited the identification of novel pathomechanisms and new therapeutic targets. Evaluation of these therapies in IEMs, many of which manifest with encephalopathy and epilepsy, will depend on international registries of well-characterized phenotypes in RCTs and measurement of clinically relevant endpoints. The earlier the recognition and diagnosis and intervention with targeted therapies, the better the overall outcome in terms of the impact on intellectual disability and the effective management of the associated epilepsy.PMID:37453291 | DOI:10.1016/j.yebeh.2023.109338

Royal jelly acid suppresses hepatocellular carcinoma tumorigenicity by inhibiting H3 histone lactylation at H3K9la and H3K14la sites

Sat, 15/07/2023 - 12:00
Phytomedicine. 2023 Jun 21;118:154940. doi: 10.1016/j.phymed.2023.154940. Online ahead of print.ABSTRACTBACKGROUND AND PURPOSE: Human hepatocellular carcinoma (HCC) features include enhanced glycolysis and elevated lactate concentrations. Accumulation of lactate during metabolism provides a precursor for histone lysine modification. This study was designed to determine whether royal jelly acid (RJA) acts against HCC through the lactate modification pathway.EXPERIMENTAL APPROACH: The effects of RJA on Hep3B and HCCLM3 cell invasion, migration, proliferation, and apoptosis were investigated using cell scratching, colony formation assay, flow cytometry, western blotting, and real-time qPCR, gas chromatography, and RNA sequencing to determine the pathways and molecular targets involved. Tumor xenografts were used to evaluate the anti-HCC effects of RJA in vivo. In-cell Western blotting and expression correlation analysis were applied to confirm the associations between H3 histone lactylation and the antitumor effects of RJA.KEY RESULTS: RJA has good antitumor effects in vivo and in vitro. Multi-omics analysis with metabolome and transcriptome determined that the glycolytic metabolic pathway provided the principle antitumor effect of RJA. Further mechanistic studies showed that RJA inhibited HCC development by interfering with lactate production and inhibiting H3 histone lactylation at H3K9la and H3K14la sites.CONCLUSIONS AND IMPLICATIONS: This study first demonstrated that RJA exerts antitumor effects by affecting the glycolytic pathway. RJA could regulate the lactylation of H3K9la and H3K14la sites on H3 histone using lactate as a clue in the glycolytic pathway. Therefore, the lactylation of H3 histone is vital in exerting the antitumor effect of RJA, providing new evidence for screening and exploring antitumor drug mechanisms in the later stage.PMID:37453194 | DOI:10.1016/j.phymed.2023.154940

UPLC-Q TOF-MS-Based metabolomics and anti-myocardial ischemia activity of Dioscoreae Nipponicae Rhizoma from different geographical origins

Sat, 15/07/2023 - 12:00
J Pharm Biomed Anal. 2023 Jul 1;234:115551. doi: 10.1016/j.jpba.2023.115551. Online ahead of print.ABSTRACTThe dried rhizome of Dioscorea nipponica Makino ("Chuanshanlong" in Chinese) is a medicinal herb with multiple major producing areas. The main objective of this study was the comparative profiling of Dioscoreae Nipponicae Rhizoma (DNR) from various geographical origins. A hypoxia/reoxygenation-induced H9c2 cell injury model was established, and the antimyocardial ischemia activity of DNR samples from different origins was detected using the cell counting kit-8 (CCK-8) method. The result showed that the antimyocardial ischemia potential of DNR samples from the Heilongjiang province was higher than that of the other studied samples. Subsequently, a plant metabolomics technique utilizing ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q TOF-MS) was used to determine the differences in DNR samples from various geographical origins. Forty compounds, including steroidal saponins, free fatty acids, and organic acids, were tentatively identified based on UPLC-Q TOF-MS fragmentation pathways and via comparison with available reference standards. Partial least squares discriminant analysis was performed to estimate the differences in DNR samples from different origins. Five compounds were significantly up-regulated and correlated with antimyocardial ischemia in DNR samples from Heilongjiang province. Molecular docking was used to discern the interactions of key markers with the active sites of the target protein. The findings signified that UPLC-Q TOF-MS metabolomics coupled with molecular docking is a powerful tool to rapidly identify the quality control characteristics of DNR samples and their products. The research provides a direction for the rational utilization of DNR.PMID:37453145 | DOI:10.1016/j.jpba.2023.115551

Pages