Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Targeted Isolation of Antibiofilm Compounds from Halophytic Endophyte Bacillus velezensis 7NPB-3B Using LC-HR-MS-Based Metabolomics

Sat, 24/02/2024 - 12:00
Microorganisms. 2024 Feb 19;12(2):413. doi: 10.3390/microorganisms12020413.ABSTRACTThe discovery of new natural products has become more challenging because of the re-isolation of compounds and the lack of new sources. Microbes dwelling in extreme conditions of high salinity and temperature are huge prospects for interesting natural metabolites. In this study, the endophytic bacteria Bacillus velezensis 7NPB-3B isolated from the halophyte Salicornia brachiata was screened for its biofilm inhibition against methicillin-resistant Staphylococcus aureus (MRSA). The fractionation of the crude extract was guided by bioassay and LC-HRMS-based metabolomics using multivariate analysis. The 37 fractions obtained by high-throughput chromatography were dereplicated using an in-house MS-Excel macro coupled with the Dictionary of Natural Products database. Successive bioactivity-guided separation yielded one novel compound (1), a diketopiperazine (m/z 469.258 [M - H]-) with an attached saturated decanoic acid chain, and four known compounds (2-5). The compounds were identified based on 1D- and 2D-NMR and mass spectrometry. Compounds 1 and 5 exhibited excellent biofilm inhibition properties of >90% against the MRSA pathogen at minimum inhibition concentrations of 25 and 35 µg/mL, respectively. The investigation resulted in the isolation of a novel diketopiperazine from a bacterial endophyte of an untapped plant using an omics approach.PMID:38399817 | DOI:10.3390/microorganisms12020413

Fungal-Bacterial Combinations in Plant Health under Stress: Physiological and Biochemical Characteristics of the Filamentous Fungus <em>Serendipita indica</em> and the Actinobacterium <em>Zhihengliuella</em> sp. ISTPL4 under In Vitro Arsenic Stress

Sat, 24/02/2024 - 12:00
Microorganisms. 2024 Feb 17;12(2):405. doi: 10.3390/microorganisms12020405.ABSTRACTFungal-bacterial combinations have a significant role in increasing and improving plant health under various stress conditions. Metabolites secreted by fungi and bacteria play an important role in this process. Our study emphasizes the significance of secondary metabolites secreted by the fungus Serendipita indica alone and by an actinobacterium Zhihengliuella sp. ISTPL4 under normal growth conditions and arsenic (As) stress condition. Here, we evaluated the arsenic tolerance ability of S. indica alone and in combination with Z. sp. ISTPL4 under in vitro conditions. The growth of S. indica and Z. sp. ISTPL4 was measured in varying concentrations of arsenic and the effect of arsenic on spore size and morphology of S. indica was determined using confocal microscopy and scanning electron microscopy. The metabolomics study indicated that S. indica alone in normal growth conditions and under As stress released pentadecanoic acid, glycerol tricaprylate, L-proline and cyclo(L-prolyl-L-valine). Similarly, d-Ribose, 2-deoxy-bis(thioheptyl)-dithioacetal were secreted by a combination of S. indica and Z. sp. ISTPL4. Confocal studies revealed that spore size of S. indica decreased by 18% at 1.9 mM and by 15% when in combination with Z. sp. ISTPL4 at a 2.4 mM concentration of As. Arsenic above this concentration resulted in spore degeneration and hyphae fragmentation. Scanning electron microscopy (SEM) results indicated an increased spore size of S. indica in the presence of Z. sp. ISTPL4 (18 ± 0.75 µm) compared to S. indica alone (14 ± 0.24 µm) under normal growth conditions. Our study concluded that the suggested combination of microbial consortium can be used to increase sustainable agriculture by combating biotic as well as abiotic stress. This is because the metabolites released by the microbial combination display antifungal and antibacterial properties. The metabolites, besides evading stress, also confer other survival strategies. Therefore, the choice of consortia and combination partners is important and can help in developing strategies for coping with As stress.PMID:38399809 | DOI:10.3390/microorganisms12020405

Multi-Chemical Omics Analysis of the Symbiodiniaceae <em>Durusdinium trenchii</em> under Heat Stress

Sat, 24/02/2024 - 12:00
Microorganisms. 2024 Feb 2;12(2):317. doi: 10.3390/microorganisms12020317.ABSTRACTThe urgency of responding to climate change for corals necessitates the exploration of innovative methods to swiftly enhance our understanding of crucial processes. In this study, we employ an integrated chemical omics approach, combining elementomics, metabolomics, and volatilomics methodologies to unravel the biochemical pathways associated with the thermal response of the coral symbiont, Symbiodiniaceae Durusdinium trenchii. We outline the complimentary sampling approaches and discuss the standardised data corrections used to allow data integration and comparability. Our findings highlight the efficacy of individual methods in discerning differences in the biochemical response of D. trenchii under both control and stress-inducing temperatures. However, a deeper insight emerges when these methods are integrated, offering a more comprehensive understanding, particularly regarding oxidative stress pathways. Employing correlation network analysis enhanced the interpretation of volatile data, shedding light on the potential metabolic origins of volatiles with undescribed functions and presenting promising candidates for further exploration. Elementomics proves to be less straightforward to integrate, likely due to no net change in elements but rather elements being repurposed across compounds. The independent and integrated data from this study informs future omic profiling studies and recommends candidates for targeted research beyond Symbiodiniaceae biology. This study highlights the pivotal role of omic integration in advancing our knowledge, addressing critical gaps, and guiding future research directions in the context of climate change and coral reef preservation.PMID:38399721 | DOI:10.3390/microorganisms12020317

<em>Candida albicans</em> Infection Disrupts the Metabolism of Vaginal Epithelial Cells and Inhibits Cellular Glycolysis

Sat, 24/02/2024 - 12:00
Microorganisms. 2024 Jan 30;12(2):292. doi: 10.3390/microorganisms12020292.ABSTRACTVulvovaginal candidiasis (VVC) is a common gynecologic disorder caused by fungal infections of the vaginal mucosa, with the most common pathogen being Candida albicans (C. albicans). Exploring metabolite changes in the disease process facilitates further discovery of targets for disease treatment. However, studies on the metabolic changes caused by C. albicans are still lacking. In this study, we used C. albicans-infected vaginal epithelial cells to construct an in vitro model of VVC, analyzed the metabolites by UHPLC-Q-Exactive MS, and screened the potential metabolites based on metabolomics. The results showed that C. albicans infection resulted in significant up-regulation of D-arabitol, palmitic acid, adenosine, etc.; significant down-regulation of lactic acid, nicotinamide (NAM), nicotinate (NA), etc.; and disruption of amino acid metabolism, and that these significantly altered metabolites might be potential therapeutic targets of VVC. Further experiments showed that C. albicans infection led to a decrease in glycolytic enzymes in damaged cells, inhibiting glycolysis and leading to significant alterations in glycolytic metabolites. The present study explored the potential metabolites of VVC induced by C. albicans infection based on metabolomics and verified the inhibitory effect of C. albicans on vaginal epithelial cell glycolysis, which is valuable for the diagnosis and treatment of VVC.PMID:38399696 | DOI:10.3390/microorganisms12020292

Metabolomic Biomarkers of Dietary Approaches to Stop Hypertension (DASH) Dietary Patterns in Pregnant Women

Sat, 24/02/2024 - 12:00
Nutrients. 2024 Feb 8;16(4):492. doi: 10.3390/nu16040492.ABSTRACTObjective: the aim of this study was to identify plasma metabolomic markers of Dietary Approaches to Stop Hypertension (DASH) dietary patterns in pregnant women. Methods: This study included 186 women who had both dietary intake and metabolome measured from a nested case-control study within the NICHD Fetal Growth Studies-Singletons cohort (FGS). Dietary intakes were ascertained at 8-13 gestational weeks (GW) using the Food Frequency Questionnaire (FFQ) and DASH scores were calculated based on eight food and nutrient components. Fasting plasma samples were collected at 15-26 GW and untargeted metabolomic profiling was performed. Multivariable linear regression models were used to examine the association of individual metabolites with the DASH score. Least absolute shrinkage and selection operator (LASSO) regression was used to select a panel of metabolites jointly associated with the DASH score. Results: Of the total 460 known metabolites, 92 were individually associated with DASH score in linear regressions, 25 were selected as a panel by LASSO regressions, and 18 were identified by both methods. Among the top 18 metabolites, there were 11 lipids and lipid-like molecules (i.e., TG (49:1), TG (52:2), PC (31:0), PC (35:3), PC (36:4) C, PC (36:5) B, PC (38:4) B, PC (42:6), SM (d32:0), gamma-tocopherol, and dodecanoic acid), 5 organic acids and derivatives (i.e., asparagine, beta-alanine, glycine, taurine, and hydroxycarbamate), 1 organic oxygen compound (i.e., xylitol), and 1 organoheterocyclic compound (i.e., maleimide). Conclusions: our study identified plasma metabolomic markers for DASH dietary patterns in pregnant women, with most of being lipids and lipid-like molecules.PMID:38398816 | DOI:10.3390/nu16040492

Dynamics of the Gut Microbiota and Faecal and Serum Metabolomes during Pregnancy-A Longitudinal Study

Sat, 24/02/2024 - 12:00
Nutrients. 2024 Feb 7;16(4):483. doi: 10.3390/nu16040483.ABSTRACTNormal pregnancy involves numerous physiological changes, including changes in hormone levels, immune responses, and metabolism. Although several studies have shown that the gut microbiota may have an important role in the progression of pregnancy, these findings have been inconsistent, and the relationship between the gut microbiota and metabolites that change dynamically during and after pregnancy remains to be clarified. In this longitudinal study, we comprehensively profiled the temporal dynamics of the gut microbiota, Bifidobacterium communities, and serum and faecal metabolomes of 31 women during their pregnancies and postpartum periods. The microbial composition changed as gestation progressed, with the pregnancy and postpartum periods exhibiting distinct bacterial community characteristics, including significant alterations in the genera of the Lachnospiraceae or Ruminococcaceae families, especially the Lachnospiraceae FCS020 group and Ruminococcaceae UCG-003. Metabolic dynamics, characterised by changes in nutrients important for fetal growth (e.g., docosatrienoic acid), anti-inflammatory metabolites (e.g., trans-3-indoleacrylic acid), and steroid hormones (e.g., progesterone), were observed in both serum and faecal samples during pregnancy. Moreover, a complex correlation was identified between the pregnancy-related microbiota and metabolites, with Ruminococcus1 and Ruminococcaceae UCG-013 making important contributions to changes in faecal and serum metabolites, respectively. Overall, a highly coordinated microbiota-metabolite regulatory network may underlie the pregnancy process. These findings provide a foundation for enhancing our understanding of the molecular processes occurring during the progression of pregnancy, thereby contributing to nutrition and health management during this period.PMID:38398806 | DOI:10.3390/nu16040483

Metabolomic Profile of Arthrospira platensis from a Bulgarian Bioreactor-A Potential Opportunity for Inclusion in Dietary Supplements

Sat, 24/02/2024 - 12:00
Life (Basel). 2024 Jan 24;14(2):174. doi: 10.3390/life14020174.ABSTRACTThe present study aims to elucidate the metabolomic profile of Arthrospira platensis grown in a bioreactor in Bulgaria. The results show that Arthrospira platensis has a high content of mannose, 137.02 mg g-1, and vitamin A (retinol)-10.3 μg/100 g. High concentrations of calcium, sulfur, and zinc distinguish its elemental composition. The freeze-dried powder contained 15.81 ± 0.45% dietary fiber, 50.16 ± 0.25% total protein content, and 1.22 ± 0.11% total fat content. Among the unsaturated fatty acids with the highest content is α-linolenic acid (25.28%), while among the saturated fatty acids, palmitic acid prevails (22.55%). Of the sterols in the sample, β-sitosterol predominated. There is no presence of microcystins LR, RR, YR, and nodularin. Therefore, Arthrospira platensis grown in a Bulgarian bioreactor is safe for use in the pharmaceutical and food industries. Many of the organic compounds found have applications in medicine and pharmacology and play an important role in biochemical processes in the body. Therefore, Arthrospira platensis grown in Bulgaria has a high potential for use as an independent food supplement or in combination with other natural products.PMID:38398682 | DOI:10.3390/life14020174

Revealing Medicinal Constituents of Bistorta vivipara Based on Non-Targeted Metabolomics and 16S rDNA Gene Sequencing Technology

Sat, 24/02/2024 - 12:00
Molecules. 2024 Feb 15;29(4):860. doi: 10.3390/molecules29040860.ABSTRACTBistorta vivipara is a medicinal plant with a long history, but there are few studies on the effects of its medicinal components and endophytic bacteria on the accumulation of secondary metabolites. Therefore, in this study, non-targeted metabolomics techniques and 16s rDNA techniques were used to study B. vivipara from different regions. A total of 1290 metabolites and 437 differential metabolites were identified from all samples. Among them, flavonoids, isoflavonoids, and benzopyrans are the main medicinal components of B. vivipara; these have potential anticancer, antiviral, and antioxidant properties, as well as potential applications for the treatment of atrial fibrillation. In addition, irigenin, an important medicinal component, was identified for the first time. The endophytic bacterial communities in the root tissues of B. vivipara from different regions were also different in composition and richness. Hierarchical clustering heat map analysis showed that Proteobacteria and Actinobacteriota bacteria significantly affected the accumulation of many medicinal components in the roots of B. vivipara.PMID:38398612 | DOI:10.3390/molecules29040860

Gastrointestinal Disorders and Atopic Dermatitis in Infants in the First Year of Life According to ROME IV Criteria-A Possible Association with the Mode of Delivery and Early Life Nutrition

Sat, 24/02/2024 - 12:00
J Clin Med. 2024 Feb 6;13(4):927. doi: 10.3390/jcm13040927.ABSTRACTBackground: Functional gastrointestinal disorders are very common condition. The aim of this study is to evaluate the implications of the mode of pregnancy termination and early infant feeding on the incidence of gastrointestinal disorders and atopic dermatitis at birth and 3, 6, and 12 months of age. Methods: This study included 82 pregnant women and their newborns born at term. All newborns were examined at birth and 3, 6, and 12 months of age according to the ROME IV criteria. Results: In children born after cesarean section, the incidence of regurgitation was significantly higher. In children fed mostly or exclusively with formula, dry skin with allergic features was observed more often compared to breastfed children, but this relation was statistically significant only at the age of 12 months. The use of antibiotic therapy increased the risk of allergic skin lesions by almost seven times at 3 months of life. Gastrointestinal disorders in the form of regurgitation, colic, and constipation occur within the period of up to 12 months of the child's life and may be related to the mode of the termination of pregnancy via cesarean section and the use of artificial feeding or antibiotic therapy. The occurrence of atopic dermatitis in infants at 12 months of life is correlated with the mode of the termination of pregnancy after cesarean section. Conclusions: One of the risk factors for the occurrence of atopic dermatitis and gastrointestinal disorders in the period up to 12 months of the child's life may be a cesarean section and the use of formula feeding or antibiotic therapy.PMID:38398241 | DOI:10.3390/jcm13040927

Specific Multiomic Profiling in Aortic Stenosis in Bicuspid Aortic Valve Disease

Sat, 24/02/2024 - 12:00
Biomedicines. 2024 Feb 6;12(2):380. doi: 10.3390/biomedicines12020380.ABSTRACTINTRODUCTION AND PURPOSE: Bicuspid aortic valve (BAV) disease is associated with faster aortic valve degeneration and a high incidence of aortic stenosis (AS). In this study, we aimed to identify differences in the pathophysiology of AS between BAV and tricuspid aortic valve (TAV) patients in a multiomics study integrating metabolomics and transcriptomics as well as clinical data.METHODS: Eighteen patients underwent aortic valve replacement due to severe aortic stenosis: 8 of them had a TAV, while 10 of them had a BAV. RNA sequencing (RNA-seq) and proton nuclear magnetic resonance spectroscopy (1H-NMR) were performed on these tissue samples to obtain the RNA profile and lipid and low-molecular-weight metabolites. These results combined with clinical data were posteriorly compared, and a multiomic profile specific to AS in BAV disease was obtained.RESULTS: H-NMR results showed that BAV patients with AS had different metabolic profiles than TAV patients. RNA-seq also showed differential RNA expression between the groups. Functional analysis helped connect this RNA pattern to mitochondrial dysfunction. Integration of RNA-seq, 1H-NMR and clinical data helped create a multiomic profile that suggested that mitochondrial dysfunction and oxidative stress are key players in the pathophysiology of AS in BAV disease.CONCLUSIONS: The pathophysiology of AS in BAV disease differs from patients with a TAV and has a specific RNA and metabolic profile. This profile was associated with mitochondrial dysfunction and increased oxidative stress.PMID:38397982 | DOI:10.3390/biomedicines12020380

Correlation of Myeloid-Derived Suppressor Cell Expansion with Upregulated Transposable Elements in Severe COVID-19 Unveiled in Single-Cell RNA Sequencing Reanalysis

Sat, 24/02/2024 - 12:00
Biomedicines. 2024 Jan 29;12(2):315. doi: 10.3390/biomedicines12020315.ABSTRACTSome studies have investigated the potential role of transposable elements (TEs) in COVID-19 pathogenesis and complications. However, to the best of our knowledge, there is no study to examine the possible association of TE expression in cell functions and its potential role in COVID-19 immune response at the single-cell level. In this study, we reanalyzed single-cell RNA seq data of bronchoalveolar lavage (BAL) samples obtained from six severe COVID-19 patients and three healthy donors to assess the probable correlation of TE expression with the immune responses induced by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in COVID-19 patients. Our findings indicate that the expansion of myeloid-derived suppressor cells (MDSCs) may be a characteristic feature of COVID-19. Additionally, a significant increase in TE expression in MDSCs was observed. This upregulation of TEs in COVID-19 may be linked to the adaptability of these cells in response to their microenvironments. Furthermore, it appears that the identification of overexpressed TEs by pattern recognition receptors (PRRs) in MDSCs may enhance the suppressive capacity of these cells. Thus, this study emphasizes the crucial role of TEs in the functionality of MDSCs during COVID-19.PMID:38397917 | DOI:10.3390/biomedicines12020315

Plasma and Urinary Metabolomic Analysis of Gout and Asymptomatic Hyperuricemia and Profiling of Potential Biomarkers: A Pilot Study

Sat, 24/02/2024 - 12:00
Biomedicines. 2024 Jan 27;12(2):300. doi: 10.3390/biomedicines12020300.ABSTRACTGout results from monosodium urate deposition caused by hyperuricemia, but most individuals with hyperuricemia remain asymptomatic. The pathogenesis of gout remains uncertain. To identify potential biomarkers distinguishing gout from asymptomatic hyperuricemia, we conducted a genetic analysis of urate transporters and metabolomic analysis as a proof-of-concept study, including 33 patients with gout and 9 individuals with asymptomatic hyperuricemia. The variant allele frequencies of rs72552713, rs2231142, and rs3733591, which are related to serum urate levels (SUA) and gout, did not differ between the gout and asymptomatic hyperuricemia groups. In metabolomic analysis, the levels of citrate cycle intermediates, especially 2-ketoglutarate, were higher in patients with gout than in those with asymptomatic hyperuricemia (fold difference = 1.415, p = 0.039). The impact on the TCA cycle was further emphasized in high-risk gout (SUA ≥ 9.0 mg/dL). Of note, urinary nicotinate was the most prominent biomarker differentiating high-risk gout from asymptomatic hyperuricemia (fold difference = 6.515, p = 0.020). Although urate transporters play critical roles in SUA elevation and promote hyperuricemia, this study suggests that the progression from asymptomatic hyperuricemia to gout might be closely related to other genetic and/or environmental factors affecting carbohydrate metabolism and urinary urate excretion.PMID:38397902 | DOI:10.3390/biomedicines12020300

Maternal Malic Acid May Ameliorate Oxidative Stress and Inflammation in Sows through Modulating Gut Microbiota and Host Metabolic Profiles during Late Pregnancy

Sat, 24/02/2024 - 12:00
Antioxidants (Basel). 2024 Feb 19;13(2):253. doi: 10.3390/antiox13020253.ABSTRACTSows suffer oxidative stress and inflammation induced by metabolic burden during late pregnancy, which negatively regulates reproductive and lactating performances. We previously found that L-malic acid (MA) alleviated oxidative stress and inflammation and improved reproductive performances in sows. However, the mechanism underlying the MA's positive effects remains unexplored. Here, twenty Large White × Landrace sows with similar parity were randomly divided into two groups and fed with a basal diet or a diet supplemented with 2% L-malic acid complex from day 85 of gestation to delivery. The gut microbiome, fecal short-chain fatty acids, and untargeted serum metabolome were determined. Results showed that Firmicutes, Bacteroidota, and Spirochaetota were the top abundant phyla identified in late pregnancy for sows. Maternal MA supplementation modulated the composition but not the richness and diversity of gut microbiota during late pregnancy. Correlation analysis between gut microbiota and antioxidant capacity (or inflammation indicators) revealed that unclassified_f_Ruminococcaceae, unclassified_f_Lachnospiraceae, UCG-002, norank_f_norank_o_RF3, and Lactobacillus might play a role in anti-oxidation, and Lachnospiraceae_XPB1014_group, Lachnospiraceae_NK4A136_group, UCG-002, unclassified_f_Ruminococcaceae, Candidatus_Soleaferrea, norank_f_UCG-010, norank_f_norank_o_RF39, and unclassified_f_Lachnospiraceae might be involved in the anti-inflammatory effect. The improved antioxidant and inflammation status induced by MA might be independent of short chain fatty acid changes. In addition, untargeted metabolomics analysis exhibited different metabolic landscapes of sows in the MA group from in the control group and revealed the contribution of modified amino acid and lipid metabolism to the improved antioxidant capacity and inflammation status. Notably, correlation results of gut microbiota and serum metabolites, as well as serum metabolites and antioxidant capacity (or inflammation indicators), demonstrated that differential metabolism was highly related to the fecal microorganisms and antioxidant or inflammation indicators. Collectively, these data demonstrated that a maternal dietary supply of MA can ameliorate oxidative stress and inflammation in sows through modulating gut microbiota and host metabolic profiles during late pregnancy.PMID:38397851 | DOI:10.3390/antiox13020253

Metabolome and Transcriptome Analysis Revealed the Basis of the Difference in Antioxidant Capacity in Different Tissues of Citrus reticulata 'Ponkan'

Sat, 24/02/2024 - 12:00
Antioxidants (Basel). 2024 Feb 18;13(2):243. doi: 10.3390/antiox13020243.ABSTRACTCitrus is an important type of fruit, with antioxidant bioactivity. However, the variations in the antioxidant ability of different tissues in citrus and its metabolic and molecular basis remain unclear. Here, we assessed the antioxidant capacities of 12 tissues from Citrus reticulata 'Ponkan', finding that young leaves and root exhibited the strongest antioxidant capacity. Secondary metabolites accumulated differentially in parts of the citrus plant, of which flavonoids were enriched in stem, leaf, and flavedo; phenolic acids were enriched in the albedo, while coumarins were enriched in the root, potentially explaining the higher antioxidant capacities of these tissues. The spatially specific accumulation of metabolites was related to the expression levels of biosynthesis-related genes such as chalcone synthase (CHS), chalcone isomerase (CHI), flavone synthase (FNS), O-methyltransferase (OMT), flavonoid-3'-hydroxylase (F3'H), flavonoid-6/8-hydroxylase (F6/8H), p-coumaroyl CoA 2'-hydroxylase (C2'H), and prenyltransferase (PT), among others, in the phenylpropane pathway. Weighted gene co-expression network analysis (WGCNA) identified modules associated with flavonoids and coumarin content, among which we identified an OMT involved in coumarin O-methylation, and related transcription factors were predicted. Our study identifies key genes and metabolites influencing the antioxidant capacity of citrus, which could contribute to the enhanced understanding and utilization of bioactive citrus components.PMID:38397841 | DOI:10.3390/antiox13020243

Optimization, Metabolomic Analysis, Antioxidant Potential andDepigmenting Activity of Polyphenolic Compounds fromUnmature Ajwa Date Seeds (Phoenix dactylifera L.) Using Ultrasonic-Assisted Extraction

Sat, 24/02/2024 - 12:00
Antioxidants (Basel). 2024 Feb 15;13(2):238. doi: 10.3390/antiox13020238.ABSTRACTThis study sought to optimize the ultrasonic-assisted extraction of polyphenolic compounds from unmature Ajwa date seeds (UMS), conduct untargeted metabolite identification and assess antioxidant and depigmenting activities. Response surface methodology (RSM) utilizing the Box-Behnken design (BBD) and artificial neural network (ANN) modeling was applied to optimize extraction conditions, including the ethanol concentration, extraction temperature and time. The determined optimal conditions comprised the ethanol concentration (62.00%), extraction time (29.00 min), and extraction temperature (50 °C). Under these conditions, UMS exhibited total phenolic content (TPC) and total flavonoid content (TFC) values of 77.52 ± 1.55 mgGAE/g and 58.85 ± 1.12 mgCE/g, respectively, with low relative standard deviation (RSD%) and relative standard error (RSE%). High-resolution mass spectrometry analysis unveiled the presence of 104 secondary metabolites in UMS, encompassing phenols, flavonoids, sesquiterpenoids, lignans and fatty acids. Furthermore, UMS demonstrated robust antioxidant activities in various cell-free antioxidant assays, implicating engagement in both hydrogen atom transfer and single electron transfer mechanisms. Additionally, UMS effectively mitigated tert-butyl hydroperoxide (t-BHP)-induced cellular reactive oxygen species (ROS) generation in a concentration-dependent manner. Crucially, UMS showcased the ability to activate mitogen-activated protein kinases (MAPKs) and suppress key proteins including tyrosinase (Tyr), tyrosinase-related protein-1 and -2 (Trp-1 and -2) and microphthalmia-associated transcription factor (MITF), which associated melanin production in MNT-1 cell. In summary, this study not only optimized the extraction process for polyphenolic compounds from UMS but also elucidated its diverse secondary metabolite profile. The observed antioxidant and depigmenting activities underscore the promising applications of UMS in skincare formulations and pharmaceutical developments.PMID:38397836 | DOI:10.3390/antiox13020238

Exogenous Calcium Alleviates Oxidative Stress Caused by Salt Stress in Peanut Seedling Roots by Regulating the Antioxidant Enzyme System and Flavonoid Biosynthesis

Sat, 24/02/2024 - 12:00
Antioxidants (Basel). 2024 Feb 14;13(2):233. doi: 10.3390/antiox13020233.ABSTRACTSoil salinity is one of the adversity stresses plants face, and antioxidant defense mechanisms play an essential role in plant resistance. We investigated the effects of exogenous calcium on the antioxidant defense system in peanut seedling roots that are under salt stress by using indices including the transcriptome and absolute quantitative metabolome of flavonoids. Under salt stress conditions, the antioxidant defense capacity of enzymatic systems was weakened and the antioxidant capacity of the linked AsA-GSH cycle was effectively inhibited. In contrast, the ascorbate biosynthesis pathway and its upstream glycolysis metabolism pathway became active, which stimulated shikimate biosynthesis and the downstream phenylpropanoid metabolism pathway, resulting in an increased accumulation of flavonoids, which, as one of the antioxidants in the non-enzymatic system, provide hydroxyl radicals to scavenge the excess reactive oxygen species and maintain the plant's vital activities. However, the addition of exogenous calcium caused changes in the antioxidant defense system in the peanut root system. The activity of antioxidant enzymes and the antioxidant capacity of the AsA-GSH cycle were enhanced. Therefore, glycolysis and phenylpropanoid metabolism do not exert antioxidant function, and flavonoids were no longer synthesized. In addition, antioxidant enzymes and the AsA-GSH cycle showed a trade-off relationship with sugars and flavonoids.PMID:38397831 | DOI:10.3390/antiox13020233

Formyl Peptide Receptor 2-Dependent cPLA2 and 5-LOX Activation Requires a Functional NADPH Oxidase

Sat, 24/02/2024 - 12:00
Antioxidants (Basel). 2024 Feb 8;13(2):220. doi: 10.3390/antiox13020220.ABSTRACTPhospholipases (PL) A2 catalyzes the hydrolysis of membrane phospholipids and mostly generates arachidonic acid (AA). The enzyme 5-lipoxygenase (5-LOX) can metabolize AA to obtain inflammatory leukotrienes, whose biosynthesis highly depends on cPLA2 and 5-LOX activities. Formyl Peptide Receptor 2 (FPR2) belongs to a subfamily of class A GPCRs and is considered the most versatile FPRs isoform. Signaling triggered by FPR2 includes the activation of several downstream kinases and NADPH oxidase (NOX)-dependent ROS generation. In a metabolomic analysis we observed a significant increase in AA concentration in FPR2-stimulated lung cancer cell line CaLu-6. We analyzed cPLA2 phosphorylation and observed a time-dependent increase in cPLA2 Ser505 phosphorylation in FPR2-stimulated cells, which was prevented by the MEK inhibitor (PD098059) and the p38MAPK inhibitor (SB203580) and by blocking NOX function. Similarly, we demonstrated that phosphorylation of 5-LOX at Ser271 and Ser663 residues requires FPR2-dependent p38MAPK and ERKs activation. Moreover, we showed that 5-LOX Ser271 phosphorylation depends on a functional NOX expression. Our overall data demonstrate for the first time that FPR2-induced ERK- and p38MAPK-dependent phosphorylation/activation of cPLA2 and 5-LOX requires a functional NADPH oxidase. These findings represent an important step towards future novel therapeutic possibilities aimed at resolving the inflammatory processes underlying many human diseases.PMID:38397818 | DOI:10.3390/antiox13020220

Integrative Multiomics Profiling Unveils the Protective Function of Ulinastatin against Dextran Sulfate Sodium-Induced Colitis

Sat, 24/02/2024 - 12:00
Antioxidants (Basel). 2024 Feb 8;13(2):214. doi: 10.3390/antiox13020214.ABSTRACTUlcerative colitis is an inflammatory bowel disease with multiple pathogeneses. Here, we aimed to study the therapeutic role of ulinastatin (UTI), an anti-inflammatory bioagent, and its associated mechanisms in treating colitis. Dextran sulfate sodium was administrated to induce colitis in mice, and a subgroup of colitis mice was treated with UTI. The gut barrier defect and inflammatory manifestations of colitis were determined via histological and molecular experiments. In addition, transcriptomics, metagenomics, and metabolomics were employed to explore the possible mechanisms underlying the effects of UTI. We found that UTI significantly alleviated the inflammatory manifestations and intestinal barrier damage in the mice with colitis. Transcriptome sequencing revealed a correlation between the UTI treatment and JAK-STAT signaling pathway. UTI up-regulated the expression of SOCS1, which subsequently inhibited the phosphorylation of JAK2 and STAT3, thus limiting the action of inflammatory mediators. In addition, 16S rRNA sequencing illustrated that UTI maintained a more stable intestinal flora, protecting the gut from dysbiosis in colitis. Moreover, metabolomics analysis demonstrated that UTI indeed facilitated the production of some bile acids and short-chain fatty acids, which supported intestinal homeostasis. Our data provide evidence that UTI is effective in treating colitis and support the potential use of UTI treatment for patients with ulcerative colitis.PMID:38397811 | DOI:10.3390/antiox13020214

Investigating the Impact of Disrupting the Glutamine Metabolism Pathway on Ammonia Excretion in Crucian Carp (Carassius auratus) under Carbonate Alkaline Stress Using Metabolomics Techniques

Sat, 24/02/2024 - 12:00
Antioxidants (Basel). 2024 Jan 29;13(2):170. doi: 10.3390/antiox13020170.ABSTRACTWith the gradual decline in freshwater resources, the space available for freshwater aquaculture is diminishing and the need to maximize saline water for aquaculture is increasing. This study aimed to elucidate the impact mechanisms of the disruption of the glutamate pathway on serum metabolism and ammonia excretion in crucian carp (Carassius auratus) under carbonate alkaline stress. A freshwater control group (C group), a 20 mmol/L NaHCO3 stress group (L group), and a 40 mmol/L NaHCO3 stress group (H group) were established. After 30 days of exposure, methionine sulfoximine (MSO) was injected to block the glutamate pathway metabolism, and the groups post-blocking were labeled as MC, ML, and MH. Ultra-high-performance liquid chromatography coupled with the quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) metabolomics technique was employed to detect changes in the composition and content of crucian carp serum metabolites. Significant differential metabolites were identified, and related metabolic pathways were analyzed. The results revealed that, following the glutamate pathway blockade, a total of 228 differential metabolites (DMs) were identified in the three treatment groups. An enrichment analysis indicated significant involvement in glycerophospholipid metabolism, arachidonic acid metabolism, sphingolipid metabolism, purine metabolism, arginine and proline biosynthesis, pantothenate and CoA biosynthesis, glutathione metabolism, and fatty acid degradation, among other metabolic pathways. The results showed that ROS imbalances and L-arginine accumulation in crucian carp after the glutamate pathway blockade led to an increase in oxidative stress and inflammatory responses in vivo, which may cause damage to the structure and function of cell membranes. Crucian carp improves the body's antioxidant capacity and regulates cellular homeostasis by activating glutathione metabolism and increasing the concentration of phosphatidylcholine (PC) analogs. Additionally, challenges such as aggravated ammonia excretion obstruction and disrupted energy metabolism were observed in crucian carp, with the upregulation of purine metabolism alleviating ammonia toxicity and maintaining energy homeostasis through pantothenate and CoA biosynthesis as well as fatty acid degradation. This study elucidated the metabolic changes in crucian carp under carbonate alkaline stress after a glutamate pathway blockade at the cellular metabolism level and screened out the key metabolic pathways, which provide a scientific basis for further in-depth studies on the ammonia excretion of freshwater scleractinian fishes under saline and alkaline habitats at a later stage.PMID:38397768 | DOI:10.3390/antiox13020170

The Characterization of Subcutaneous Adipose Tissue in Sunit Sheep at Different Growth Stages: A Comprehensive Analysis of the Morphology, Fatty Acid Profile, and Metabolite Profile

Sat, 24/02/2024 - 12:00
Foods. 2024 Feb 9;13(4):544. doi: 10.3390/foods13040544.ABSTRACTAdipose tissue is a crucial economically significant trait that significantly influences the meat quality and growth performance of domestic animals. To reveal the changes in adipose tissue metabolism during the growth of naturally grazing sheep, we evaluated the thickness, adipocyte morphology, fatty acid profile, and metabolite profile of subcutaneous adipose tissue (SAT) from naturally grazing Sunit sheep at 6, 18, and 30 months of age (referred to as Mth-6, Mth-18, and Mth-30, respectively). The fat thickness and adipocyte number were significantly increased with the growth of the sheep (p < 0.05), and the increase of which from Mth-18 to Mth-30 was less than that from Mth-6 to Mth-18. Additionally, the alpha-linolenic acid metabolism was enhanced and fatty acid (FA) elongation increased with growth. The metabolomic analysis revealed 76 differentially expressed metabolites (DEMs) in the SAT in different growth stages. Interestingly, we observed elongation of FAs in lipids correlated with sheep growth. Furthermore, the expression of acylcarnitines was downregulated, and fatty acid amides, aspartic acid, acetic acid and phosphocholine were upregulated in Mth-18 and Mth-30 compared to Mth-6. Altogether, the study found that the difference in SAT in Mth-6 was great compared to Mth-18 and Mth-30. An increase in fat deposition via adipocyte proliferation with the growth of the sheep in naturally grazing. The DEMs of acylcarnitines, fatty acid amides, aspartic acid, acetic acid, and phosphocholine emerged as potential key regulators of adipose tissue metabolism. These findings illustrate the variation in and metabolic mechanism of sheep adipose tissue development under natural grazing, thus providing valuable insights into improving the edible quality of sheep meat and developing the mutton sheep industry.PMID:38397521 | DOI:10.3390/foods13040544

Pages