PubMed
Protective Effect of Berberine on Acute Gastric Ulcer by Promotion of Tricarboxylic Acid Cycle-Mediated Arachidonic Acid Metabolism
J Inflamm Res. 2024 Jan 3;17:15-28. doi: 10.2147/JIR.S436653. eCollection 2024.ABSTRACTBACKGROUND AND OBJECTIVE: Peptic ulcer is a high incidence gastrointestinal disease in China. Berberine (BBR) is a natural product isolated from the Chinese herb Coptis chinensis Franch that has protective effects in digestive diseases. We aimed to evaluate the ability of BBR to attenuate acute gastric ulcer induced by one-time administration of ethanol in the rat.METHODS: Tissue pathological morphology, macroscopic score, ulcer healing rate, and serum levels of the inflammatory cytokines nitric oxide (NO), interleukin-6 (IL-6), and prostaglandin E2 (PGE2), and anti-inflammatory interleukin-10 (IL-10) were used to determine the efficacy of BBR and evaluated to identify the optimal dosage. Subsequently, transcriptome and metabolome sequencing were conducted in Control, Model, and optimal dosage groups to explore the pathogenesis of the disease and the mechanism of action of the drug. The levels of malondialdehyde (MDA), myeloperoxidase (MPO), as well as those of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were determined by enzyme-linked immunosorbent assay to verify the results of transcriptomics and metabolomics analyses.RESULTS: BBR significantly improved the pathological morphology of gastric ulcers, increased the macroscopic score and healing rate, decreased serum levels of NO, IL-6, and PGE2, and increased serum levels of IL-10, thus effectively alleviating gastric ulcer severity. Transcriptome results showed that the therapeutic effect of BBR was mainly mediated by the arachidonic acid metabolism pathway at the gene level, which is closely associated with inflammation and increased levels of reactive oxygen species (ROS). The differentially accumulated metabolite prostaglandin E1, which is a negative regulator of ROS, was significantly up-regulated after BBR administration. The validation results indicated that BBR pretreatment increased SOD and GSH-Px enzyme activities, while reducing levels of the oxidative products MDA and MPO.CONCLUSION: This study demonstrated that BBR exerts a protective effect on acute gastric ulcer by promoting tricarboxylic acid cycle-mediated arachidonic acid metabolism.PMID:38193042 | PMC:PMC10772049 | DOI:10.2147/JIR.S436653
Pyroptosis-related signatures predict immune characteristics and prognosis in IPF
Heliyon. 2023 Dec 13;10(1):e23683. doi: 10.1016/j.heliyon.2023.e23683. eCollection 2024 Jan 15.ABSTRACTThe purpose of this work was to use integrated bioinformatics analysis to screen for pyroptosis-related genes (PRGs) and possible immunological phenotypes linked to the development and course of IPF. Transcriptome sequencing datasets GSE70866, GSE47460 and GSE150910 were obtained from GEO database. From the GSE70866 database, 34 PRGs with differential expression were found in IPF as compared to healthy controls. In addition, a diagnostic model containing 4 genes PRGs (CAMP, MKI67, TCEA3 and USP24) was constructed based on LASSO logistic regression. The diagnostic model showed good predictive ability to differentiate between IPF and healthy, with ROC-AUC ranging from 0.910 to 0.997 in GSE70866 and GSE150910 datasets. Moreover, based on a combined cohort of the Freiburg and the Siena cohorts from GSE70866 dataset, we identified ten PRGs that might predict prognosis for IPF. We constructed a prognostic model that included eight PRGs (CLEC5A, TREM2, MMP1, IRF2, SEZ6L2, ADORA3, NOS2, USP24) by LASSO Cox regression and validated it in the Leuven cohort. The risk model divided IPF patients from the combined cohort into high-risk and low-risk subgroups. There were significant differences between the two subgroups in terms of IPF survival and GAP stage. There is a close correlation between leukocyte migration, plasma membrane junction, and poor prognosis in a high-risk subgroup. Furthermore, a high-risk score was associated with more plasma cells, activated NK cells, monocytes, and activated mast cells. Additionally, we identified HDAC inhibitors in the cMAP database that might be therapeutic for IPF. To summarize, pyroptosis and its underlying immunological features are to blame for the onset and progression of IPF. PRG-based predictive models and drugs may offer new treatment options for IPF.PMID:38192798 | PMC:PMC10772192 | DOI:10.1016/j.heliyon.2023.e23683
Supplementation of dietary areca nut extract modulates the growth performance, cecal microbiota composition, and immune function in Wenchang chickens
Front Vet Sci. 2023 Dec 12;10:1278312. doi: 10.3389/fvets.2023.1278312. eCollection 2023.ABSTRACTINTRODUCTION: The study was aimed at evaluating the effects of areca nut extract (ANE) on the growth performance, cecal microbiota, and immunity of Wenchang chickens.METHODS: For this study, 42-day-old healthy Wenchang chickens (n = 450) with similar body weight were chosen. The animals were randomly divided into five groups, with six replicates per group and 15 chickens per replicate. One group was fed a basal diet (control; CCK). The remaining four groups were fed a basal diet supplemented with varying ANE concentrations: 0.038, 0.063, 0.100, and 0.151 g/kg, with the groups denoted as CNT1, CNT2, CNT3, and CNT4, respectively. The feeding experiment lasted 35 days. The ligated cecum segments of the control and experimental groups were collected for metabolomic and metagenomic analysis, while the bone marrow samples were extracted for tandem mass tag (TMT)-based proteomic analysis.RESULTS: All the experimental groups exhibited significantly higher average daily gain (ADG) and significantly lower feed-to-weight (F/G) ratios than CCK. Metabolomic screening of the cecum contents revealed the presence of 544 differential metabolites, including several gut health-related metabolites, such as xanthine, hydroxy hypoxanthine, 2,5-dimethylhydrazine, ganoderic acid, and 2-aminohexanoic acid. Metagenomic analysis of the cecum contents showed an upregulation in the abundance of Prevotella spp. in the experimental groups. However, we observed no significant differences in the abundances of other cecal microbes at phylum and genus levels. Furthermore, we observed significant associations between Prevotella spp. and the differentially abundant metabolites, such as cherubins, thiaburimamide, and 3,4-dihydroxy-L-phenylalanine, (r)-mevalonate, 5-O-methylalloptaeroxylin, nalidixic acid, and deoxyloganin (p < 0.05). Proteomic analysis revealed that the differentially expressed proteins (such as interferon-induced protein with tetratricopeptide repeats 5 (IFIT5), MHC-BF1, and death domain-associated protein (Daxx)) in the bone marrow of the chickens were primarily enriched in the immune network for IgA production and B cell receptor signaling pathway.CONCLUSION: In conclusion, dietary ANE supplementation was found to enhance metabolic activity and energy utilization, improve growth performance, modulate cecal microbiota, and strengthen the immunity of Wenchang chickens.PMID:38192720 | PMC:PMC10773572 | DOI:10.3389/fvets.2023.1278312
Anti-miR-873-5p improves alcohol-related liver disease by enhancing hepatic deacetylation via SIRT1
JHEP Rep. 2023 Sep 30;6(1):100918. doi: 10.1016/j.jhepr.2023.100918. eCollection 2024 Jan.ABSTRACTBACKGROUND & AIMS: Current therapies for the treatment of alcohol-related liver disease (ALD) have proven largely ineffective. Patients relapse and the disease progresses even after liver transplantation. Altered epigenetic mechanisms are characteristic of alcohol metabolism given excessive acetate and NAD depletion and play an important role in liver injury. In this regard, novel therapeutic approaches based on epigenetic modulators are increasingly proposed. MicroRNAs, epigenetic modulators acting at the post-transcriptional level, appear to be promising new targets for the treatment of ALD.METHODS: MiR-873-5p levels were measured in 23 liver tissue from Patients with ALD, and GNMT levels during ALD were confirmed using expression databases (transcriptome n = 62, proteome n = 68). High-resolution proteomics and metabolomics in mice following the Gao-binge model were used to investigate miR-873-5p expression in ALD. Hepatocytes exposed to 50 mM alcohol for 12 h were used to study toxicity. The effect of anti-miR-873-5p in the treatment outcomes of ALD was investigated.RESULTS: The analysis of human and preclinical ALD samples revealed increased expression of miR-873-5p in the liver. Interestingly, there was an inverse correlation with NNMT, suggesting a novel mechanism for NAD depletion and aberrant acetylation during ALD progression. High-resolution proteomics and metabolomics identified miR-873-5p as a key regulator of NAD metabolism and SIRT1 deacetylase activity. Anti-miR-873-5p reduced NNMT activity, fuelled the NAD salvage pathway, restored the acetylome, and modulated the levels of NF-κB and FXR, two known SIRT1 substrates, thereby protecting the liver from apoptotic and inflammatory processes, and improving bile acid homeostasis.CONCLUSIONS: These data indicate that targeting miR-873-5p, a repressor of GNMT previously associated with NAFLD and acetaminophen-induced liver failure. is a novel and attractive approach to treating alcohol-induced hepatoxicity.IMPACT AND IMPLICATIONS: The role of miR-873-5p has not been explicitly examined in the progression of ALD, a pathology with no therapeutic options. In this study, inhibiting miR-873-5p exerted hepatoprotective effects against ALD through rescued SIRT1 activity and consequently restored bile acid homeostasis and attenuated the inflammatory response. Targeting hepatic miR-873-5p may represent a novel therapeutic approach for the treatment of ALD.PMID:38192540 | PMC:PMC10772393 | DOI:10.1016/j.jhepr.2023.100918
Single-cell analysis of T lymphocytes infiltrating colorectal carcinoma: the dilemma of specificity
Oncoimmunology. 2024 Jan 4;13(1):2300520. doi: 10.1080/2162402X.2023.2300520. eCollection 2024.ABSTRACTAdvances in single-cell RNA and T cell receptor (TCR) sequencing allow to study the specificity and functionality of tumor-infiltrating T lymphocytes. A recent study unravels fundamental differences between microsatellite-instable (MSI) colorectal cancers, in which T cells tend to be tumor-specific, and microsatellite-stable (MSS) cancers, in which T cells exhibit bystander features.PMID:38192442 | PMC:PMC10773693 | DOI:10.1080/2162402X.2023.2300520
Gut microbiota functional profiling in autism spectrum disorders: bacterial VOCs and related metabolic pathways acting as disease biomarkers and predictors
Front Microbiol. 2023 Dec 18;14:1287350. doi: 10.3389/fmicb.2023.1287350. eCollection 2023.ABSTRACTBACKGROUND: Autism spectrum disorder (ASD) is a multifactorial neurodevelopmental disorder. Major interplays between the gastrointestinal (GI) tract and the central nervous system (CNS) seem to be driven by gut microbiota (GM). Herein, we provide a GM functional characterization, based on GM metabolomics, mapping of bacterial biochemical pathways, and anamnestic, clinical, and nutritional patient metadata.METHODS: Fecal samples collected from children with ASD and neurotypical children were analyzed by gas-chromatography mass spectrometry coupled with solid phase microextraction (GC-MS/SPME) to determine volatile organic compounds (VOCs) associated with the metataxonomic approach by 16S rRNA gene sequencing. Multivariate and univariate statistical analyses assessed differential VOC profiles and relationships with ASD anamnestic and clinical features for biomarker discovery. Multiple web-based and machine learning (ML) models identified metabolic predictors of disease and network analyses correlated GM ecological and metabolic patterns.RESULTS: The GM core volatilome for all ASD patients was characterized by a high concentration of 1-pentanol, 1-butanol, phenyl ethyl alcohol; benzeneacetaldehyde, octadecanal, tetradecanal; methyl isobutyl ketone, 2-hexanone, acetone; acetic, propanoic, 3-methyl-butanoic and 2-methyl-propanoic acids; indole and skatole; and o-cymene. Patients were stratified based on age, GI symptoms, and ASD severity symptoms. Disease risk prediction allowed us to associate butanoic acid with subjects older than 5 years, indole with the absence of GI symptoms and low disease severity, propanoic acid with the ASD risk group, and p-cymene with ASD symptoms, all based on the predictive CBCL-EXT scale. The HistGradientBoostingClassifier model classified ASD patients vs. CTRLs by an accuracy of 89%, based on methyl isobutyl ketone, benzeneacetaldehyde, phenyl ethyl alcohol, ethanol, butanoic acid, octadecane, acetic acid, skatole, and tetradecanal features. LogisticRegression models corroborated methyl isobutyl ketone, benzeneacetaldehyde, phenyl ethyl alcohol, skatole, and acetic acid as ASD predictors.CONCLUSION: Our results will aid the development of advanced clinical decision support systems (CDSSs), assisted by ML models, for advanced ASD-personalized medicine, based on omics data integrated into electronic health/medical records. Furthermore, new ASD screening strategies based on GM-related predictors could be used to improve ASD risk assessment by uncovering novel ASD onset and risk predictors.PMID:38192296 | PMC:PMC10773764 | DOI:10.3389/fmicb.2023.1287350
Multi-Omics Approach Reveals <em>OsPIL1</em> as a Regulator Promotes Rice Growth, Grain Development, and Blast Resistance
J Agric Food Chem. 2024 Jan 8. doi: 10.1021/acs.jafc.3c07330. Online ahead of print.ABSTRACTRice (Oryza sativa) is a crucial crop, achieving high yield concurrent pathogen resistance remains a challenge. Transcription factors play roles in growth and abiotic tolerance. However, rice phytochrome-interacting factor-like 1 (OsPIL1) in pathogen resistance and agronomic traits remains unexplored. We generated OsPIL1 overexpressing (OsPIL1 OE) rice lines and evaluated their impact on growth, grain development, and resistance to Magnaporthe oryzae. Multiomics analysis (RNA-seq, metabolomics, and CUT&Tag) and RT-qPCR validated OsPIL1 target genes and key metabolites. In the results, OsPIL1 OE rice lines exhibited robust growth, longer grains, and enhanced resistance to M. oryzae without compromising growth. Integrative multiomics analysis revealed a coordinated regulatory network centered on OsPIL1, explaining these desirable traits. OsPIL1 likely acts as a positive regulator, targeting transcriptional elements or specific genes with direct functions in several biological programs. In particular, a range of key signaling genes (phosphatases, kinases, plant hormone genes, transcription factors), and metabolites (linolenic acid, vitamin E, trigonelline, d-glucose, serotonin, choline, genistein, riboflavin) contributed to enhanced rice growth, grain size, pathogen resistance, or a combination of these traits. These findings highlight OsPIL1's regulatory role in promoting important traits and provide insights into potential strategies for rice breeding.PMID:38192056 | DOI:10.1021/acs.jafc.3c07330
Short-Term Metabolic Changes and Their Physiological Mediators in the Roux-en-Y Gastric Bypass Bariatric Surgery
Obes Surg. 2024 Jan 9. doi: 10.1007/s11695-023-07042-y. Online ahead of print.ABSTRACTBACKGROUND: The Roux-en-Y gastric bypass (RYGB) is a common bariatric surgery to treat obesity. Its metabolic consequences are favourable and long-term clinical corollaries beneficial. However, detailed assessments of various affected metabolic pathways and their mediating physiological factors are scarce.METHODS: We performed a clinical study with 30 RYGB patients in preoperative and 6-month postoperative visits. NMR metabolomics was applied to profiling of systemic metabolism via 80 molecular traits, representing core cardiometabolic pathways. Glucose, glycated haemoglobin (HbA1c), insulin, and apolipoprotein B-48 were measured with standard assays. Logistic regression models of the surgery effect were used for each metabolic measure and assessed individually for multiple mediating physiological factors.RESULTS: Changes in insulin concentrations reflected those of BMI with robust decreases due to the surgery. Six months after the surgery, triglycerides, remnant cholesterol, and apolipoprotein B-100 were decreased -24%, -18%, and -14%, respectively. Lactate and glycoprotein acetyls, a systemic inflammation biomarker, decreased -16% and -9%, respectively. The concentrations of branched-chain (BCAA; leucine, isoleucine, and valine) and aromatic (phenylalanine and tyrosine) amino acids decreased after the surgery between -17% for tyrosine and -23% for leucine. Except for the most prominent metabolic changes observed for the BCAAs, all changes were almost completely mediated by weight change and insulin. Glucose and type 2 diabetes had clearly weaker effects on the metabolic changes.CONCLUSIONS: The comprehensive metabolic analyses indicate that weight loss and improved insulin sensitivity during the 6 months after the RYGB surgery are the key physiological outcomes mediating the short-term advantageous metabolic effects of RYGB. The clinical study was registered at ClinicalTrials.gov as NCT01330251.PMID:38191968 | DOI:10.1007/s11695-023-07042-y
Novel method for collecting hippocampal interstitial fluid extracellular vesicles (EV<sup>ISF</sup> ) reveals sex-dependent changes in microglial EV proteome in response to Aβ pathology
J Extracell Vesicles. 2024 Jan;13(1):e12398. doi: 10.1002/jev2.12398.ABSTRACTBrain-derived extracellular vesicles (EVs) play an active role in Alzheimer's disease (AD), relaying important physiological information about their host tissues. The internal cargo of EVs is protected from degradation, making EVs attractive AD biomarkers. However, it is unclear how circulating EVs relate to EVs isolated from disease-vulnerable brain regions. We developed a novel method for collecting EVs from the hippocampal interstitial fluid (ISF) of live mice. EVs (EVISF ) were isolated via ultracentrifugation and characterized by nanoparticle tracking analysis, immunogold labelling, and flow cytometry. Mass spectrometry and proteomic analyses were performed on EVISF cargo. EVISF were 40-150 nm in size and expressed CD63, CD9, and CD81. Using a model of cerebral amyloidosis (e.g., APPswe, PSEN1dE9 mice), we found protein concentration increased but protein diversity decreased with Aβ deposition. Genotype, age, and Aβ deposition modulated proteostasis- and immunometabolic-related pathways. Changes in the microglial EVISF proteome were sexually dimorphic and associated with a differential response of plaque associated microglia. We found that female APP/PS1 mice have more amyloid plaques, less plaque associated microglia, and a less robust- and diverse- EVISF microglial proteome. Thus, in vivo microdialysis is a novel technique for collecting EVISF and offers a unique opportunity to explore the role of EVs in AD.PMID:38191961 | DOI:10.1002/jev2.12398
RepoRT: a comprehensive repository for small molecule retention times
Nat Methods. 2024 Jan 8. doi: 10.1038/s41592-023-02143-z. Online ahead of print.NO ABSTRACTPMID:38191934 | DOI:10.1038/s41592-023-02143-z
A novel cholesterol metabolism-related ferroptosis pathway in hepatocellular carcinoma
Discov Oncol. 2024 Jan 8;15(1):7. doi: 10.1007/s12672-023-00822-z.ABSTRACTBACKGROUND: Emerging studies have reported the contribution of cholesterol to hepatocellular carcinoma (HCC) progression. However, the specific role and mechanism of cholesterol metabolism on spontaneous and progressive HCC development from the point of view of ferroptosis are still worth exploring. The present study aimed to reveal a novel mechanism of cholesterol metabolism-related ferroptosis in hepatocellular carcinoma cells.METHODS: Two microarray datasets (GSE25097, GSE22058) related to HCC were downloaded from Gene Expression Omnibus (GEO) datasets. Metabolomics analysis was performed by ultra performance liquid chromatography - tandem mass spectrometer (UPLC-MS/MS). The cholesterol-related proteins were downloaded from HMBD. Ferroptosis-related genes were extracted from FerrDb database. Data sets were separated into two groups. GSE25097 was used to identify ferroptosis-related genes, and GSE22058 was used to verify results. During these processes, chemical-protein interaction (CPI), protein-protein interaction (PPI), the Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted. Multivariate logistic regression analysis was used to test the associated pathway.RESULTS: We identified 8 differentially expressed ferroptosis-related genes (HAMP, PTGS2, IL1B, ALOX15B, CDKN2A, RRM2, NQO1 and KIF20A) and 4 differentially expressed cholesterol-related genes (LCAT, CH25H, CEL and CYP7A1). Furthermore, based on the predicted results with STITCH, we identified indomethacin and IL1B as the essential node for cholesterol-mediated ferroptosis in hepatocellular carcinoma cell. Multivariate logistic regression analysis showed the activities of plasma IL1B in liver cancer patients enrolled have been significantly affected by the level of plasma cholesterol (P < 0.001) and the test result of IL1B is a predictor variable causing the changes of serum Fe levels (P < 0.001).CONCLUSIONS: Our findings shed new light on the association between cholesterol metabolism and ferroptosis in HCC, and suggest that IL1B is the necessary node for cholesterol to lead to ferroptosis process in HCC. Also, we identified the potential role of indomethacin in adjuvant therapy of HCC with complications of abnormal cholesterol metabolism.PMID:38191842 | DOI:10.1007/s12672-023-00822-z
Author Correction: Metabolomic epidemiology offers insights into disease aetiology
Nat Metab. 2024 Jan 8. doi: 10.1038/s42255-023-00967-9. Online ahead of print.NO ABSTRACTPMID:38191668 | DOI:10.1038/s42255-023-00967-9
Altered quorum sensing and physiology of Staphylococcus aureus during spaceflight detected by multi-omics data analysis
NPJ Microgravity. 2024 Jan 8;10(1):2. doi: 10.1038/s41526-023-00343-7.ABSTRACTStaphylococcus aureus colonizes the nares of approximately 30% of humans, a risk factor for opportunistic infections. To gain insight into S. aureus virulence potential in the spaceflight environment, we analyzed RNA-Seq, cellular proteomics, and metabolomics data from the "Biological Research in Canisters-23" (BRIC-23) GeneLab spaceflight experiment, a mission designed to measure the response of S. aureus to growth in low earth orbit on the international space station. This experiment used Biological Research in Canisters-Petri Dish Fixation Units (BRIC-PDFUs) to grow asynchronous ground control and spaceflight cultures of S. aureus for 48 h. RNAIII, the effector of the Accessory Gene Regulator (Agr) quorum sensing system, was the most highly upregulated gene transcript in spaceflight relative to ground controls. The agr operon gene transcripts were also highly upregulated during spaceflight, followed by genes encoding phenol-soluble modulins and secreted proteases, which are positively regulated by Agr. Upregulated spaceflight genes/proteins also had functions related to urease activity, type VII-like Ess secretion, and copper transport. We also performed secretome analysis of BRIC-23 culture supernatants, which revealed that spaceflight samples had increased abundance of secreted virulence factors, including Agr-regulated proteases (SspA, SspB), staphylococcal nuclease (Nuc), and EsxA (secreted by the Ess system). These data also indicated that S. aureus metabolism is altered in spaceflight conditions relative to the ground controls. Collectively, these data suggest that S. aureus experiences increased quorum sensing and altered expression of virulence factors in response to the spaceflight environment that may impact its pathogenic potential.PMID:38191486 | DOI:10.1038/s41526-023-00343-7
The association between plasma free amino acids and type 2 diabetes mellitus complicated with infection in Chinese patients
Diabetol Metab Syndr. 2024 Jan 9;16(1):9. doi: 10.1186/s13098-023-01203-w.ABSTRACTBACKGROUND: Type 2 diabetes mellitus (T2DM), one of the most common public diseases threatening human health, is always accompanied by infection. Though there are still a variety of flaws in the treatment of some infectious diseases, metabolomics provides a fresh perspective to explore the relationship between T2DM and infection. Our research aimed to investigate the association between plasma free amino acids (PFAAs) and T2DM complicated with infection in Chinese patients.METHODS: A cross-sectional study was conducted from May 2015 to August 2016. We retrieved the medical records of 1032 inpatients with T2DM from Liaoning Medical University First Affiliated Hospital and we used mass spectrometry to quantify 23 PFAAs. Infections contained 15 individual categories that could be retrieved from the database. Principal component analysis was used to extract factors of PFAAs. Multi-variable binary logistic regression was used to obtain odds ratios (OR) and their 95% confidence intervals (CI).RESULTS: Among 1032 inpatients,109 (10.6%) had infectious diseases. Six factors, accounting for 68.6% of the total variance, were extracted. Factor 4 consisted of Glu, Asp and Orn. Factor 5 consisted of Hcy and Pip. After adjusting for potential confounders, factor 4 was positively correlated with T2DM complicated with infection in Chinese T2DM patients (OR: 1.27, 95%CI: 1.06-1.52). Individual Hcy in factor 5 was positively associated with T2DM complicated with infection (OR: 1.33, 95%CI: 1.08-1.64). Furthermore, factor 4 (OR: 1.44, 95%CI: 1.11-1.87), Orn (OR: 1.01, 95%CI: 1.00-1.02) and Hcy (OR: 1.56, 95%CI: 1.14-3.14) were positively associated with bacterial infection in Chinese T2DM patients, while factor 5 (OR: 0.71, 95%CI: 0.50-1.00) was negatively associated with bacterial infection.CONCLUSIONS: Urea cycle-related metabolites (Orn, Asp, Glu) and Hcy were positively associated with T2DM complicated with infection in China. Orn and Hcy were positively associated with bacterial infection in T2DM patients in China.PMID:38191455 | DOI:10.1186/s13098-023-01203-w
Metabolic alterations in urine among the patients with severe fever with thrombocytopenia syndrome
Virol J. 2024 Jan 8;21(1):11. doi: 10.1186/s12985-024-02285-2.ABSTRACTBACKGROUND: The pathogenesis of severe fever with thrombocytopenia syndrome (SFTS) remained unclear. We aimed to profile the metabolic alterations in urine of SFTS patients and provide new evidence for its pathogenesis.METHODS: A case-control study was conducted in the 154th hospital in China. Totally 88 cases and 22 controls aged ≥ 18 years were enrolled. The cases were selected from laboratory-confirmed SFTS patients. The controls were selected among SFTSV-negative population. Those with diabetes, cancer, hepatitis and other sexually transmitted diseases were excluded in both groups. Fatal cases and survival cases were 1:1 matched. Inter-group differential metabolites and pathways were obtained, and the inter-group discrimination ability was evaluated.RESULTS: Tryptophan metabolism and phenylalanine metabolism were the top one important metabolism pathway in differentiating the control and case groups, and the survival and fatal groups, respectively. The significant increase of differential metabolites in tryptophan metabolism, including 5-hydroxyindoleacetate (5-HIAA), L-kynurenine (KYN), 5-hydroxy-L-tryptophan (5-HTP), 3-hydroxyanthranilic acid (3-HAA), and the increase of phenylpyruvic acid and decrease of hippuric acid in phenylalanine metabolism indicated the potential metabolic alterations in SFTSV infection. The increase of 5-HIAA, KYN, 5-HTP, phenylpyruvic acid and hippuric acid were involved in the fatal progress of SFTS patients.CONCLUSIONS: Tryptophan metabolism and phenylalanine metabolism might be involved in the pathogenesis of SFTSV infection. These findings provided new evidence for the pathogenesis and treatment of SFTS.PMID:38191404 | DOI:10.1186/s12985-024-02285-2
Study Profile of the Tsuruoka Metabolomics Cohort Study (TMCS)
J Epidemiol. 2024 Jan 6. doi: 10.2188/jea.JE20230192. Online ahead of print.ABSTRACTThe Tsuruoka Metabolomics Cohort Study (TMCS) is an ongoing population-based cohort study being conducted in the rural area of Yamagata Prefecture, Japan. This study aimed to enhance the precision prevention of multi-factorial, complex diseases, including non-communicable and aging-associated diseases, by improving risk stratification and prediction measures. At baseline, 11,002 participants aged 35-74 years were recruited in Tsuruoka City, Yamagata Prefecture, Japan, between 2012 and 2015, with an ongoing follow-up survey. Participants underwent various measurements, examinations, tests, and questionnaires on their health, lifestyle, and social factors. This study used an integrative approach with deep molecular profiling to identify potential biomarkers linked to phenotypes that underpin disease pathophysiology and provide better mechanistic insights into social health determinants. The TMCS incorporates multi-omics data, including genetic and metabolomic analyses of 10,933 participants and comprehensive data collection ranging from physical, psychological, behavioral, and social to biological data. The metabolome is used as a phenotypic probe because it is sensitive to changes in physiological and external conditions. The TMCS focuses on collecting outcomes for cardiovascular disease, cancer incidence and mortality, disability, functional decline due to aging and disease sequelae, and the variation in health status within the body represented by omics analysis that lies between exposure and disease. It contains several sub-studies on aging, heated tobacco products, and women's health. This study is notable for its robust design, high participation rate (89%), and long-term repeated surveys. Moreover, it contributes to precision prevention in Japan and East Asia as a well-established multi-omics platform.PMID:38191178 | DOI:10.2188/jea.JE20230192
Sex modulates the diet-induced changes to the plasma lipidome in a rat model of cardiorespiratory fitness
Biochim Biophys Acta Mol Cell Biol Lipids. 2024 Jan 6:159451. doi: 10.1016/j.bbalip.2024.159451. Online ahead of print.ABSTRACTOBJECTIVE: Individuals with higher intrinsic cardiorespiratory fitness (CRF) experience decreased rates of cardiometabolic disease and mortality, and high CRF is associated with increased utilization of fatty acids (FAs) for energy. Studies suggest a complex relationship between CRF, diet, and sex with health outcomes, but this interaction is understudied. We hypothesized that FA utilization differences by fitness and sex could be detected in the plasma metabolome when rats or humans were fed a high carbohydrate (HC) or high fat (HF) diet.METHODS: Male and female rats selectively bred for low (LCR) and high (HCR) CRF were fed a chow diet or a sucrose-free HF (45 % fat) or HC (10 % fat) diet. Plasma samples were collected at days 0, 3, and 14. Human plasma data was collected from male and female participants who were randomized into a HC or HF diet for 21 days. Samples were analyzed using liquid chromatography-mass spectrometry and regression statistics were used to quantify the effect of diet, CRF, and sex on the lipidome.RESULTS: In rats, the baseline lipidome is more significantly influenced by sex than by CRF, especially as elevated diglycerides, triglycerides, phosphatidylcholines, and lysophosphatidylcholines in males. A dynamic response to diet was observed 3 days after diet, but after 14 days of either diet, the lipidome was modulated by sex with a larger effect size than by diet. Data from the human study also suggests a sex-dependent response to diet with opposite directionality of affect compared to rats, highlighting species-dependent responses to dietary intervention.PMID:38191091 | DOI:10.1016/j.bbalip.2024.159451
Integration of network pharmacology and serum medicinal chemistry to investigate the pharmacological mechanisms of QiZhuYangGan Decoction in the treatment of hepatic fibrosis
J Ethnopharmacol. 2024 Jan 6:117730. doi: 10.1016/j.jep.2024.117730. Online ahead of print.ABSTRACTETHNOPHARMACOLOGICAL RELEVANCE: Qizhuyanggan Decoction (QZD), a traditional Chinese medicine formula, is frequently utilized in clinical practice for managing hepatic fibrosis. However, the specific target and mechanism of action of QZD for hepatic fibrosis treatment remain unknown.AIM OF THE STUDY: By combining network pharmacology, metabolomics, and experimental validation methods, our study aimed to investigate the therapeutic effects of QZD on hepatic fibrosis, the anti-hepatic fibrosis active ingredient, and the possible mechanism of anti-hepatic fibrosis action.MATERIALS AND METHODS: The study aimed to investigate the therapeutic effect of QZD on hepatic fibrosis induced by CCl4 in SD rats, as well as its mechanism of action. The rats were anesthetized intraperitoneally using 3% pentobarbital and were executed after asphyxiation with high concentrations of carbon dioxide. Several techniques were employed to evaluate the efficacy of QZD, including ELISA, Western blot, HYP reagent assay, and various pathological examinations such as HE, Masson, Sirius Red staining, and immunohistochemistry (IHC). Additionally, serum biochemical assays were conducted to assess the effect of QZD on liver injury. Network pharmacology, UPLC, molecular docking, and molecular dynamics simulation were utilized to explore the mechanism of QZD in treating hepatic fibrosis. Finally, experimental validation was performed through ELISA, IHC, PCR, and Western blot analysis.RESULT: Liver histopathology showed that QZD reduced inflammation and inhibited collagen production, and QZD significantly reduced HA and LN content to treat hepatic fibrosis. Serum biochemical analysis showed that QZD improved liver injury. Network pharmacology combined with UPLC screened six active ingredients and obtained 87 targets for the intersection of active ingredients and diseases. The enrichment analysis results indicated that the PI3K/AKT pathway might be the mechanism of action of QZD in the treatment of hepatic fibrosis, and counteracting the inflammatory response might be one of the pathways of action of QZD. Molecular docking and molecular dynamics simulations showed that the active ingredient had good binding properties with PI3K, AKT, and mTOR proteins. Western blot, ELISA, PCR, and IHC results indicated that QZD may treat hepatic fibrosis by inhibiting the PI3K/AKT/mTOR pathway and promoting M1 macrophage polarization, while also promoting M2 macrophage polarization.CONCLUSIONS: QZD may be effective in the treatment of hepatic fibrosis by inhibiting the PI3K/AKT/mTOR signaling pathway and M1 macrophage polarization, while promoting M2 macrophage polarization. This provides a strong basis for the clinical application of QZD.PMID:38190954 | DOI:10.1016/j.jep.2024.117730
Metabolomic Approaches in Assessing the Insecticidal Activity of the Extracts from Argemone ochroleuca Sweet (Papaveraceae) Against Three Diverse Crop Pests of Economic Importance
Chem Biodivers. 2024 Jan 8:e202301279. doi: 10.1002/cbdv.202301279. Online ahead of print.ABSTRACTFor years, crop protection from pest attack, has been dominated by the use of synthetic insecticides. However, many of them can cause severe environmental problems and human health. In this context, the use of plant extracts constitutes an alternative to avoid this kind of contaminants. In this work, we investigated the chemical constituents and insecticidal activity of different extracts of leaves and stems of Argemone ochroleuca Sweet (Papaveraceae) against three economically important pests Sitophilos zeamais (Coleoptera:Curculionidae), Galleria mellonella (Lepidoptera:Pyralidae) and Xyleborus ferrugineus (Coleoptera:Scolytidae). A GC-MS analysis mostly revealed the presence benzylisoquinoline alkaloids such as allocryptopine, protopine, among others. For the insecticidal activity, after nine hours of contact, the methanolic leaves extract showed a 100% of mortality, followed by the dichloromethane stems extract with up to 93% of mortality. The results suggest that the benzylisoquinoline alkaloids are involved in the insecticidal activity through the octopaminergic system of the tested insects.PMID:38190837 | DOI:10.1002/cbdv.202301279
SGLT2 inhibitor improves kidney function and morphology by regulating renal metabolism in mice with diabetic kidney disease
J Diabetes Complications. 2023 Nov 21;38(2):108652. doi: 10.1016/j.jdiacomp.2023.108652. Online ahead of print.ABSTRACTBACKGROUND: Diabetic kidney disease (DKD) is a secondary complication of diabetes mellitus and a leading cause of chronic kidney disease.AIM: To investigate the impact of long-term canagliflozin treatment on DKD and elucidate its underlying mechanism.METHODS: DKD model was established using high-fat diet and streptozotocin in male C57BL/6J mice (n = 30). Mice were divided into five groups and treated for 12 weeks. 1) normal control mice, 2) DKD model, 3) mice treated low-dose of canagliflozin, 4) high-dose of canagliflozin and 5) β-hydroxybutyrate. Mice kidney morphology and function were evaluated, and a metabolomics analysis was performed.RESULTS: Canagliflozin treatment reduced blood creatinine and urine nitrogen levels and improved systemic insulin sensitivity and glucose tolerance in diabetic mice. Additionally, a decrease in histological lesions including collagen and lipid deposition in the kidneys was observed. β-hydroxybutyrate treatment did not yield a comparable outcome. The metabolomics analysis revealed that canagliflozin induced alterations in amino acid metabolism profiles in the renal tissue of diabetic mice.CONCLUSION: Canagliflozin protects the kidneys of diabetic mice by increasing the levels of essential amino acids, promoting mitochondrial homeostasis, mitigating oxidative stress, and stimulating the amino acid-dependent tricarboxylic acid cycle.PMID:38190779 | DOI:10.1016/j.jdiacomp.2023.108652